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ABSTRACT 

Monitoring the behavior of program execution at run-time is 

widely used to differentiate benign and malicious processes 

executing in the host computer. Most of the existing run-time 

malware detection methods use the information available in 

Windows Application Programming Interface (API) calls. The 

proposed malware detection system uses the Windows API 

call sequence. A 3rd order Markov chain (i.e. 4-grams) is used 

to model the API calls. This composite feature set is provided 

as an input to the malware detection system to raise the final 

alarm. Association mining based classification is used because 

it yields higher detection accuracy than previous data mining 

based detection systems which employed Naive Bayes, 

Support Vector Machine and Decision Tree techniques. A 

minimal subset of API categories is monitored while 

maintaining high detection accuracy. The number of 

generated rules is reduced, by removing the redundant rules, 

to make the malware analysis efficient. The key novelty of the 

proposed malware detection system is the iterative learning 

process combined with the run-time monitoring of program 

execution behavior which makes this as a dynamic malware 

detection system. The performance of the proposed malware 

detection system is evaluated for accuracy of malware 

detection system and compared with the existing data mining 

based detection systems. It is inferred that the proposed 

malware detection system outperforms the existing malware 

detection systems. 
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1. INTRODUCTION 
Malware which is also termed as malicious software enters 

system without the permission of user of the system [1]. The 

words „malicious‟ and „software‟ are merged to create the 

term Malware. Malware is a very big threat in day-to-day 

computing world. The volume and complexity of malware is 

increasing and evolving. More and more organizations are 

trying to address the problem of malware. But, the source of 

malware which is the websites distributing the malware is 

increasing at a very high rate and is getting out of control. 

Most of the malware enters the computer while downloading 

files from the Internet. Once the malicious software enters 

into the system, it scans for vulnerabilities present in the 

operating system and perform unintended and unauthorized 

actions on the file system thereby slowing down the 

performance of the system.  

The characteristics of malware are as follows [2]. Malware 

can either act as standalone malicious software or combine 

with other malicious software to act as a larger unit. Any 

number of new and additional modules can be added to the 

malware programs and can still achieve good performance. 

Malware is available over the internet in large volumes and 

can easily infect as many hosts as possible simultaneously. 

Malware is user-friendly for attackers by providing them the 

capability to introduce more complex attacks beyond the 

attacker‟s skill level. Malware can neither be easily detected 

nor removed from the system and it bypasses most of the 

security measures undertaken by the user. Malware can 

escape even complex forms of authentications. A wide range 

of devices are affected by malware. Malware has become a 

part of the cyber attack system. Malware can now-a-days earn 

lot of income to the attacker by performing various criminal 

activities. 

A Malware detector can be mathematically visualized as a 

function with domain and range. The domain is the set of 

executable programs and the range is either malicious or 

benign [3]. The detector verifies a program to decide whether 

the program is benign program or malicious program. The 

malware detector identifies the malware programs using the 

signatures of malware. The pattern of the machine code of a 

malicious program is called as signature. Antivirus software 

compare their database of virus signatures with the signature 

of the files on the hard disk and other media as well as within 

the memory of the system. The signature-based malware 

detection is further divided into Dynamic, Static and Hybrid 

signature-based detection [4]. 

The paper is organized as follows. Section 2 discusses the 

related work. The proposed architecture and the proposed 

algorithms are discussed in Section 3 and 4 respectively. 

Section 5 discusses the experimental results. Section 6 

concludes the paper.  

2. RELATED WORK 
Faraz Ahmed, Haider Hameed, Zubair Shafiq, Muddassar 

Farooq proposed a tool [5]. The tool extracts Windows API 

calls sequence, provides it as input to standard machine 

learning algorithms and classifies the process as malware or 

benign. Their experimental results show that, analyzing the 

Windows API call sequence improves the classifier‟s 

detection accuracy. A minimal subset of API categories was 

identified using scalability analysis. High detection accuracy 

is achieved by monitoring only the minimal API categories. 
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Figure 1: Architecture of the proposed malware detection system 

Yi-Dong Shen, Zhong Zhang and Qiang Yang presented an 

approach [6], called Objective-Oriented utility-based 

Association (OOA) mining. The approach models association 

patterns that are related to a user‟s objective and utility. This 

approach focus on a user‟s objective and utility to measure the 

usefulness of association patterns, thus, OOA mining 

approach differs from the existing association mining 

approaches.  

Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye and 

Qingshan Jiang developed the Intelligent Malware Detection 

System (IMDS) [7, 8] using Association mining based 

classification. They analyzed the Windows API call sequence 

called by executable files. A large collection of executable 

files obtained from KingSoft Corporation anti-virus laboratory 

was studied to compare various malware detection 

approaches. Their experimental results demonstrated that the 

accuracy and efficiency of IMDS system, using Association 

mining based classification, has higher performance than 

popular anti-virus software such as Norton Antivirus and 

McAfee Virus Scan, and previous data mining based detection 

systems employing Naive Bayes, Support Vector Machine 

(SVM) and Decision Tree techniques [9]. This approach has 

already been incorporated into the scanning tool of Anti-Virus 

software of KingSoft Corporation. 

Yanfang Ye, Tao Li, Qingshan Jiang and Youyu Wang 

systematically evaluated the effects of the post processing 

techniques of associative classification in malware detection 

and proposed CIDCPF to detect the malware from the gray 

list. CIDCPF adapted the post processing techniques. The 

CIDCPF method has been integrated into IMDS system, and 

the new system is termed as CIMDS [10] system. Their 

experimental results demonstrates that the efficiency of 

detecting malware from the gray list of CIMDS system has 

higher performance than popular antivirus software tools, 

such as McAfee virus scan and Norton Antivirus, as well as 

previous data-mining-based detection systems. 

In comparison, the key novelty of the proposed malware 

detection system is the iterative learning process combined 

with the run-time monitoring of program execution behavior 

which makes this as a dynamic malware detection system. 

Also, in the proposed malware detection system, Association 

mining based classification, based on the one proposed by Yi-

Dong Shen et al., is used in the run-time monitoring of a 

program‟s API call sequence. A 3rd order Markov chain (i.e. 

4-grams) is used to model the API call sequences. A minimal 

subset of API categories is monitored. 

3. PROPOSED ARCHITECTURE 
The architecture of proposed malware detection system is 

shown in Figure 1. The run-time monitoring of program 

execution behavior combined with an iterative learning phase 

makes the proposed malware detection system as a dynamic 

malware detection system. Association mining based 

classification is used in the run-time monitoring of a 

program‟s Windows API [11] call sequence. A 3rd order 

Markov chain (i.e. 4-grams) is used to model the API call 

sequences. Minimal set of API categories are monitored. The 

system consists of 3 phases: Offline, Online and Iterative 

learning phase. 

The offline phase consists of the following components: 

dataset, API call tracer, API index database, signature 

database, rule generator and rule database. The dataset 
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consists of the malware executable samples collected from 

various malware databases including VXHeavens [12] and 

benign executable samples collected from a freshly installed 

copy of Windows XP. The API call tracer traces the API call 

sequence of the process pertaining to the malware and benign 

executable samples of the dataset. Through the API index 

database, the API calls are represented using integer IDs. 

Thus the execution sequence generated by the API tracer is 

converted into integer sequence. The API call integer 

sequence and the corresponding label of all the samples in the 

dataset are stored in the signature database. The rule generator 

uses the proposed Association mining algorithm to generate 

classification rules which consists of the integer sequence (4-

gram), support value, confidence value and the corresponding 

label. The rule which satisfy the support and confidence 

threshold is kept in the rule database. The support and 

confidence are defined as below.  

Support = [Count (I U {Class}, DB) / |DB|] x 100% 

Confidence = [Count (I U {Class}, DB) / Count (I, DB)] x 

100% 

Where,  

I is the itemset 

Count (I, DB) is the no. of records in the DB containing 

I (the itemset) 

Count (I U {Class}, DB) is the no. of records in the DB 

in which (I U {Class}) holds 

Class represents malware or benign 

DB is the signature database  

|DB| is the no. of records in DB 

The online phase consists of the following components: the 

target process, API call tracer, API index database and the 

classifier. The target process is the process whose behavior 

has to be monitored at run time. The API call tracer traces the 

API call sequence of the target process. Through the API 

index database, the API calls are represented using integer 

IDs. Thus the execution sequence generated by the API tracer 

is converted into integer sequence. The classifier classifies the 

target process as malware or benign using the traced API call 

integer sequence and the rules generated in the offline phase. 

In the iterative learning phase, the API call sequence and the 

classification label of the target process is iteratively added to 

the signature database after each classification to enhance the 

training model. 

4. PROPOSED ALGORITHMS 
The algorithms for tracing the API call sequence of a running 

process, mining rules and classification namely API Call 

Tracer algorithm, Rule Miner algorithm and Classifier 

algorithm respectively are given below.  

API Call Tracer algorithm takes a running process and API 

index database as inputs and gives its called API function as 

an integer sequence as the output. This is done by hooking the 

API calls, monitoring the process and logging the API calls. 

The obtained sequence is converted into integer sequence by 

referring to the API index database and stored in signature 

database along with its corresponding label.  

Rule Miner algorithm is used for mining frequent patterns and 

generating the rules. All the 4-grams of the integer API 

sequence of each training process is obtained and labeled with 

its corresponding class i.e. malware or benign. Each 4-gram 

with its label, support and confidence value represents a rule. 

Support and confidence of all the rules are calculated and 

rules satisfying support and confidence threshold is added in 

rule database.  

The Classifier algorithm classifies the target process as 

malware or benign using rule database and API call sequence 

of target process. The above integer sequence is broken into 

4-grams. Using the rule database, the confidence value of all 

4-grams is substituted. The average confidence value of all 4-

grams in malware class and benign class are calculated 

separately.  Thus if the average confidence value of 4-grams 

in malware class is greater than that of benign class, the 

running process will be classified as malware else the running 

process will be classified as benign. 

4.1 Call tracer algorithm 
The algorithm for tracing API call sequence is as follows.  

Input    : Process „Pr‟, API index database 

Output  : API call sequence „Seq‟ 

Procedure :  

Run „Pr‟ 

Hook the APIs and monitor „Pr‟ 

Using API index database, convert API call sequence of 

„Pr‟ into integer sequence „seq‟ 

Return „seq‟ 

4.2 Rule miner algorithm 
The algorithm for mining rules is as follows. 

Input  : API call sequence „Seq‟ 

Output  : Classification rules 

Procedure :   

For all „seq‟ in signature database 

Split „seq‟ into 4-grams & label them with their 

corresponding class each forming a rule 

For all rules calculate support and confidence  

Add the rules satisfying support and confidence threshold 

in rule database  

4.3 Classifier algorithm 
The algorithm for classifying the process is as follows. 

Input : Rule database and API call sequence 

(integer sequence) „seq‟ of target process 

Output  : „Pr‟ is malware or benign 

Procedure :   

Break „seq‟ into 4-grams and substitute confidence value 

of all 4-grams from rule database 

Calculate average confidence value of all 4-grams with 

label as malware and label as benign separately. 

IF the average confidence value of 4-grams in malware 

class is greater than that of benign class THEN the 

running process will be classified as malware, ELSE the 

running process will be classified as benign. 
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5. EXPERIMENTAL RESULTS 
The proposed malware detection system is evaluated using 

accuracy of the malware detection system (ACY). Accuracy is 

defined as the ratio of sum of number of malicious process 

rightly classified as malicious and number of benign process 

rightly classified as benign to total number of process 

classified. 

ACY = [(X + Y) /Z] * 100 % 

Where, 

X is the number of malicious process rightly classified 

as malicious 

Y is the number of benign process rightly classified as 

benign 

Z is the total number of process classified 

The experiments are conducted using Windows XP operating 

system, Intel Pentium D 2.80GHz CPU and 1Gb of RAM. 

Windows executable files which are recognized as benign and 

malicious executables are collected. The malicious 

executables mainly consists of backdoors, worms, and Trojan 

horses collected from VXHeavens [12]. The benign 

executables are gathered from freshly installed copy of 

Windows XP operating system. The proposed algorithms are 

implemented using Visual C++. The API Call Tracer 

algorithm is implemented using the IAT hooking technique 

[13, 14, 15]. The dataset consists of 94 benign and 179 

malware executables of which 68 benign and 95 malware 

executables were used to train the malware detection system 

and 26 benign and 84 malware executables were used to test 

the malware detection system. ACY of existing malware 

detection systems, which were calculated and tabulated in 

[10], are used for performance comparison against ACY of 

the proposed system. ACY of the proposed system and 

existing systems are shown in Table 1. Each value of ACY of 

the proposed system, shown in Table 1, is the average value 

obtained by 10 runs of each experiment with support value 

greater than 40% and confidence value greater than 95%. 

Table 1. Accuracy of different malware detection systems 

Malware 

detection systems 

Accuracy (%) 

Training set Testing set 

Naïve Bayes 50.9186 48.6926 

SVM 68.2373 64.4357 

J4.8 55.7260 56.7716 

IMDS 67.1230 64.1319 

CIMDS 71.3484 67.5049 

Proposed system 99.3800 90.0000 

 

CIMDS, an existing malware detection system, outperforms 

the other existing systems. The ACY of the proposed malware 

detection system is 39% more than that of CIMDS using 

training set and 34% more than that of CIMDS using testing 

set.  
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Figure 2: ACY of different malware detection systems 

Figure 2, showing the ACY of different malware detection 

systems, illustrates that the proposed malware detection 

system outperforms various existing malware detection 

systems. 

6. CONCLUSION 
A malware detection system is proposed which uses Windows 

API call sequence. A 3rd order Markov chain (i.e. 4-grams) is 

used to model the API call. This composite feature set is 

provided as an input to the malware detection system to raise 

the final alarm. Association mining based classification is 

used because it yields higher detection accuracy than previous 

data mining based detection systems which employed Naive 

Bayes, Support Vector Machine (SVM) and Decision Tree 

techniques. A minimal subset of API categories is monitored 

whilst maintaining high detection accuracy. The number of 

generated rules is reduced, by removing the redundant rules, 

to make the malware analysis efficient. The iterative learning 

process combined with the run-time monitoring of program 

execution behavior makes this as a dynamic malware 

detection system. The performance of the proposed malware 

detection system is evaluated for accuracy of the malware 

detection system and compared with the existing data mining 

based detection systems. It is inferred that the proposed 

malware detection system outperforms the existing malware 

detection systems. 
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