Anti Fuzzy T - Ideals Of TM- Algebras And Its Lower Level Cuts

T.Ramachandran Department of Mathematics Govt.Arts college,Karur. T.Priya Department of Mathematics PSNACET, Dindigul – 624 622 M.Parimala Department of Mathematics BIT, Sathyamangalam – 638 401

ABSTRACT

In this paper, we introduce the concept of Anti fuzzy T-ideals of TM-algebras, lower level cuts of a fuzzy set, lower level T-ideal and prove some results . We show that a fuzzy subset of a TM-algebra is a T-ideal if and only if the complement of this fuzzy subset is an anti fuzzy T-ideal. Also we discussed few results of T-ideal of TM-algebra under homomorphism as well as anti homomorphism . Cartesian product of Anti fuzzy T-ideal also discussed.

Keywords

TM-algebra, Anti fuzzy subalgebra, fuzzy T- ideal, Anti fuzzy Tideal, Anti homomorphism, Cartesian product, lower level cuts. AMS Subject Classification (2000): 20N25, 03E72, 03F055, 06F35, 03G25.

1. INTRODUCTION

Y.Imai and K.Iseki introduced two classes of abstract algebras : BCK-algebras and BCI –algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Q.P.Hu and X .Li introduced a wide class of abstract BCHalgebras. They have shown that the class of BCI-algebras. J.Neggers, S.S.Ahn and H.S.Kim introduced Q-algebras which is generalization of BCK / BCI algebras and obtained several results. K.Megalai and A.Tamilarasi introduced a class of abstract algebras : TM-algebras , which is a generalisation of Q / BCK / BCI / BCH algebras. R.Biswas introduced the concept of Anti fuzzy subgroups of groups. Modifying his idea, in this paper we apply the idea of TM-algebras and investigate how to deal with the homomorphism, Anti homomorphism and inverse image of Anti fuzzy T-ideals of TM-algebras.

2. PRELIMINARIES

In this section we site the fundamental definitions that will be used in the sequel.

2.1 Definition

A non empty set X with a constant 0 and a binary operation * is called a TM-algebra if it satisfies the following axioms.

1.
$$x * 0 = x$$

2.
$$(x * y) * (x * z) = z * y$$
, for all x, y, $z \in X$

In X we can define a binary operation \leq by x \leq y if and only if

x * y = 0.

In any TM-algebra , the following holds good for all x , y , $z \in X$

1) x * x = 02) (x * y) * x = 0 * y3) x * (x * y) = x4) $(x * z) * (y * z) \le x * y$ 5) (x * y) * z = (x * z) * y6) $x * 0 = 0 \Rightarrow x = 0$ 7) $x \le y \Rightarrow x * z \le y * z$ and $z * y \le z * x$ 8) x * (x * (x * y)) = x * y9) 0 * (x * y) = y * x = (0 * x) * (0 * y)10) (x * (x * y)) * y = 011) x * y = 0 and $y * x = 0 \Rightarrow x = y$.

Example 2.1

Let $X = \{0, 1, 2, 3\}$ be a set with a binary operation

 $\ast\,$ defined by the following table. Then $\,$ (X , $\ast\,$, 0) is a TM-algebra.

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

2.2 Definition

A nonempty subset S of a TM-algebra X is said to be

TM-subalgebra of X , if x , $y \in S$ implies $x * y \in S$.

2.3 Definition

Let (X , $\ensuremath{^*}$, 0) be a TM-algebra. A non empty subset

I of X is called an ideal of X if it satisfies the following conditions

(1)
$$0 \in I$$

(2) $x * y \in I$ and $y \in I \implies x \in I$ for all $x, y \in X$

2.4 Definition

Let (X, *, 0) be a TM-algebra. A non empty subset I

of X is called a T-ideal of X if it satisfies the following conditions

(1) $0 \in \mathbf{I}$

 $(2) \ (\ x \ ^{\ast} \ y \) \ ^{\ast} \ z \ \in I \ \text{ and } \ y \in I \ \Longrightarrow x \ ^{\ast} \ z \in I \ \text{ for all } x \ , \ y \ , \ z \in X$

2.5 Definition

Let X be a non-empty set. A fuzzy subset μ of the set X

is a mapping $\mu : X \rightarrow [0, 1]$.

Definition 2.6

Let X be a TM-algebra. A fuzzy subset μ in X is called a fuzzy ideal of X if

(i) $\mu(0) \ge \mu(x)$

```
(ii) \mu(x) \ge \min{\{\mu(x * y), \mu(y)\}}, for all x, y, z \in X.
```

Definition 2.7

Let X be a TM-algebra. A fuzzy subset μ in X is called a fuzzy T-ideal of X if

(i) $\mu(0) \ge \mu(x)$

(ii) $\mu(x * z) \ge \min\{ \mu ((x * y) * z) , \mu(y) \}$, for all $x, y, z \in$

X.

Definition 2.8

A fuzzy subset $\boldsymbol{\mu}$ of a TM-algebra X is called an anti fuzzy

T-ideal of X, if

(i) $\mu(0) \leq \mu(x)$

(ii) $\mu(x * z) \le max \{ \mu ((x * y) * z), \mu(y) \}$, for all $x, y, z \in X$.

Definition 2.9

A fuzzy set μ in a TM-algebra X is called a fuzzy

Sub algebra of X if $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$, for all $x, y \in X$.

Definition 2.10

A fuzzy set μ in a TM-algebra X is called an Anti fuzzy sub algebra of X if $\mu(x * y) \le \max{\{\mu(x), \mu(y)\}}$, for all $x, y \in X$.

Theorem 2.1

If $\,\mu$ is an anti fuzzy sub algebra of a TM-algebra x , then $\mu(0)\leq \mu\left(x\right)$, for any $x\in X.$

Proof

ince x * x = 0 for any x
$$\in$$
 X, then

$$\mu(0) = \mu (x * x)$$

$$\leq \max \{\mu (x), \mu (x)\}$$

$$= \mu (x)$$

$$\mu(0) \leq \mu (x).$$

Definition 2.11

S

Let μ be a fuzzy set of X. For a fixed $t\in[0,\,1],$ the set

 $\mu^t = \{x \in X \mid \mu(x) \le t\}$ is called the lower level subset of μ .

 $\label{eq:clearly} Clearly \ \mu^t \ \cup \ \mu_t = X \ for \ t \in [0,1] \ if \ t_1 < t_2 \ , \ then \ \mu^{t1} \ \subseteq \mu^{t2}.$

Theorem 2.2

A fuzzy set μ of a TM – algebra X is an anti fuzzy sub algebra if and only if for every $t \in [0,1]$, μ^t is either empty or a sub algebra of X.

Proof:

Assume that μ is an anti fuzzy sub algebra of X and

 $\mu^t \neq \phi$. Then for any $x, y \in \mu^t$, we have

$$\mu(x * y) \le \max \{\mu(x), \mu(y)\} \le t.$$

Therefore $x^*y \in \mu^t$. Hence μ^t is a sub algebra of X.

Now Let $x, y \in X$.

Take t = max { μ (x), μ (y)}. Then by assumption μ^{t} is a sub algebra

of X implies $x^* y \in \mu^t$. Therefore $\mu(x^* y) \le t = \max \{\mu(x), \mu(y)\}.$

Hence μ is an Anti fuzzy sub algebra of X.

Theorem 2.3

Any sub algebra of a TM – algebra X can be realized as a level sub algebra of some Anti fuzzy sub algebra of X.

Proof:

Let μ be a sub algebra of a given TM – algebra X and let μ be a fuzzy set in X defined by

$$\mu(x) = t, \text{ if } x \in A$$
$$0, \text{ if } x \notin A.$$

Where $t \in [0,1]$ is fixed. It is clear that $\mu^t = A$.

Now we prove such defined μ is an anti fuzzy sub algebra of X.

Let $x,y \in X$. If $x,y \in A$, then $x^*y \in A$.

Hence $\mu(x) = \mu(y) = \mu(x^*y) = t$ and $\mu(x^*y) \le \max \{\mu(x), \mu(y)\}$

If x,y $\notin A$, then $\mu(x) = \mu(y) = 0$ and $\mu(x * y) \le \max \{\mu(x), \mu(y)\}= 0$.

If at most one of $x,y \in A$, then at least one of $\mu(x)$ and $\mu(y)$ is equal to 0.

Therefore, max { μ (x), μ (y)}= 0 so that μ (x * y) \leq 0,which completes the proof.

Theorem 2.4

Two level sub algebras μ^s , μ^t (s < t) of an anti fuzzy sub algebra are equal iff there is no x \in X such that s $\leq \mu(x) \leq t$.

Proof

Let $\mu^s = \mu^t$ for some s < t. If there exist $x \in X$ such that $s \le \mu(x)$ < t, then μ^t is a proper subset of μ_s , which is a contradiction.

Conversely, assume that there is no $x \in X$ such that $s \le \mu(x) \le t$.

If $x \in \mu^s$, then $\mu(x) \leq s$ and $\mu(x) \leq t$,

Since $\mu(x)$ does not lie between s and t. Thus $x \in \mu^t$, which gives

 $\mu^{s} \subseteq \mu^{t}$, Also $\mu^{t} \subseteq \mu^{s}.$

Therefore $\mu^{s} = \mu^{t}$.

Theorem 2.5

Every Anti fuzzy T-ideal μ of a TM-algebra X is order preserving. That is , If $x \le y$, then $\mu(x) \le \mu(y)$, for all x , $y \in X$.

Proof

Let μ be an anti fuzzy T-ideal of a TM-algebra X and let x , $y \in X$ be such that

 $x \le y$, then x * y = 0

Now
$$\mu(x) = \mu(x * 0)$$

 $\leq \max \{\mu((x * y) * 0), \mu(y)\}$
 $= \max \{\mu(0 * 0), \mu(y)\}$
 $= \mu(y)$

Hence $\mu(x) \leq \mu(y)$.

Theorem 2.6

A fuzzy set μ in TM – algebra X is an anti fuzzy T- ideal iff it is an anti fuzzy ideal of X.

Proof:

Let μ be an anti fuzzy T-ideal of X.

Then (i) $\mu(0) \leq \mu(x)$

(ii) $\mu(\ x\ *\ z\)\leq \ max\ \{\ \mu((x\ *\ y)\ *\ z\),\ \mu(y)\}$ for all x,y,z \in X.

By putting z = 0 in (ii) we get

$$\mu(x * 0) \le \max \{ \mu((x * y) * 0), \mu(y) \}$$

$$\Rightarrow \qquad \mu(x) \le \max \{ \mu(x * y), \mu(y) \}$$

Hence µ is an anti fuzzy ideal of X.

Conversely, assume that μ is an anti fuzzy ideal of X.

Then $\mu(x * z) \le \max \{ \mu((x * z) * y), \mu(y) \}$

= max {
$$\mu((x * y) * z), \mu(y)$$
 }

Hence μ is an anti fuzzy T-ideal of X.

Theorem 2.7

Let μ be a fuzzy set in a BCK – algebra X. Then μ is an anti fuzzy T – ideal iff μ is a anti fuzzy BCK – ideal.

Proof:

Since every BCK algebra is TM- algebra, every anti fuzzy

T-ideal is an anti fuzzy ideal of a TM- algebra and hence an anti

fuzzy BCK ideal (by Theorem 6 and definition).

Conversely, assume that μ be an anti fuzzy BCK- ideal of X. Then,

$$\mu(x) \le \max \{ \mu(x * y), \mu(y) \}$$

$$\Rightarrow \quad \mu(x * z) \le \max \{ \mu ((x * z) * y), \mu(y) \}$$

= max { μ ((x * y) * z), μ (y)}

Hence $\boldsymbol{\mu}$ is an anti fuzzy T- ideal of X.

Theorem 2.8

 $\boldsymbol{\mu}$ is a fuzzy T-ideal of a TM-algebra X $% \boldsymbol{\mu}$ if and only if

 μ^{c} is an anti fuzzy T-ideal of X.

Proof

Let μ be a fuzzy T-ideal of X and let $x,y,z\in X.$

Then (i) $\mu^{c}(0) = 1 - \mu(0) \le 1 - \mu(x)$

 $= \mu^{c}(x)$

That is, $\mu^{c}(0) \leq \mu^{c}(x)$.

(ii) $\mu^{c}(x * z) = 1 - \mu (x * z)$

 $\leq 1 - \min \{ \mu((x * y) * z), \mu(y) \}$

$$= 1 - \min \{1 - \mu^{c} ((x * y)*z), 1 - \mu^{c} (y)\}$$
$$= \max \{ \mu^{c} ((x * y)*z), \mu^{c} (y) \}$$
That is, $\mu^{c}(x * z) \le \max \{ \mu^{c} ((x * y)*z), \mu^{c} (y) \}$

Thus, μ^c is an anti fuzzy $T-\mbox{ideal}$ of X. The converse also can be proved similarly

3. HOMOMORPHISM AND ANTI HOMOMORPHISM OF TM- ALGEBRAS

In this section, we discussed about T-ideals in TM-algebra under homomorphism and anti homomorphism and some of its properties.

Definition 3.1

Let (X,*,0) and $(Y, \Delta, 0)$ be TM – algebras. A mapping

f: X \rightarrow Y is said to be a homomorphism if f(x * y) = f(x) Δ f(y) for all x,y \in X.

Definition 3.2

Let (X, *, 0) and $(Y, \Delta, 0)$ be TM – algebras. A mapping

f: X \rightarrow Y is said to be a anti homomorphism if f(x * y) = f(y) Δ f(x) for all x,y \in X.

Definition 3.3

Let f: X \rightarrow X be an endomorphism and μ be a fuzzy set in X. We define a new fuzzy set in X by μ_f in X as $\mu_f(x) = \mu(f(x))$ for all x in X.

Definition 3.4

For any homomorphism f: $X \to Y$, the set $\{x \in X / f(x) = 0^{\circ}\}$ is called the kernel of f, denoted by Ker(f) and the set $\{f(x) / x \in X\}$ is called the image of f, denoted by Im(f).

Theorem 3.1

Let f be an endomorphism of a TM- algebra X. If μ is an anti fuzzy T – ideal of X, then so is μ_f .

Proof:

 $\mu_{f}\left(0\right)=\mu\left(f\left(0\right)\right)$

$$\leq \mu(f(x)) = \mu_f(x)$$
, for all $x \in X$.

Let
$$x, y, z \in X$$
.

Then μ_f (x * z) = μ (f (x * z))

$$= \mu (f(x) * f (z))$$

$$\leq \max \{ \mu (f(x) * f(y) * f(z)), \mu (f(y)) \}$$

$$= \max \{ \mu ((f(x * y)) * f(z)), \mu (f(y)) \}$$

$$= \max \{ \mu (f(x * y) * z), \mu (f(y)) \}$$
$$= \max \{ \mu_f ((x * y) * z), \mu_f (y) \}$$

Hence μ_f is an anti fuzzy T- ideal of X.

Theorem 3.2

Let (X, *, 0) and $(Y, \Delta, 0')$ be TM – algebras. A mapping f: X \rightarrow Y is an anti-homomorphism of TM-algebra, Then Ker(f) is a T-ideal.

Proof:

Let
$$(x * y) * z \in ker (f) \& y \in ker (f)$$
.

Then

f((x * y) * z) = 0' & f(y) = 0'

Since

$$0 = f((x * z) * y)$$
$$= f((x * z) * y)$$
$$= f(y) \Delta f(x * z)$$
$$= 0' \Delta f(x * z)$$
$$= f(x * z)$$
$$\Rightarrow x * z \in ker(f)$$

0' = f((x + x) + z)

Hence ker f is a T-ideal.

4. CARTESIAN PRODUCT OF ANTI FUZZY T – IDEALS OF TM – ALGEBRAS

In this section, we introduce the concept of Cartesian product of anti fuzzy T-ideals of TM-algebra.

Definition 4.1

Let μ and δ be the fuzzy sets in X. The Cartesian product

 $\mu x \delta : X x X \rightarrow [0,1] \text{ is defined by (} \mu x \delta \text{) (} x, y) = \min \{\mu(x), \delta(y)\}, \text{ for all } x, y \in X.$

Definition 4.2

Let μ and δ be the anti fuzzy T-ideals in X. The

Cartesian product $\mu \ge \delta : X \ge X \ge [0,1]$ is defined by ($\mu \ge \delta$) (x, y) = max { $\mu(x), \delta(y)$ }, for all x, y $\in X$.

Theorem 4.1

If μ and δ are anti fuzzy T- ideals in a TM – algebra X, then μ x δ is an anti fuzzy T- ideal in X x X.

Therefore $\mu(0) \le \mu(x)$ and $\delta(0) \le \delta(x)$ for all $x \in X$.

Proof

For any (x, y) $\in X \times X$, we have ($\mu \times \delta$) (0, 0) = max { μ (0), δ (0)} $\leq max {<math>\mu$ (x), δ (y)} = ($\mu \times \delta$) (x, y). Let (x₁, x₂), (y₁, y₂), (z₁, z₂) $\in X \times X$. ($\mu \times \delta$) ((x₁, x₂) * (z₁, z₂)) = ($\mu \times \delta$) (x₁ * z₁, x₂ * z₂) = max { μ (x₁ * z₁), δ (x₂ * z₂)} $\leq max {max {<math>\mu$ ((x₁ * y₁) * z₁), μ (y₁)}, max{ δ ((x₂ * z₂) * z₂), δ (y₂)}}

= max { max { $\mu((x_1 * y_1) * z_1), \delta((x_2 * z_2) * z_2)$ }, max{ $\mu(y_1), \delta(y_2)$ }

 $= max \left\{ (\mu \ x \ \delta) \ (\ (\ x_1 \ * \ y_1) \ * \ z_1, \ (x_2 \ * \ y_2) \ * \ z_2 \) \ , \ (\mu \ x \ \delta) \ (\ y_1 \ , y_2) \right\}$

Theorem 4.2:

Let $\mu \& \delta$ be fuzzy sets in a TM-algebra. X such that $\mu x \delta$ is an Anti-fuzzy T-ideal of X x X. Then

- (i) Either $\mu(0) \le \mu(x)$ (or) $\delta(0) \le \delta(x)$ for all $x \in X$
- $\begin{array}{ll} (ii) & \quad \mbox{ If } \mu(0) \leq \mu(x) \mbox{ for all } x \in X \mbox{ , then either } \delta(0) \leq \\ & \quad \mbox{ } \mu(x) \mbox{ (or) } \delta(0) \leq \delta(x) \end{array}$
- (iv) Either μ or δ is an anti fuzzy T-ideal of X.

Proof:

Let $\mu \ x \ \delta$ be an anti fuzzy T-ideal of X x X .

Therefore ($\mu \ x \ \delta$) (0,0) \leq ($\mu \ x \ \delta$) ($x \ ,y$) for all ($x, \ y) \in X \ x \ X$ and

$$(\mu x \delta) ((x_1, x_2) * (z_1, z_2)) \le \max \{(\mu x \delta) ((x_1, x_2) * (y_1, y_2) * (z_1, z_2)), (\mu x \delta) (y_1, z_2)\}$$

for all (
$$x_1,\,x_2$$
),($y_1,\,y_2$) & ($z_1,\,z_2$) $\in X$

хX.

(i) Suppose that $\mu(0)>\mu(x)$ and $\delta(0)>\delta(x)~~for~some~x,~y\in X$

Then (
$$\mu \ x \ \delta$$
) (x ,y) = max{ $\mu(x) , \delta(y)$ }
< max { $\mu(0) , \delta(0)$ }
= ($\mu \ x \ \delta$) (0,0) , Which is contradiction .

(ii) Assume that there exist x , $y \in X$ such that $\delta(0) > \mu(x)$ and $\delta(0) > \delta(x)$. Then $(\mu \ x \ \delta) (0, 0) = \max \{ \mu(0), \delta(0) \} = \delta(0)$ and hence $(\mu x \delta) (x, y) = \max \{ \mu(x), \delta(y) \} < \delta(0) = (\mu x \delta) (0, 0)$ Which is a contradiction. Hence if $\mu(0) \le \mu(x)$ for all $x \in X$, then either $\delta(0) \le \mu(x)$ (or) $\delta(0) \leq \delta(x)$. Similarly, we can prove that if $\delta(0) \leq \delta(x)$ for all $x \in X$, then either $\mu(0) \le \mu(x)$ or $\mu(0) \le \delta(y)$, which yields (iii). (iv) First we prove that δ is an anti-fuzzy T-ideal of X Since by (i) either $\mu(0) \le \mu(x)$ (or) $\delta(0) \le \delta(x)$ for all $x \in X$. Assume that $\delta(0) \leq \delta(x)$, for all $x \in X$. It follows from (iii) that either $\mu(0) \le \mu(x)$ or $\mu(0) \le \delta(x)$. If $\mu(0) \leq \delta(x)$ for any $x \in X$, then $\delta(x) = \max \{ \mu(0), \delta(x) \} = (\mu x \delta) (0, x)$ $\delta(x * z) = \max \{ \mu(0), \delta(x * z) \}$ $= (\mu x \delta) (0, x * z)$ $= (\mu x \delta) (0 * 0, x * z)$ = $(\mu x \delta) ((0, x)^* (0, z))$ $\leq \max \{(\mu x \delta) ((0,x) * (0,y)) * (0,z) \}, (\mu x \delta) ($ 0,y)} = max {($\mu x \delta$) ((0 * 0 , x * y) * (0,z)), ($\mu x \delta$)(

0,y)}

)}

а

= max {(
$$\mu x \delta$$
) (($0 * 0$) * 0 , ($x * y$) * z)), ($\mu x \delta$)(

= max {(
$$\mu x \delta$$
) (0 , ($x * y$) * z) , ($\mu x \delta$)(0,y

= max { $\delta((x * y) * z), \delta(y)$ }

Hence δ is an Anti fuzzy T-ideal of X.

Next we will prove that $\boldsymbol{\mu}$ is an anti fuzzy T-ideal of X.

Let
$$\mu(0) \leq \mu(x)$$

Since by (ii), either $\delta(0) \le \mu(x)$ or $\delta(0) \le \delta(x)$.

Assume that $\delta(0) \leq \mu(x)$, then

 $\mu(x) = \max \{ \mu(x), \delta(0) \} = (\mu x \delta) (x, 0)$

$$\mu(x * z) = \max \{\mu(x * z), \delta(0) \}$$

= (\mu x \delta) (x * z ,0)
= (\mu x \delta) (x * z ,0 * 0)
= (\mu x \delta) ((x,0) * (z,0))
\le max \{ (\mu x \delta) ((x,0) * (y,0)) * (z,0)), (\mu x \delta)

y,0)}

= max {($\mu x \delta$) ((x * y , 0 * 0) * (z,0)), ($\mu x \delta$)(

y,0)}

= max {($\mu x \delta$) ((x * y) * z ,0), ($\mu x \delta$)(y,0)}

= max { μ ((x * y)* z)), μ (y)}

Hence μ is an anti fuzzy T- ideal of X.

5.CONCLUSION

In this article we have discussed anti fuzzy sub algebra

and anti fuzzy T- ideal of TM-algebras. It has been observed that the TM-algebra satisfies the various conditions stated in the BCC / BCK / BCI / Q / BCH algebras and can be considered as the generalization of all these algebras. These concepts can further be generalized.

6.REFERENCES

[1] Ahn S.S and H.D.Lee , Fuzzy subalgebras of BG-algebras,

Commun.korean math Soc. 19 (2004) 243-251.

- [2] Biswas.R , Fuzzy subgroups and Anti Fuzzy subgroups , Fuzzy sets and systems , 35 (1990),121-124.
- [3] Dudek W.A and Y.B.Jun, Fuzzification of ideals in BCCalgebras, Glasnik Matematicki, 36 ,(2001) , 127-138.

- [4] Hu Q.P. and X.Li , On BCH-algebras, Mathematics Seminar notes 11 (1983), 313-320.
- [5] Iseki .K and S.Tanaka , An introduction to the theory of BCK

algebras, Math Japonica 23 (1978), 1-20.

[6] Iseki . K $\,$, On BCI-algebras , Math.Seminar Notes 8 (1980), $\,$

125-130.

)(

- [7] Megalai .K and A.Tamilarasi , classification of TM-algebra , IJCA Special issue on "Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications" CASCT, 2010.
- [8] Megalai . K and A.Tamilarasi , Fuzzy Subalgebras and Fuzzy T- ideals in TM-algebra ,Journal of Mathematics and Statistics 7(2) , 2011, 107-111.
- [9] Muthuraj .R , P.M.Sitharselvam , M.S.Muthuraman , Anti Q

fuzzy group and its lower level subgroups, IJCA, 3 (2010) ,16-20.

- [10] Muthuraj .R ,M.Sridharan, P.M.Sitharselvam, M.S.Muthuraman , Anti Q- Fuzzy BG-ideals in BGalgebra, IJCA, 4 , (2010), 27-31.
- [11] Neggers. J , S.S.Ahn and H.S.Kim , On Q-algebras, IJMMS 27 (2001) , 749-757.
- [12] Neggers. J and H.S.Kim, On B-algebras, math, vensik, 54 (2002), 21-29.
- [13] Neggers. J and H.S.Kim, On d-algebras, Math, slovaca, 49 (1999), 19-26.
- [14] Samy M.Mostafa ,Mokthar A.Abdel Naby and Osama R.Elgendy , Journal of American Sciences, 7(9) , (2011), 17-21.
- [15] Zadeh.L.A. , Fuzzy sets , Inform.control,8 (1965) , 338 353.