
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

17

On Generating Skyscapes through Escape-Time Fractals

T.Gangopadhyay

XLRI

C.H.Area(E), Jamshedpur,

 India

ABSTRACT

Scott Draves has used seven variations of affine

transformations in his pioneering work on fractal flames.

These are linear, sinusoidal, spherical, swirl, horseshoe, polar

and bent. In this paper we use average of two such

transformations on escape time fractals to produce skyscapes

similar to expansion of galaxies.

General Terms

Fractal, Algorithm, Turbo C++, Program.

Keywords

Escape-time, Mandelbrot, IFS, Bailout, affine, sinusoidal

1. INTRODUCTION
This paper takes standard escape-time fractals and applies

iterated function system (IFS) techniques to them. Usually in

IFS generated fractals an arbitrary point is transformed

repeatedly through multiple affine functions to produce fractal

shapes. This paper’s distinctive features consist of applying

average of two nonlinear (often sinusoidal) functions to

escape-time fractals using a bailout. As a result, every pixel is

comes within the scope of the fractal. The effect is quite

distinct from that of usual IFS fractals such as fern (Barnsley

[1]), maple leaf (Barnsley [1]), dragon curves (Davis and

Knuth [3]), Lissajous figures (Brill [2]) or those obtained

through strange attractors (Hofstadter [5], Ruelle [8]).

2. THE ALGORITHM
In iterated function systems Michael Barnsley [1] used affine

transformations repeatedly on a starting point to produce

fractal shapes. Draves [4] extended the scope of these

transformations further. He introduced seven functional

variations of the original point. These are described below:

Let)y,x(be the coordinates of the original point. Let

).x/y(arctantandrs,yxr 222

a) linear :)y,x()y,x(f .

b) sinusoidal :)ysin,x(sin)y,x(f .

c) spherical :)s/y,s/x()y,x(f .

d) horseshoe :))rt(sinr),rt(cosr()y,x(f .

e) swirl : sin(2t))r cos(2t),(r y) f(x, .

f) polar :)1r,/t()y,x(f

g) bent :))y(h),x(g()y,x(f

where

 0xifx)x(g

 x*c otherwise

and

 0yify)y(h

 c/y otherwise.

In the present paper, we take standard escape time fractals

such as Mandelbrot and Julia. For each complex variable z

that is iterated, we first separate real(z) and imag(z). This

separation is also present in the popcorn frctals developed by

Pickover [7]. We apply two of the Draves’ functions

separately to real(z) and imag(z). In our notation:

)
ax

ay
arctan(t,rs

,)ay()ax(r),z(imagay),z(realax

2

22

Then

1st function:).aysin(ay),axsin(ax 11

2nd function: .
s

ay
ay,

s

ax
ax 22

3rd function:).rtsin(ray),rtcos(rax 33

4th function:).t2sin(ray,)t2cos(rax 44

5th function: .1ray,/tax 55

Suppose we have applied the third and fourth functions. Then

during iteration we replace

z= (Real(z), imag(z)) by

.
2

4ay3ay
,

2

4ax3ax
z

Using standard forms of bailout we colour each escaping pixel

by iteration number (outside colouring) and each nonescaping

pixel by BOF60 (inside colouring) (Peitzen [6]).

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

18

In the next section we submit a programme in Turbo C++.

3. THE CODE
We use the variable names standardized in Stevens [9].

void fractal(double,double,double,double,int,int);

main()

{

double xmax=-.8,xmin=-1.1,ymax=.150,ymin=-.09.

 …(1)

int max_iterations=56;int max_size= 4.0; …(2)

fractal(xmax,xmin,ymax,ymin,max_iterations,max_size);

getch();

closegraph();

 }

double cabs(complex z)

{return sqrt(norm(z));}

void fractal(double xmax,double xmin,double ymax,double

ymin,int max_iterations,int max_size)

{complex c,z; float zmin,index;

int color;

float col,row;

double deltap,deltaq;

deltap=(xmax-xmin)/640;

deltaq=(ymax-ymin)/480;

for(col=0;col<640;col++)

{for(row=0;row<480;row++)

{z=c=complex(xmin+col*deltap,ymax-row*deltaq);

color=0; color=index=0;zmin=1000;

while((color<max_iterations)&&(norm(z)<max_size))

{ float ax=real(z),ay=imag(z); …(3)

 float ax1,ay1,ax2,ay2,ax3,ay3,ax4,ay4,ax5,ay5;

 float r=sqrt(ax*ax+ay*ay),t=atan(ay/ax),s=r*r;

ax1=sin(ax); ay1=sin(ay); ax2=ax/s;ay2=ay/s;

ax3=r*cos(t+r);ay3=r*sin(t+r);

ax4=r*cos(2*t);ay4=r*sin(2*t);

ax5=t/3.14; ay5=r-1;

z=complex((ax4+ax3)/2,(ay4+ay3)/2); …(4)

z=z*z+c; …(5)

color++;

if(cabs((z)) < zmin)

 { zmin = cabs((z)) ;}

 }

 index=zmin ;

if(color>=max_iterations)

 putpixel(col,row,index);

 else

 putpixel(col,row,color);

} }}

The output of this sample code is illustrated in Figure 1.

 Fig 1 : Output of the sample code

4. VARIATIONS ON THE SAME THEME
The following variations on the code given in section 2 yields

interesting effects.

VARIATION 1

Replace …(1) by

double xmax=.32,xmin=.24,ymax=-.270,ymin=-.550;

Replace …(4) by

z=complex((ax+ax3)/2,(ay+ay3)/2);

The output is illustrated in Figure 2.

 Fig. 2 : Output of Variation 1

VARIATION 2

Replace …(1) by

double xmax=-.078,xmin=-.65,ymax=1.510,ymin=.509;

Replace …(4) by

z=complex((ax5+ax4)/2,(ay5+ay4)/2);

The output is illustrated in Figure 3.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

19

 Fig. 3 : Output of Variation 2

VARIATION 3

Replace …(1) by

double xmax=-.78,xmin=-1.31,ymax=.10,ymin=-.209;

Replace …(3) by

float ax=real(z+c),ay=imag(z+c);

Replace …(5) by

z=z*z;

The output is illustrated in Figure 4.

VARIATION 4

Replace …(1) by

double xmax=-.8,xmin=-1.02,ymax=.230,ymin=.14;

Replace …(5) by

z=z*z*z*z+c;

The output is illustrated in Figure 5.

 Fig. 5 : Output of Variation 4

VARIATION 5

Replace …(1) by

double xmax=-.03, xmin=-.8, ymax=-.0, ymin=-.75:

Replace …(2) by

int max_iterations=56;int max_size= 31004.0;

Replace …(5) by

z=sin(z)+ c;

The output is illustrated in Figure 6.

 Fig. 6 : Output of Variation 5

 Fig. 4 : Output of Variation 3

4. CONCLUSION
This paper presents one way of using iterative functions to

escape-time fractals. However, instead of using average of

functions one could use a probabilistic system. It would also

be interesting to note the effect of similar study on escape-

time fractals other than Mandelbrot and Julia. These would be

explored in future.

5. ACKNOWLEDGMENTS
The author wishes to acknowledge his debt to the referee(s)

for their constructive suggestions and encouragement

6. REFERENCES
[1] Barnsley, M. 1983 Fractals Everywhere, Academic

Press.

[2] Brill, R. 1995 Embellished Lissajous Figures, The

Pattern Book(ed. Pickover, C.).

[3] Davis, C. and Knuth, D.E. 1970 Number representations

and dragon curves,Journal of Recreational Mathematics

3(1970) 66-81 and 133-149..

[4] Draves, S. 1992 The Fractal Flame Algorithm,

flame3.com/flame-draves.pdf.

[5] Hofstadter, D.R. 1982 Strange attractors: Mathematical

patterns delicately poised between order and chaos,

Scientific American 245(May 1982)16-29.

[6] Peitzen, H. 1987 Beauty of Fractals, Springer.

[7] Pickover C. quoted in Fractint formula

documentation,www.nahee.com/spanky/www/fractint/po

pcorn_type.html.

[8] Ruell,D. 1980 Strange attractors, Math Intelligencer

2(1980)126-137.

[9] Stevens, R. 1989 Fractal Programming in C, M&T

Books.

