
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.22, April 2012

46

Reputation Aware Reliable Distributed Grid Scheduler

for Mixed Tasks

Ram Mohan Rao Kovvur

Department Of Computer Science And
Engineering, Vasavi College Of Engineering,

Hyderabad, Andhra Pradesh, India.

Ramachandram S

Department Of Computer Science And
Engineering, Osmania University, Hyderabad,

Andhra Pradesh, India.

 Vijayakumar Kadappa

Department Of Computer Applications,
 Bms College Of Engineering, Bangalore,

Karnataka, India.

Govardhan A

Department Of Computer Science And
Engineering, Jntuh, Hyderabad,

 Andhra Pradesh, India.

ABSTRACT
Grid scheduling is one of the vital tasks in grid environment,

which maps tasks to resources. More recently, a Reputation

based scheduling method based on Reliability was proposed

for workflow applications to overcome the deficiencies of the

existing reputation methods. The method was focused on only

computational-intensive tasks. Other recent effort to improve

reliability of the scheduling include RDGS (Reliable

Distributed Grid Scheduler), which attempts to enhance the

Successful Schedule Rate of the mixed tasks by using

rescheduling concept. The RDGS method considers various

parameters (Priority, Deadline, and CCR) for both

computational and communication intensive mixed tasks

(Hard, firm, and soft). In this paper we propose a novel

method which exploits the merits of both Reliability based

reputation method and RDGS. We conducted exhaustive

simulation experiments to prove the superiority of the

proposed method as compared to other existing methods

(GDS, RDGS). The proposed method shows its merit in terms

of successful schedule rate, task queuing time and overall

time.

Keywords
Grid, Scheduling, Reliability, Reputation, Priority, Deadline,

Distributed and Rescheduling.

1. INTRODUCTION
Grid computing and its technologies mainly emerged as the

next-generation parallel and distributed computing

methodology for fulfilling the mounting demand of the

scientific computing community for more computing power.

A Grid computing environment is comprises of distributed

computers and resources inter-connected locally, nationally or

across countries and continents to achieve high performance

computing and resource sharing. Thus a computational grid is

hardware and software infrastructure is able to provide a

dependable, consistent, pervasive and unlimited computing

capacity for every user associated in the grid [1] [2] [3].
Grid scheduling is a process of mapping grid tasks to grid

resources under multiple criteria and grid environment

configuration. The grid scheduler has five phases, which

consists of resource discovery, resource selection, task

selection, task execution and task monitoring. The

responsibility of a scheduler is selecting resources and

scheduling tasks in such a way that the user and application

constraints are satisfied, in terms of overall execution time

and cost of the resources utilized [4].

In general, reliability is an ability of a system to perform and

continue its functions in routine circumstances, as well as

hostile or unexpected circumstances [5]. The reliability of a

grid scheduling scheme depends upon the following three

important factors:

 Task execution time: The time taken by the task to

complete its execution.

 Communication time: The time consumed in

communication in order to obtain the required

resources from the various nodes of the grid.

 Rate of failure: The rate of failure of elements of

grid computing system such as grid nodes,

communication channels.

Recently, a lot of effort kept for fault avoidance and removal

has been investigated to improve grid reliability. EunJoung

Byun et al. [6] proposes Markov job scheduler based on

availability for improving performance and reliability of

selecting volunteers according to the needs of the application

in Grid computing environment Fiaz Gul Khan et al. [7]

Presents a company study of four different fault tolerant

techniques such as check pointing, retrying, alternative

resource and alternative task to understand the behavior and

performance of these fault tolerant techniques in grid

computer environment. Mohammed Amoon et al. [8] Brings

out a fault tolerant scheduling strategy of the system is to

select resources with lowest tendency to fail for computational

grids to improve grid performance in terms of throughput,

unavailability, turnaround time and fail tendency. Suchang

Guo et al. [9] presents an in depth study on grid service

reliability modeling and analysis of fault recovery mechanism

as Local Node Fault Recovery (LNFR) by resuming the

subtask execution on the failed node until the failed node is

recovered. Young Choon Lee et al. [10] presents a

rescheduling for reliable job completion with the support of

clouds resources to reduce delay in job completion. These

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.22, April 2012

47

methods improved reliability in the grid systems by various

fault recovery mechanisms, but however they make grid

scheduling decisions centrally.

Mustafizur Rahman et al. [11] Proposes a cooperative and

decentralized workflow scheduling in dynamic and distributed

sharing environment, the participants in the system, such as

the workflow brokers, resources and users who belong to

multiple control domains, work together to enable a single

cooperative resource sharing environment. Katia Leal et al.

[12] Proposes a decentralized model for scheduling

independent tasks in federated grids, to implement a mapping

strategy on the meta scheduler at each grid infrastructure of

the federated grids to reduce makespan of application and

increase the performance of the grid infrastructure. In contrast

to these methods, Cong Liu et al. [13] developed a general

distributed scalable grid scheduler (GDS) for independent

tasks with different priorities and deadlines. GDS has three

phases, which consists of a multiple attribute ranking phase, a

shuffling phase, and peer-to-peer dispatching phase.

However, these distributed schedulers do not consider the

reliability factor, which is vital in the context of grid

environment. Thus there is no guarantee that the task will be

scheduled successfully if the system is not reliable.

Recently, we proposed a distributed Grid Scheduler with

reliability factor with respect to failure of grid nodes for (i)

independent tasks [14] (ii) Mixed tasks RDGS–MT [15].

These two methods indeed considered failure of resource, by

rescheduling the tasks to another resource but the real time

failure of resource is not monitored.

To further improve reliability of distributed grid scheduler, we

considered reputation of resource. Reputation is generally said

or believed about a person or things [16]. The reputation is a

represent of trust building, as one can trust another based on a

good reputation. Thus a reputation is a measure of truth

worthiness, in the sense of reliability. Abdul-Rahman et al.,

[17] states that a reputation is computed based on the

information of past behavior. Gheorghe Cosmin Silaghi et al.

[18] propose a reputation–based trust management systems

and their applicability to grids for the usage of reputation

systems for enhancing grids with fault-tolerance in

computational grids to improve resource management in

traditional grids.

Recently, Xiaofeng Wang et al. [19] propose a method,

reliability-driven (RD) reputation using Look-Ahead Genetic

Algorithm (LAGA) which utilizes the RD reputation for

workflow application to optimize both makespan and

reliability. It consists of four components namely resource

manager, task scheduler, task monitor and reputation

manager. This method focuses on workflow application

consisting of only computational intensive tasks.

In this work, we propose a novel distributed grid scheduler

(RRDGS) for mixed tasks by exploiting merits of RD

reputation and RDGS [15] [19]. The merits of the proposed

method include: i) It considered failure of nodes by

monitoring resources and tasks. ii) It consists both

computational and communication intensive tasks. iii) It

considered hard, firm and soft tasks iv) It computes reputation

of nodes during scheduling of initial set of grid nodes. v) It is

computationally efficient.

The rest of the paper is organized as follows. In section 2, we

outline the grid model used in this work. In Section 3, we

review the existing distributed grid scheduling methods.

Section 4 describes the proposed scheduling algorithm. Our

experimental results are presented in section 5. Finally we

conclude in section 6.

2. GRID MODEL
We consider the grid model as shown in Fig.1, for our

investigation. The grid model consists of geographically

distributed sites which are interconnected through WAN. At

each site, there is a Grid Resource (GR) consisting of several

machines of different processing capabilities and a grid user

have many tasks to be scheduled by the grid scheduler. The

communication within the site (intra-site) is 10Mbps as well

as the communication across the sites (inter-site) is also

10Mbps.

GRID

USER
Reputation Manager

Task

Ranking

Phase

INTERNET

Local

Grid

Site

Task

Scheduler

Remote

Grid

Site 2

Remote

Grid

Site 1

Resource

Information

Manager

Task

Monitor

Task

Re-scheduler

Fig 1: Grid Model

3. REVIEW OF DISTRIBUTED GRID

SCHEDULING METHODS

3.1 GDS
GDS [13] consisting of three phases, which consists of multi

attribute ranking phase, a shuffling phase and a dispatch

phase. In the ranking phase the task are initially sorted the

decreasing order of priority, the decreasing order of CCR and

lastly by increasing order of deadline. In the second phase the

shuffle procedure is used to assign each task to a specific

resource and finally the dispatch phase unscheduled

computational tasks are assigned to remote sites for a suitable

resource matching.

The GDS computes CSSR as number of mission-critical tasks

meeting deadlines to total number of mission-critical tasks

and also computes overall successful schedule ratio as number

of tasks meeting deadline to the total number of tasks.

GDS assumes resources are available all the time i.e. no

resource failure, although this is unrealistic for most of the

Grids.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.22, April 2012

48

3.2 RDGS
RDGS is an improved version of GDS, which considers the

resource failure while scheduling of task. RDGS consists of

three phases namely ranking phase, Scheduler phase and Re-

scheduler. In the ranking phase the tasks are sorted by

decreasing priority and then by decreasing CCR value and

then by increasing order of deadline. In the second phase

scheduler assign a task to a specific resource and in the last

phase, the re-scheduler submits the tasks which are failed due

to resource failure to other resource by keeping tasks in a

queue. The following are the design goals of RDGS [15]:

 RDGS-MT assigns priorities as high, normal, and

low to the tasks which correspond to hard, firm and

soft tasks.

 RDGS-MT is based on Communication to

Computing Ratio (CCR), which is used to decide

local or remote site for task scheduling.

 RDGS-MT maximizes the total number of tasks

completing execution and meeting their deadlines.

 RDGS-MT exploits reliability factor with respect to

failure of nodes.

 RDGS-MT makes use of re-scheduling concept.

In RDGS, Overall successful schedule ratio is computed as

the ratio of the number of tasks meeting deadline plus number

of tasks executed on a reliable resource and the total number

of tasks. The computed critical successful schedule ratio is

computed as number of mission-critical tasks meeting the

deadline plus number of mission-critical tasks executed on a

reliable resource and the number of mission-critical tasks.

RDGS indeed considered the failure of resource, by

rescheduling the tasks to another resource but the real time

failure of resource is not monitored. Thus it effects overall

successful schedule ratio as well as critical successful ratio.

4. REPUTATION AWARE RELIABLE

DISTRIBUTED GRID SCHEDULER FOR

MIXED TASKS (RRDGS)
We consider three kinds of tasks: hard, firm and soft. The

proposed method uses such a task taxonomy which considers

the consequence of missing deadlines and the importance of

task property. A hard task cannot tolerate any deadline miss,

since a single job that finishes after its deadline could disturb

the entire system. A soft task can tolerate jobs that finish after

their deadlines, whereas a firm task can tolerate only some job

failure. Typically, a firm job should either finish before its

deadline or not execute at all. In other words a soft job that

misses its deadline can still do some useful work, while a firm

job that misses its deadline is useless, though it does not

jeopardize the system [15].

RRDGS consists of six phases: task ranking phase, resource

manager, task scheduler, task monitor, reputation manager

and task re-scheduler. The task ranking phase consists of

two sub-phases, in the first sub-phase tasks are sorted in

decreasing order of priority, then by decreasing order of CCR

and then by increasing order of deadline. In the second sub-

phase tasks queue are divided into ‘n’ sub-queues. The

resource manager works as an agent for the existing

computing resources in the system. A computing resource R =

{r1, r2… rm } can be local or remote grid service provider.

Each resource ri is associated with two values such as

computing speed of resource and failure frequency of the

resource.

The task ranking phase initially will submit nth sub-queue

consists of soft tasks to the task scheduler for execution and

retain a list of failed nodes with tasks and then it submits first

sub-queue consist of mission critical tasks based on the

feedback obtained from previous sub-queue. The same

process will repeated for subsequent sub-queues. The task

monitor check the status of each task whether it is successful

or not and further un-successful tasks are maintained in a

queue ‘U’ for re-scheduling. The reputation manager

obtains feedback from each task sub-queue, which can be

used for next sub-queue. The re-scheduler schedules the

tasks in the queue ‘U’ to other available resources.

To further improve successful schedule ratio, we propose

RRDGS where the scheduler considers resource failure by

monitoring both task and resource entities. The following are

the design goals of RRDGS:

 To maximize the reliability of scheduler i.e. the

probability that all tasks complete successfully.

 To minimize the resource failure factor using

reputation.

 To minimize the task failure by re-scheduling

 To minimize the execution time of tasks.

 To minimize the waiting time of tasks in queue.

The following notation is used in this paper:

Ti : i
th task

Pi : Priority of the task ti

di : Deadline of task ti

CCRi : Communication to computation of the task ti

Q : Task Queue

Qi : i
th subqueue

U : Queue of tasks assigned to a failed node

Si : i
th site with a number of machines

ri : A resource in the system

Rri : The instruction execution time of resource ri

nj : Number of machines within a site sj

mj : Number of neighboring sites for a grid site sj

N= {N1,N2………Nn}: Available grid node list

L = List of failed nodes

Tij: i
th task in subqueue, Qj

TTijk : Transmission time of ith task from site sj to sk

CCjk: Computing capacity of machinek at site sj

Each site contains a number of machines. The average

computing capacity of a site sj is defined as:

jn

k

ijkj ncccc
1

/

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.22, April 2012

49

The average transmission time of task Tj, from a site Sj to all

its neighbors:

jm

k

jijkj mTTTT
1

/

A task is composed of execution code, input data, output data,

priority and CCR. Tasks are assigned high, normal, low

priorities which correspond to hard, firm and soft respectively.

The ratio of communication time to computational time

(CCRi) of a task Ti is defined as follows [13].

datainput

dataoutput
x

CCTofsizeninstructio

TT

ji

j

i
)/(

 CCR

The reliability based scheduling of an application is to

maximize the reliability and minimize the makespan of the

application. To maximize the reliability of scheduling S, we

need to minimize its task failure rate and reduce number of

reschedules.

Procedure RRDGS-MT (Q, N) // at a site

Begin

1. Sort the Task Queue Q

i) In descending order of priority, and

ii) In increasing order of deadline.

2. Divide the task queue, Q into ‘n’ logical sub queues

Q1, Q2……… Qn such that low priority tasks

occupy rear side queues.

3. Call RRDGS (Qn, N, L)

4. For each Task subqueue, Qi; i=1,2… n-1:

Call RRDGS (Qi, N, L)

End

Procedure RRDGS (Qi, N, L)

Input: Subqueue, Qi

Begin

1. For each task Ti in Qi;

Begin

CCR i = Compute–CCR (Ti);

Begin

If (CCRi < 1)

 Begin

1.1 Assign Ti to remote site, si

1.2 Call RRDGS–Execute (Ti, Si, N,L)

for execution of Ti

 End

 Else

 Begin

1.3 Assign Ti to local site, sj

1.4 Call RRDGS–Execute (Ti, Sj, N, L)

for execution of Ti

 End

End

End

2. Compute Task Failure Percent.

3. Compute Mission Critical Task Failure Percent.

4. Update available grid node list N, by removing

failed nodes at each site.

End

Procedure RRDGS–Execute (Ti, Sk, N, L)

Begin

1. Select a node, Ni randomly at grid site, Sk
.

2. Check the status of the node Ni
.

3. If (status of Ni is ‘failed’)

 Begin

3.1 Insert Ti in queue U

3.2 Insert Ni in list L

3.3 Re-schedule Ti by calling once

 RRDGS–Execute (Ti, Sk, N, L)

 End

 Else

 Begin

 4.1 Ti is scheduled to node Ni

 End

End

5. EXPERIMENTAL RESULTS AND

ANALYSIS

5.1 Experimental Setup
We used the following parameters in our experimental study:

Task ID, Task length, Task file size, and Task output size,

Priority, Deadline and Communication to computational Ratio

(CCR).

We assumed the number grid resources as 10 percent of the

mixed tasks under consideration in our analysis. We varied

Resource failure rate percentage as 5, 8, 10, 16, 20 of grid

resources under consideration and obtained results on

increasing task size of {24, 48, 74, 100, and 125} x 105 MI.

We computed Average Overall Successful Schedule

Percentage (OSSP) using number of tasks successfully

scheduled and total number of tasks and also Average Critical

Successful Schedule Percentage (CSSP) using number of

mission critical tasks successfully scheduled and total number

of mission critical tasks.

We used GridSim [20] simulator for simulating Grid

environment and the experimental results are shown in Figs.

(2) - (7).

5.2 Experimental Results

5.2.1 Experiment 1: Computing OSSP on

increasing task size of {24, 48, 74, 100, and 125} x

10
5
MI by varying resource failure rate.

We compared RRDGS with RDGS and GDS with respect to

the Average overall Successful Schedule percentage on

increasing task size of {24, 48, 74, 100, and 125} x 105 MI by

varying resource failure rate i.e. 5%, 8%, 10%, 16% and 20%,

it is observed that RRDGS performed better in terms overall

successful schedule percent than the RDGS by 2% at

minimum task size and 4% at maximum Task size, Where as

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.22, April 2012

50

GDS shows 12% lesser OSSR at minimum task size and 14%

lesser OSSR at maximum task size.

Varying Resource Failure Rate

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

0 20 40 60 80 100 120 140

Task Size(*10
5
)

A
v

er
ag

e
S

u
cc

es
sf

u
l

S
ch

ed
u

le
 P

er
ce

n
t

RRDGS

RDGS

GDS

Fig 2: Average Successful Schedule Percent of GDS,

RDGS and RRDGS on increasing task size

5.2.2 Experiment 2: Computing Average Mission

Critical Task failure percent on increasing

Number of Mission Critical Tasks by Varying

Resource Failure Rate.

Varying Resource Failure Rate

0

2

4

6

8

10

12

14

16

18

0 250 500 750 1000 1250 1500 1750

Number of Mission critical Tasks

A
v

er
ag

e
M

is
si

o
n

 C
ri

ti
ca

l
T

as
k

F
ai

lu
re

 p
er

ce
n

t

RRDGS

RDGS

GDS

Fig 3: Average Mission critical task failure percent of

GDS, RDGS, & RRDGS percentage on increasing number

of mission critical task

We compared Average Mission Critical Tasks failure percent

on increasing number of mission tasks on increasing Number

of Mission Critical Tasks by Varying Resource Failure Rate

i.e. 5%, 8%, 10%, 16% and 20%, it observed that the failure

of mission critical tasks of RRDGS is less than 1% of mission

critical tasks, where as failure of mission critical tasks of

RDGS is 2 to 3% and GDS is 13% to17% on increasing

number of mission critical tasks.

5.2.3 Experiment 3: Computing the

Computational time/ Makespan of the schedulers

by varying task size of {24, 48, 74, 100, and 125} x

10
5
MI.

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140

Task Size (*10
5
)

E
x

ec
u

ti
o

n
 T

im
e

RRDGS RDGS GDS

Fig 4: Computational time of GDS, RDGS & RRDGS by

varying task size

We Computed the Computational time/ Makespan of the

schedulers by varying task size of {24, 48, 74, 100, and 125}

x 105MI , it is observed that at low and medium task size the

execution time remains constant for the three schedulers,

where as at high task size the execution time of RRDGS is

lesser by 6% to 9% with respect to RDGS and GDS

Schedulers.

5.2.4 Experiment 4: Computing task Waiting

Time of tasks in reschedule Queue by varying

number of tasks.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1000

2000

3000

4000

5000

N
u

m
b

er
 o

f
T

as
k

s

Waiting Time (ms)

RRDGS RDGS

Fig 5: Computing Task waiting time of RDGS & RRDGS

by varying number of tasks

We Computed task Waiting Time in rescheduled Queue by

varying number of tasks. It is observed that the waiting time

of tasks w.r.t. RRDGS in reschedule queue ‘U’ is minimal

which varies from 60 to 540 milliseconds where as it varies

from 918 to 8400 milliseconds for small (1000 tasks) and

large number (5000 tasks) of tasks w.r.t. RDGS respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.22, April 2012

51

5.2.5 Experiment 5: Impact of Rescheduling.

Impact of Re-scheduling

97

97.5

98

98.5

99

99.5

100

0 1000 2000 3000 4000 5000 6000

Number of Gridlets

O
v

er
al

l
S

u
cc

es
sf

u
ll

 S
ch

ed
u

le

P
er

ce
n

t

RRDGS RRDGS-NORES

Fig 6: Overall Successful Schedule Percent of RRDGS

with and without Rescheduling

In this experiment, we examine the usage of rescheduling for

task monitoring component of RRDGS. To do so we use

RRDGS-NORES, a scheduler, obtained upon removing task

monitoring component. From above fig (6), it is observed that

overall successful schedule percent of RRDGS is higher by

1% to 1.5% with respect to RRDGS-NORES on increasing

number of tasks.

5.2.6 Experiment 6: Impact of Communication to

Computational (CCR).

Impact of CCR

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

Gridlet size(*10
5
)

M
ak

es
p

an
(*

1
02

)

RRDGS-CCR RRDGS-WithoutCCR

Fig 7: Makespan of RRDGS with and without CCR

In this experiment, in order to see the advantages of task

ranking by CCR-type, we used another algorithm named

RRDGS-NOCCR, which is same as the RRDGS with out

CCR, sorts the tasks by priority and deadline, but nor CCR-

type. We observe that there is improvement in execution time

of 7% for high task size, 3% for medium size tasks and 1.5 %

for low task size.

6. CONCLUSION
In this paper, we propose a novel reputation based distributed

grid scheduler for independent mixed tasks in order to

increase successful schedule percent, to reduce waiting time

of task in the queue and to improve overall computational

time. The proposed scheduler minimizes failure percent of

mission critical tasks i.e. less than 1% and also incorporates

task monitoring component to further improve successful

schedule percent (i.e. 1.5). In future we extend this work by

considering more topics including resource discovery

algorithms, advance resource reservation and migration of

task on execution.

7. REFERENCES
[1] Fatos Xhafa, Ajith Abraham, Computational models and

heuristic methods for Grid scheduling problems, Future

Generation Computer Systems, August 2009.

[2] Barry Wilkinson, Grid Computing Techniques and

Applications, CRC Press, Taylor & Francis Group, A

CHAPMAN &HALL BOOK , 2011.

[3] Fangpeng Dong, Selim G.Akl, Scheduling algorithms

for grid computing : state of the Art and open Problems,

A Technical Report No. 2006-504, 2006.

[4] Maozhen Li, Mark Baker, The Grid Core Technologies,

A John Wiley & Sons, Inc.,, 2005.

[5] Wikipedia (Visited Feb 2009) Reliability, [online],

http://en.wikipedia.org/wiki/Reliability.

[6] EunJoung Byun, Sung.Jin Choi, MaengSoon Baik,

JoonMin Gil, Chan Yeol Park, Chongsun Hwang,

Markov job scheduler based on availability in desktop

grid computing environment, Future Generation

Computer Systems 23 (2007) 616-622.

[7] Fiaz Gul Khan, Kalim Qureshi, Babar Nazir,

Performance evaluation of fault tolerance techniques in

grid computing system, Computers and Electrical

Engineering, May, 2010.

[8] Mohammed Amoon, A fault-tolerant scheduling system

for computational girds, Computers and Electrical

Engineering, December 2011.

[9] Suchang Guo, Grid Service Reliability Modeling and

Optimal task scheduling considering fault recovery,

IEEE Transactions on reliability VOL. 60, No.1, March,

2011.

[10] Young Choon Lee, Albert Y. Zomaya, Rescheduling for

reliable job completion with the support of clouds,

Future Generation Computer Systems, March, 2010.

[11] Mustafizur Rahman, Rajiv Ranjan, Rajkumar Buyya,

Cooperative and decentralized workflow scheduling in

global girds, Future Generation Computer Systems, July,

2009.

[12] Katia Leal, Edurado Huedo, Ignacio M. Llorente, A

decentralized model for scheduling independent tasks in

Federated Grids, Future Generation computer systems,

March, 2009.

[13] Cong Liu, Sanjeev Baskiyar, A general distributed

scalable grid scheduler for independent tasks, J. Parallel

Distrib. Comput. 69(2009) 307-314.

[14] Kovvur Ram Mohan Rao, S Ramachandram, Kadappa

VijayaKumar and A Govardhan , A Reliable Distributed

Grid Scheduler for Independent Tasks, IJCSI

International Journal of Computer Science Issues, Vol. 8,

Issue 2, March 2011.

[15] Ram Mohan Rao Kovvur, S. Ramachandram,

Vijayakumar Kadappa, A. Govardhan, A Reliable

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.22, April 2012

52

Distributed Grid Scheduler for Mixed Tasks, PDCTA

2011, CCIS 203, pp. 213 -233, 2011.

[16] A. Josang, R. Ismail and C.Boyd. A survey of trust and

reputation systems for online service provision. Decision

support systems, 43 (2):618-644, March 2007.

[17] A. Abdul-Rahman and S. Hailes. Supporting trust in

virtual communities. In HICSS’00: Proceedings of the

33rd Hawaii International Conference on System

Sciences-Volume 6, Page 6007, Washington, DC, USA,

2000. IEEE Computer Society.

[18] Gheorghe Cosmin Silaghi, Alvaro E. Arenas, Luis Moura

Silva, Reputation based trust management systems and

their applicability to grids. Core GRID TR -0064, Feb

23, 2007.

[19] Xiaofeng Wang,, Chee Shin Yeo, Rajkumar Buyya,

Jinshu Su, Optimizing the makespan and reliability for

workflow applications with reputation and a look-ahead

genetic algorithm, Future Generation Computer Systems,

Volume 27,Issue 8, October 2011, Pages 1124-1134.

[20] Buyya R K, Murshed M, Anthony S, Marcos D de A,

Agustin C, GridSim Tool kit 4.1: A Grid simulation

toolkit for resource modeling and application scheduling

for parallel and distributed computing (2007).

