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ABSTRACT 

Scott Draves has used seven variations of affine 

transformations in his pioneering work on fractal flames.  

These are linear, sinusoidal, spherical, swirl, horseshoe, polar 

and bent.  In this paper we use average of two such 

transformations on escape time fractals to produce skyscapes 

similar to expansion of galaxies.   
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1. INTRODUCTION 
This paper takes standard escape-time fractals and applies 

iterated function system (IFS) techniques to them. Usually in 

IFS generated fractals an arbitrary point is transformed 

repeatedly through multiple affine functions to produce fractal 

shapes. This paper’s distinctive features consist of applying 

average of two nonlinear (often sinusoidal) functions to 

escape-time fractals using a bailout. As a result, every pixel is 

comes within the scope of the fractal. The effect is quite 

distinct from that of usual IFS fractals such as fern (Barnsley 

[1]), maple leaf (Barnsley [1]), dragon curves (Davis and 

Knuth [3]), Lissajous figures (Brill [2]) or those obtained 

through strange attractors (Hofstadter [5], Ruelle [8]).  

2. THE ALGORITHM 
In iterated function systems Michael Barnsley [1] used affine 

transformations repeatedly on a starting point to produce 

fractal shapes.  Draves [4] extended the scope of these 

transformations further.  He introduced seven functional 

variations of the original point. These are described below: 

Let )y,x(  be the coordinates of the original point.  Let  

).x/y(arctantandrs,yxr 222   

a) linear : )y,x()y,x(f  . 

b) sinusoidal :  )ysin,x(sin)y,x(f  . 

c) spherical : )s/y,s/x()y,x(f  . 

d) horseshoe : ))rt(sinr),rt(cosr()y,x(f  . 

e) swirl : sin(2t))r  cos(2t),(r   y) f(x,  .  

f) polar : )1r,/t()y,x(f   

g) bent : ))y(h),x(g()y,x(f   

where 

              0xifx)x(g   

                         x*c  otherwise 

and 

               0yify)y(h   

                          c/y   otherwise. 

 

In the present paper, we take standard escape time fractals 

such as Mandelbrot and Julia.  For each complex variable  z  

that is iterated, we first separate real(z) and imag(z). This 

separation is also present in the popcorn frctals developed by 

Pickover [7]. We apply two of the Draves’ functions 

separately to real(z) and imag(z).  In our notation: 

)
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2

22





Then 

1st function: ).aysin(ay),axsin(ax 11   

2nd function: .
s

ay
ay,

s

ax
ax 22   

3rd  function: ).rtsin(ray),rtcos(rax 33   

4th  function: ).t2sin(ray,)t2cos(rax 44   

5th  function: .1ray,/tax 55   

Suppose we have applied the third and fourth functions.  Then 

during iteration we replace   

z= (Real(z), imag(z))  by  

.
2

4ay3ay
,
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4ax3ax
z 















 







 
  

Using standard forms of bailout we colour each escaping pixel 

by iteration number (outside colouring) and each nonescaping 

pixel by BOF60 (inside colouring) (Peitzen [6]). 



International Journal of Computer Applications (0975 – 8887) 

Volume 43– No.17, April 2012 

18 

In the next section we submit a programme in  Turbo C++. 

3. THE CODE 
We use the variable names standardized in Stevens [9]. 

void fractal(double,double,double,double,int,int); 

main() 

{    

double xmax=-.8,xmin=-1.1,ymax=.150,ymin=-.09.  

 …(1) 

int max_iterations=56;int max_size= 4.0; …(2) 

fractal(xmax,xmin,ymax,ymin,max_iterations,max_size); 

getch(); 

closegraph(); 

 } 

double cabs(complex z) 

{return sqrt(norm(z));} 

void fractal(double xmax,double xmin,double ymax,double 

ymin,int max_iterations,int max_size) 

{complex c,z;    float zmin,index; 

int color; 

float col,row; 

double deltap,deltaq; 

deltap=(xmax-xmin)/640; 

deltaq=(ymax-ymin)/480; 

for(col=0;col<640;col++) 

{for(row=0;row<480;row++) 

{z=c=complex(xmin+col*deltap,ymax-row*deltaq); 

color=0;   color=index=0;zmin=1000; 

while((color<max_iterations)&&(norm(z)<max_size))  

{ float ax=real(z),ay=imag(z); …(3) 

    float ax1,ay1,ax2,ay2,ax3,ay3,ax4,ay4,ax5,ay5; 

 float r=sqrt(ax*ax+ay*ay),t=atan(ay/ax),s=r*r; 

ax1=sin(ax); ay1=sin(ay); ax2=ax/s;ay2=ay/s; 

ax3=r*cos(t+r);ay3=r*sin(t+r); 

ax4=r*cos(2*t);ay4=r*sin(2*t); 

ax5=t/3.14; ay5=r-1;    

      

z=complex((ax4+ax3)/2,(ay4+ay3)/2);                …(4)  

z=z*z+c;     …(5) 

color++; 

if( cabs((z)) < zmin) 

   { zmin = cabs((z)) ;} 

   } 

   index=zmin  ; 

if(color>=max_iterations) 

 putpixel(col,row,index); 

  else 

 putpixel(col,row,color); 

}  }} 

The output of this sample code is illustrated in Figure 1.  

 

        Fig 1 : Output of the sample code 

 

4. VARIATIONS ON THE SAME THEME 
The following variations on the code given in section 2 yields 

interesting effects. 

VARIATION 1 

Replace …(1) by 

double xmax=.32,xmin=.24,ymax=-.270,ymin=-.550; 

Replace …(4) by 

z=complex((ax+ax3)/2,(ay+ay3)/2); 

The output is illustrated in Figure 2. 

  

                       Fig. 2 : Output of Variation 1 

VARIATION 2 

Replace …(1) by 

double xmax=-.078,xmin=-.65,ymax=1.510,ymin=.509; 

Replace …(4) by 

z=complex((ax5+ax4)/2,(ay5+ay4)/2); 

The output is illustrated in Figure 3. 
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                       Fig. 3 : Output of Variation 2 

VARIATION 3 

Replace …(1) by 

double xmax=-.78,xmin=-1.31,ymax=.10,ymin=-.209; 

Replace …(3) by 

float  ax=real(z+c),ay=imag(z+c); 

Replace …(5) by 

z=z*z; 

The output is illustrated in Figure 4. 

 

VARIATION 4 

 

Replace …(1) by 

double xmax=-.8,xmin=-1.02,ymax=.230,ymin=.14; 

Replace …(5) by 

z=z*z*z*z+c; 

The output is illustrated in Figure 5. 

  

                       Fig. 5 : Output of Variation 4 

VARIATION 5 

Replace …(1) by 

double xmax=-.03, xmin=-.8, ymax=-.0, ymin=-.75: 

Replace …(2) by 

int max_iterations=56;int max_size= 31004.0; 

Replace …(5) by 

z=sin(z)+ c; 

The output is illustrated in Figure 6. 

 

                       Fig. 6 : Output of Variation 5 

                       Fig. 4 : Output of Variation 3 

4. CONCLUSION 
This paper presents one way of using iterative functions to 

escape-time fractals. However, instead of using average of 

functions one could use a probabilistic system. It would also 

be interesting to note the effect of similar study on escape-

time fractals other than Mandelbrot and Julia. These would be 

explored in future. 
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