
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.20, April 2012

26

NoC based Efficient RTL Design and Verification of
SoCWire BUS Protocol

Nitin Kumar
Tiwari

Department of
Electronics &

Communication
Dr. B. R. Ambedkar
National Institute of

Technology
Jalandhar (India)

Ravi Kumar

Department of
Electronics &

Communication
Dr. B. R Ambedkar
National Instituteof

Technology
Jalandhar (India)

R. K. Sarin

Department of
Electronics &

Communication
Dr. B. R. Ambedkar
National Institute of

Technology
Jalandhar (India)

Sarabjeet Singh

Department of
Physics

Dr. B. R. Ambedkar
National Institute of

Technology
Jalandhar (India)

ABSTRACT

System on Chip Wire (SoCWire) is a Network on Chip (NoC)

based design that composed of intellectual property blocks

(IP) and interconnects based on space wire standard, was

successfully implemented in Venus Express Monitoring

Camera (VMC) mission and proposed to implement in Solar

Orbital mission in future. The efficient and accurate

implementation of SoCWire is the main concern in this work.

A solution for single bit error detection and correction with

hamming code for 8 bit data has been proposed, so that the

accuracy of the design is improved with cost of extra

resources and we can save nearly 19.2 μs time that is required

to link re-initialization also the speed of the design is

improved compared to conventional Codec. For routing data

of many codec from one node to many other nodes SoCWire

Switch is implement with crossbar based switch for 8 ports

and achieved maximum frequency 179.743 MHz and 5%

device utilization can be saved compared to [1]. These

functionality and design performance are achieved with

coding level change in VHDL for SoCWire. The design is

synthesized on Xilinx ISE 12.1. The Target FPGA is

XCVLX-60 which belongs to Xilinx Virtex 4 QPro.

Keywords

SoCWire, Hamming code, Crossbar and packet

1. INTRODUCTION
Single chip integrated circuits are commonly referred to as

system-on-chip (SoC), and typically consist of several

complex heterogeneous components have fueled the need for

complex chips that incorporate multiple processors dedicated

for specific computational needs [1]. NoC-based SoC design

uses packet transactions rather than circuit transactions, and

there is a distributed network structure instead of a

conventional globally shared bus or a centralized matrix. In

NoC-based SoC design each of the functional modules should

be designed to be latency-insensitive to support packet

transactions which improve reliability and the speed of

interconnection links, efficient link utilization is another

advantage because only one part of the end-to-end path

between functional modules is occupied by the traversing

packets. For all these reasons, advanced bus architectures are

gradually considering a packet transaction concept into their

protocols [2, 3]. NoC-based SoC design based on space wire

interface standard of ESA (European Space Agency) supports

packet transactions and known as SoCWire [4]. The

advantageous features of the SpaceWire standard including

flow control and hot-plug ability and the error detection was

still fully supported with easy implementation of standard

Xilinx Bus- Macros [5]. The SoCWire architecture composed

of SoCWire Codec and SoCWire Switch. SoCWire CODEC

connects a node or host system to a SoCWire network and

developed in a complete synchronous VHDL model. SoCWire

Switch enables the transfer of packets arriving at one link

interface to another link interface on the switch was realized

by internal SoCWire Codecs. The main difference between

SpaceWire and SoCWire was the parallel data transfer and the

complete synchronous implementation of SoCWire. Therefore

SoCWire is more deterministic because any change of state is

related to clock cycles. The overall link initialization requires

minimum time of ‘19.2 μs’ [6]. SoCWire Codec operation

controlled with a state machine parity bit concept was used to

detect transmission errors at link initialization or at the run

state of a SoCWire. For 8 bit data word width 10 bit wide

packet (1 bit parity, 1 bit data control flag, 8 bit data) as

shown in figure 1 was used for link initialization of CODECs.

MSB LSB

D7

D6

D5

D4

D3

D2

D1

D0

0

P

 Data Control Flag

 Parity Bit

Figure 1 SoCWire Packet for interface [1]

To overcome the problem of link initialization we proposed a

new framework for 8 bit data using hamming code.

Concept of hamming code

The Hamming single-bit correction code is implemented by

adding check bits to the output data packet when the

transmitted packet is received parity bit is calculated and

stored in a syndrome value. If the syndrome value is „0‟ there

have been no errors. Syndrome value identifies the erroneous

bit, which needs to be inverted [7]. SoCWire works on odd

parity for detection and correction of bit errors [8]. For 8 bit

data packet size 13 bits (4 check bit, 8 data bit, and 1 bit data

control flag) used as shown in figure [9].

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.20, April 2012

27

MSB LSB

D

7

D

6

D

5

D

4

P

3

D

3

D

2

D

1

P

2

D

0

P

1

P

0

0

 Parity bits

 Data Control Flag

Figure 2 Proposed SoCWire Packet with hamming code.

The SoCWire Switch was fully scalable design supporting

data word width (from 8 to 128 Bit) and 2 to 32 ports with

low latency and supports wormhole routing and round robin

scheduling [10]. In indirect or switch-based networks each

connection between nodes has to pass a set of switches each

node comprises the processor module and network interface

which is connected to a switch as shown in figure 3 [6].

 Processor Module

 Switch

 Network Interface

Figure 3 Crossbar topology [6]

The crossbar topology is especially suitable for the

reconfigurable data processing units (such as SoCWire) with

macro pipeline that provide isolation of faulty modules [6].

 In this work we utilized flexibility of crossbar switch

and optimized the performance of SoCWire by transferring

codec data upto 8 ports and validate the performance by

transferring codec data from one port to another. For future

space missions e.g. Solar Orbiter, the demand for high

performance onboard processing has drastically increased. By

using capabilities for in flight re-configurability of data

processing units based on FPGA system maintenance and

performance enhancement on board can be achieved [11]. In

this paper we implement Modified SoCWire and compare its

performance with the conventional SoCWire. The paper is

organized as following Section 2, present design and

implementation of SoCWire Codec and SoCWire Switch.

Section 3 gives comparison based on simulation results of

Modified SoCWire with conventional SoCWire.

2. DESIGN AND IMPLEMENTATION

OF SoCWire
In this section design and implementation of SoCwire is

given, in first part design process of SoCWire Codec is

described and implemented. Design and implementation of

SoCWire Switch is given in the next part.

2.1 Design of SoCWire Codec
Space Wire interface is a well established standard, providing

a layered protocol (physical, signal, character, exchange

packet, network) and proven interface for space applications.

The SoCWire character level, exchange level, packet level

and network level is derived from the SpaceWire standard.

Flow Control Token (FCT), End of Packet (EOP), Error End

of Packet (EEP) and an Escape Character (ESC) are 4 bit

length control characters for flow control. Flow Control

Token (FCT) manages the flow of data, indicating Space for 8

more normal-characters in the receiver buffer. Regular

packets completed with an EOP marker. EEP marker sends by

indicate an erroneous packet and target reject the packet.

Escape Character (ESC) is used to form the higher level

control code (8 bit length). Null is formed by the combination

of escape and FCT control code (ESC + FCT). The controlled

operation and link initialization sequence of SoCWire Codec

is shown by sate diagram in figure 4.

 The initial state of SoCWire Codec is “ErrorReset” after

link reset, by de-asserting reset and delay of „6.4 μs’ state

moves to “ErrorWait” at ErrorWait a delay of ‘12.8 μs’ was

taken for next state to move. The link was established for

transmission that both ends of the link are ready to receive

data after that time. The “Ready” state has the permission for

link set up and state moves to “Started” state and waits „12.8

μs’ for NULL-characters. After reception of NULL characters

state moves into “Connecting” and wait upto ‘12.8 μs’ for

FCT. By receiving FCT state goes to “Run” state and normal

operation of SoCWire codec was started. If an Rxerror occurs

at any state of Codec during link initialization the operation

was terminated and codec state forced to move on Error Reset

state. For critical space mission or real time operation this

situation becomes critical due to loss of data if link connection

re-started. These errors are generally bit error we used

hamming code for bit error detection and correction for 8 bit

data and save the link initialization time approximately ’19.2

μs’ time with Modified SoCWire Codec based on Proposed

SoCWire Packet with hamming code. The comparative results

of modified SoCWire Codec with conventional Codec in form

of devices utilization and speed are given in Table 1.

 Reset

 After 6.4 us

 Disable

 Rx_err

 Rx_err Rx_err Rx_err

 got_fct got_fct got_fct

 got_ fct 12.8 us 12.8 us 12.8 us after12.8 us

 got_Null enable

 Figure 4 SoCWire Codec State Machine.

Error

Reset

Run Error

Wait

Ready Conne-

cting

Started

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.20, April 2012

28

Table 1 Device utilization summery of SoCWire Codec

with 8 bit data

Parameter

Conventional

SoCWire

Codec [10]

Modified

SoCWire

Codec with

Hamming

code

Slices
180 181

Flip Flops 143 166

4 input LUTs 340 341

Maximum

Frequency (MHz)

219.450 224.369

2.2 Design of SoCWire Switch
NoC based and reconfigurable computing design has

implemented in on-chip programmable interconnects. The

interconnect structure significantly affect area and speed. For

a network a packet oriented protocol and a switch is required

for routing many codec data from one node to many nodes.

The packet oriented switch contains <destination address +

cargo + end of packet>. Destination address in the port

number of output port, cargo is the data to be send and end of

packet indicate that the data has been send to the specified

port or indicate an erroneous packet and terminated the

operation for further destination address search. In the direct

port addressing packets with crossbar switch packets are

routed directly to one of the output port to others with the port

addresses. As the destination port address and input port

address is matched packet routed immediately to that output

port address and thus that port is marked as busy and cannot

be accessed until the end of the packet is received. The 8x8

crossbar matrix implemented in this work as SoCWire Switch

is shown in figure 5.

Input port 1 Output port 1

Input port 2 Output port 2

Input port 3 Output port 3

 Output port 4

Input port 4

 Output port 5

Input port 5

Input port 6 Output port 6

 Output port 7

Input port 7

Input port 8 Output port 8

Figure 5 8 X 8 Crossbar Matrix

The SoCWire consists of a number of SoCWire Codec

according to the number of ports of Switch and additional

fully pipelined control machines. The SoCWire Switch has

been implemented on Xilinx Virtex-4 LX60-10. Table 2

shows the device utilization summery and maximum

frequency of Modified SoCWire for transferring 8 bit data to

8 ports of switch. It is implemented by Modified SoCWire

Codec and crossbar based switch.

Table 2 Device utilization summery of SoCWire with 8 bit

data and 8 ports

Parameter

Conventional

SoCWire

(Codec +

Switch) [10]

Modified

SoCWire

(Modified

SoCWire Codec +

Crossbar based

switch)

 Slices
2204 2096

Flip Flops 1512 2100

4 input LUTs 4139 3915

Maximum

Frequency (MHz)

157.306 179.743

3. SIMULATION RESULTS OF SoCWire
Verification of the system architecture was done using Xilinx

ISE 12.1 and ISIM Simulator. Figure 6 shows the waveform

of SoCWire Codec when parity Error was detected the

waveform clearly shows that when parity error was high the

Codec state jump to “ErrorReset” of Codec State machine.

For proper operation of SoCWire first of all link connection is

established for that state of the codec should be “Run” state so

that parity error must be corrected. To overcome this and to

improve the performance of SoCWire Codec hamming code

concept for 8 bit data is used with VHDL coding level

changes and implemented as Modified SoCWire Codec and

got high speed with accurate design as the error detected and
corrected at run time. The simulated waveform of it is shown

in figure 7. SoCWire Switch simulated waveform for

transferring Modified SoCWire Codec data is shown in figure

8 in this waveform dat_din_p0 to dat_din_p7 are input data

port and port dat_dout_p0 to dat_dout_p7 are output ports.

Data from one port to other was send with port address and

terminated at end of packet. The SoCWire Switch was

verified by transferring data randomly from one input port to

all output port and respectively for the other input ports.

4. CONCLUSION
SoCWire was successfully implemented in space in Venus

Express mission and proposed to implement in Solar Orbiter

mission in near future. SoCWire IP was available to us we use

the same IP and proposed a solution for single bit error

detection and correction with hamming code for 8 bit data in

Modified SoCWire Codec so that the accuracy of the system

is improved with cost of same extra resources but these are

available enough on our target FPGA and we can save nearly

‘19.2 μs’ time which plays a vital role on such critical mission

or real time operation also the speed of the design is

improved. For routing data of Modified SoCWire Codec for

routing data from one codec to others SoCWire Switch is

implemented with crossbar based switch and achieved

maximum frequency 179.743 MHz with Modified SoCWire

(Modified SoCWire Codec + crossbar based Switch) which is

22 MHz faster than the conventional SoCWire and the overall

devices requirement in terms of slices and LUTs is 5% less

compared to conventional SoCWire for routing 8 bit data to 8

port via switch. So that for higher frequency requirement this

modification can be used. The proposed design was

implemented for 8 bit data and for 8 port of Switch. In future,

Crossbar

(8 X 8)

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.20, April 2012

29

 error detection and correction of larger data width and to transfer this data for large number of ports will be implemented.

Figure 6 Waveform of SoCWire codec with parity error.

Figure 7 Waveform of SoCWire Codec after removed parity error with applying hamming code.

Figure 8 Waveforms of the SoCWire Switch for verification of 8 ports.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.20, April 2012

30

5. REFERENCES

[1] B. Osterloh, “SoCWire User Manual”,

www.socwire.org, 2009.

[2] Sudeep Pasricha, Nikil Dutt, “On-Chip Communication

Architectures”, Morgan Kaufmann Publications, U.S,

2008.

[3] P. Guerrier and A. Greiner, “A Generic Architecture for

On-Chip Packet-Switched Interconnections,” Proc.

Design, Automation and Test in Europe (DATE ‟00),

pp. 250-256, Mar. 2000.

[4] ECSS, Space Engineering: SpaceWire–Links, nodes,

routers, and networks, ESA-ESTEC, Noordwijk

Netherlands, ECSS-E-50-12A, (January 2003).

[5] SM Parkes “ECSS, Space Engineering:

SpaceWire:SERIAL POINT-TO POINT LINKS”,

ESA- ESTEC, , Dundee, ECSS-E-50-12A,(January

2000).

[6] Bjorn Osterloh, Harald Michalik, Björn Fiethe, Frank

Bubenhagen “Architecture Verification of the SoCWire

NoC Approach for Safe Dynamic Partia

Reconfiguration in Space Applications” NASA/ESA

Conference on Adaptive Hardware and Systems (AHS

2011), Sep 2010.

[7] U.K. Kumar, B.S Umashankar “Improved Hamming

Code for Error Detection and Correction”, ISWPC, pp.

498-500, 2007.

[8] U.K. Kumar, B.S Umashankar “Improved Hamming

Code for Error Detection and Correction” ISWPC-

2007.

[9] Simon Tam, “Single Error Correction and Double Error

Detection”, Application Note: Virtex-II Pro, Virtex-4,

and Virtex-5 Families, Xilinx XAPP645 (v2.2) August

9, 2006.

[10] B. Osterloh, H. Michalik, B. Fiethe, F. Bubenhagen,

“Enhancements of reconfigurable System-on-Chip Data

Processing Units for Space Application”, AHS‟07. pp.

258-262, Second NASA/ESA Conference on Adaptive

Hardware and Systems (AHS 2007), Edinburgh, August

2007.

[11] B. Osterloh, H. Michalik, B. Fiethe, K. Kotarowski,

“SoCWire: A Network-on-Chip Approach for

Reconfigurable System-on-Chip Designs in Space

Applications”, NASA/ESA Conference on Adaptive

Hardware and Systems, (AHS-2010), 2010

