
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

12

Malware Detection using Windows Api Sequence and

Machine Learning

Chandrasekar Ravi, R Manoharan

Department of Computer Science and Engineering,
Pondicherry Engineering College,

Pillaichavady, Puducherry - 605014, India

ABSTRACT

Monitoring the behavior of program execution at run-time is

widely used to differentiate benign and malicious processes

executing in the host computer. Most of the existing run-time

malware detection methods use the information available in

Windows Application Programming Interface (API) calls. The

proposed malware detection system uses the Windows API

call sequence. A 3rd order Markov chain (i.e. 4-grams) is used

to model the API calls. This composite feature set is provided

as an input to the malware detection system to raise the final

alarm. Association mining based classification is used because

it yields higher detection accuracy than previous data mining

based detection systems which employed Naive Bayes,

Support Vector Machine and Decision Tree techniques. A

minimal subset of API categories is monitored while

maintaining high detection accuracy. The number of

generated rules is reduced, by removing the redundant rules,

to make the malware analysis efficient. The key novelty of the

proposed malware detection system is the iterative learning

process combined with the run-time monitoring of program

execution behavior which makes this as a dynamic malware

detection system. The performance of the proposed malware

detection system is evaluated for accuracy of malware

detection system and compared with the existing data mining

based detection systems. It is inferred that the proposed

malware detection system outperforms the existing malware

detection systems.

General Terms

Pattern Recognition, Security, Algorithms et. al.

Keywords

Malware detection, Windows API calls, Machine learning.

1. INTRODUCTION
Malware which is also termed as malicious software enters

system without the permission of user of the system [1]. The

words „malicious‟ and „software‟ are merged to create the

term Malware. Malware is a very big threat in day-to-day

computing world. The volume and complexity of malware is

increasing and evolving. More and more organizations are

trying to address the problem of malware. But, the source of

malware which is the websites distributing the malware is

increasing at a very high rate and is getting out of control.

Most of the malware enters the computer while downloading

files from the Internet. Once the malicious software enters

into the system, it scans for vulnerabilities present in the

operating system and perform unintended and unauthorized

actions on the file system thereby slowing down the

performance of the system.

The characteristics of malware are as follows [2]. Malware

can either act as standalone malicious software or combine

with other malicious software to act as a larger unit. Any

number of new and additional modules can be added to the

malware programs and can still achieve good performance.

Malware is available over the internet in large volumes and

can easily infect as many hosts as possible simultaneously.

Malware is user-friendly for attackers by providing them the

capability to introduce more complex attacks beyond the

attacker‟s skill level. Malware can neither be easily detected

nor removed from the system and it bypasses most of the

security measures undertaken by the user. Malware can

escape even complex forms of authentications. A wide range

of devices are affected by malware. Malware has become a

part of the cyber attack system. Malware can now-a-days earn

lot of income to the attacker by performing various criminal

activities.

A Malware detector can be mathematically visualized as a

function with domain and range. The domain is the set of

executable programs and the range is either malicious or

benign [3]. The detector verifies a program to decide whether

the program is benign program or malicious program. The

malware detector identifies the malware programs using the

signatures of malware. The pattern of the machine code of a

malicious program is called as signature. Antivirus software

compare their database of virus signatures with the signature

of the files on the hard disk and other media as well as within

the memory of the system. The signature-based malware

detection is further divided into Dynamic, Static and Hybrid

signature-based detection [4].

The paper is organized as follows. Section 2 discusses the

related work. The proposed architecture and the proposed

algorithms are discussed in Section 3 and 4 respectively.

Section 5 discusses the experimental results. Section 6

concludes the paper.

2. RELATED WORK
Faraz Ahmed, Haider Hameed, Zubair Shafiq, Muddassar

Farooq proposed a tool [5]. The tool extracts Windows API

calls sequence, provides it as input to standard machine

learning algorithms and classifies the process as malware or

benign. Their experimental results show that, analyzing the

Windows API call sequence improves the classifier‟s

detection accuracy. A minimal subset of API categories was

identified using scalability analysis. High detection accuracy

is achieved by monitoring only the minimal API categories.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

13

Figure 1: Architecture of the proposed malware detection system

Yi-Dong Shen, Zhong Zhang and Qiang Yang presented an

approach [6], called Objective-Oriented utility-based

Association (OOA) mining. The approach models association

patterns that are related to a user‟s objective and utility. This

approach focus on a user‟s objective and utility to measure the

usefulness of association patterns, thus, OOA mining

approach differs from the existing association mining

approaches.

Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye and

Qingshan Jiang developed the Intelligent Malware Detection

System (IMDS) [7, 8] using Association mining based

classification. They analyzed the Windows API call sequence

called by executable files. A large collection of executable

files obtained from KingSoft Corporation anti-virus laboratory

was studied to compare various malware detection

approaches. Their experimental results demonstrated that the

accuracy and efficiency of IMDS system, using Association

mining based classification, has higher performance than

popular anti-virus software such as Norton Antivirus and

McAfee Virus Scan, and previous data mining based detection

systems employing Naive Bayes, Support Vector Machine

(SVM) and Decision Tree techniques [9]. This approach has

already been incorporated into the scanning tool of Anti-Virus

software of KingSoft Corporation.

Yanfang Ye, Tao Li, Qingshan Jiang and Youyu Wang

systematically evaluated the effects of the post processing

techniques of associative classification in malware detection

and proposed CIDCPF to detect the malware from the gray

list. CIDCPF adapted the post processing techniques. The

CIDCPF method has been integrated into IMDS system, and

the new system is termed as CIMDS [10] system. Their

experimental results demonstrates that the efficiency of

detecting malware from the gray list of CIMDS system has

higher performance than popular antivirus software tools,

such as McAfee virus scan and Norton Antivirus, as well as

previous data-mining-based detection systems.

In comparison, the key novelty of the proposed malware

detection system is the iterative learning process combined

with the run-time monitoring of program execution behavior

which makes this as a dynamic malware detection system.

Also, in the proposed malware detection system, Association

mining based classification, based on the one proposed by Yi-

Dong Shen et al., is used in the run-time monitoring of a

program‟s API call sequence. A 3rd order Markov chain (i.e.

4-grams) is used to model the API call sequences. A minimal

subset of API categories is monitored.

3. PROPOSED ARCHITECTURE
The architecture of proposed malware detection system is

shown in Figure 1. The run-time monitoring of program

execution behavior combined with an iterative learning phase

makes the proposed malware detection system as a dynamic

malware detection system. Association mining based

classification is used in the run-time monitoring of a

program‟s Windows API [11] call sequence. A 3rd order

Markov chain (i.e. 4-grams) is used to model the API call

sequences. Minimal set of API categories are monitored. The

system consists of 3 phases: Offline, Online and Iterative

learning phase.

The offline phase consists of the following components:

dataset, API call tracer, API index database, signature

database, rule generator and rule database. The dataset

Offline Phase

Benign & Malicious

Executable File Samples

API Call Tracer

Signature Database

Proposed Associative

Mining Algorithm

Rule Database

Online Phase

API Call Tracer

Benign

Process

Malware

Process

Running Process

Proposed

Classification

Algorithm

API

Index

Database

Iterative Learning Phase

Label

API Call Sequence

New

Record

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

14

consists of the malware executable samples collected from

various malware databases including VXHeavens [12] and

benign executable samples collected from a freshly installed

copy of Windows XP. The API call tracer traces the API call

sequence of the process pertaining to the malware and benign

executable samples of the dataset. Through the API index

database, the API calls are represented using integer IDs.

Thus the execution sequence generated by the API tracer is

converted into integer sequence. The API call integer

sequence and the corresponding label of all the samples in the

dataset are stored in the signature database. The rule generator

uses the proposed Association mining algorithm to generate

classification rules which consists of the integer sequence (4-

gram), support value, confidence value and the corresponding

label. The rule which satisfy the support and confidence

threshold is kept in the rule database. The support and

confidence are defined as below.

Support = [Count (I U {Class}, DB) / |DB|] x 100%

Confidence = [Count (I U {Class}, DB) / Count (I, DB)] x

100%

Where,

I is the itemset

Count (I, DB) is the no. of records in the DB containing

I (the itemset)

Count (I U {Class}, DB) is the no. of records in the DB

in which (I U {Class}) holds

Class represents malware or benign

DB is the signature database

|DB| is the no. of records in DB

The online phase consists of the following components: the

target process, API call tracer, API index database and the

classifier. The target process is the process whose behavior

has to be monitored at run time. The API call tracer traces the

API call sequence of the target process. Through the API

index database, the API calls are represented using integer

IDs. Thus the execution sequence generated by the API tracer

is converted into integer sequence. The classifier classifies the

target process as malware or benign using the traced API call

integer sequence and the rules generated in the offline phase.

In the iterative learning phase, the API call sequence and the

classification label of the target process is iteratively added to

the signature database after each classification to enhance the

training model.

4. PROPOSED ALGORITHMS
The algorithms for tracing the API call sequence of a running

process, mining rules and classification namely API Call

Tracer algorithm, Rule Miner algorithm and Classifier

algorithm respectively are given below.

API Call Tracer algorithm takes a running process and API

index database as inputs and gives its called API function as

an integer sequence as the output. This is done by hooking the

API calls, monitoring the process and logging the API calls.

The obtained sequence is converted into integer sequence by

referring to the API index database and stored in signature

database along with its corresponding label.

Rule Miner algorithm is used for mining frequent patterns and

generating the rules. All the 4-grams of the integer API

sequence of each training process is obtained and labeled with

its corresponding class i.e. malware or benign. Each 4-gram

with its label, support and confidence value represents a rule.

Support and confidence of all the rules are calculated and

rules satisfying support and confidence threshold is added in

rule database.

The Classifier algorithm classifies the target process as

malware or benign using rule database and API call sequence

of target process. The above integer sequence is broken into

4-grams. Using the rule database, the confidence value of all

4-grams is substituted. The average confidence value of all 4-

grams in malware class and benign class are calculated

separately. Thus if the average confidence value of 4-grams

in malware class is greater than that of benign class, the

running process will be classified as malware else the running

process will be classified as benign.

4.1 Call tracer algorithm
The algorithm for tracing API call sequence is as follows.

Input : Process „Pr‟, API index database

Output : API call sequence „Seq‟

Procedure :

Run „Pr‟

Hook the APIs and monitor „Pr‟

Using API index database, convert API call sequence of

„Pr‟ into integer sequence „seq‟

Return „seq‟

4.2 Rule miner algorithm
The algorithm for mining rules is as follows.

Input : API call sequence „Seq‟

Output : Classification rules

Procedure :

For all „seq‟ in signature database

Split „seq‟ into 4-grams & label them with their

corresponding class each forming a rule

For all rules calculate support and confidence

Add the rules satisfying support and confidence threshold

in rule database

4.3 Classifier algorithm
The algorithm for classifying the process is as follows.

Input : Rule database and API call sequence

(integer sequence) „seq‟ of target process

Output : „Pr‟ is malware or benign

Procedure :

Break „seq‟ into 4-grams and substitute confidence value

of all 4-grams from rule database

Calculate average confidence value of all 4-grams with

label as malware and label as benign separately.

IF the average confidence value of 4-grams in malware

class is greater than that of benign class THEN the

running process will be classified as malware, ELSE the

running process will be classified as benign.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

15

5. EXPERIMENTAL RESULTS
The proposed malware detection system is evaluated using

accuracy of the malware detection system (ACY). Accuracy is

defined as the ratio of sum of number of malicious process

rightly classified as malicious and number of benign process

rightly classified as benign to total number of process

classified.

ACY = [(X + Y) /Z] * 100 %

Where,

X is the number of malicious process rightly classified

as malicious

Y is the number of benign process rightly classified as

benign

Z is the total number of process classified

The experiments are conducted using Windows XP operating

system, Intel Pentium D 2.80GHz CPU and 1Gb of RAM.

Windows executable files which are recognized as benign and

malicious executables are collected. The malicious

executables mainly consists of backdoors, worms, and Trojan

horses collected from VXHeavens [12]. The benign

executables are gathered from freshly installed copy of

Windows XP operating system. The proposed algorithms are

implemented using Visual C++. The API Call Tracer

algorithm is implemented using the IAT hooking technique

[13, 14, 15]. The dataset consists of 94 benign and 179

malware executables of which 68 benign and 95 malware

executables were used to train the malware detection system

and 26 benign and 84 malware executables were used to test

the malware detection system. ACY of existing malware

detection systems, which were calculated and tabulated in

[10], are used for performance comparison against ACY of

the proposed system. ACY of the proposed system and

existing systems are shown in Table 1. Each value of ACY of

the proposed system, shown in Table 1, is the average value

obtained by 10 runs of each experiment with support value

greater than 40% and confidence value greater than 95%.

Table 1. Accuracy of different malware detection systems

Malware

detection systems

Accuracy (%)

Training set Testing set

Naïve Bayes 50.9186 48.6926

SVM 68.2373 64.4357

J4.8 55.7260 56.7716

IMDS 67.1230 64.1319

CIMDS 71.3484 67.5049

Proposed system 99.3800 90.0000

CIMDS, an existing malware detection system, outperforms

the other existing systems. The ACY of the proposed malware

detection system is 39% more than that of CIMDS using

training set and 34% more than that of CIMDS using testing

set.

0

20

40

60

80

100

120

Training

Set

Testing Set

A
c
c
u

r
a

c
y

 (
 %

) Naïve

Bayes

SVM

J4.8

IMDS

CIMDS

Proposed

System

Figure 2: ACY of different malware detection systems

Figure 2, showing the ACY of different malware detection

systems, illustrates that the proposed malware detection

system outperforms various existing malware detection

systems.

6. CONCLUSION
A malware detection system is proposed which uses Windows

API call sequence. A 3rd order Markov chain (i.e. 4-grams) is

used to model the API call. This composite feature set is

provided as an input to the malware detection system to raise

the final alarm. Association mining based classification is

used because it yields higher detection accuracy than previous

data mining based detection systems which employed Naive

Bayes, Support Vector Machine (SVM) and Decision Tree

techniques. A minimal subset of API categories is monitored

whilst maintaining high detection accuracy. The number of

generated rules is reduced, by removing the redundant rules,

to make the malware analysis efficient. The iterative learning

process combined with the run-time monitoring of program

execution behavior makes this as a dynamic malware

detection system. The performance of the proposed malware

detection system is evaluated for accuracy of the malware

detection system and compared with the existing data mining

based detection systems. It is inferred that the proposed

malware detection system outperforms the existing malware

detection systems.

7. REFERENCES
[1] Rizwan Rehman, G. C. Hazarika and Gunadeep Chetia,

“Malware Threats And Mitigation Strategies: A Survey”,
Journal of Theoretical and Applied Information
Technology, Vol. 29, No. 2, pp. 69-73, July 2011.

[2] OECD Ministerial Meeting Report, “Malicious Software

(Malware): A Security Threat to the Internet Economy”,

Korean Communication Commision, Final draft, May

2007.

[3] Vinod, P. Laxmi, V. and M. S. Gaur. 2009. Survey on

Malware Detection Methods. In Proceedings of the

Hacker 2009, pp. 74-79.

[4] Nwokedi Idika and Aditya P. Mathur. 2007. A Survey of

Malware Detection Techniques. SERC Library.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.17, April 2012

16

[5] Faraz Ahmed, Haider Hameed, Zubair Shafiq M. and

Muddassar Farooq. 2009. Using Spatio-Temporal

Information in API Calls with Machine Learning

Algorithms for Malware Detection. In Proceedings of the

2nd ACM Workshop on Artificial Intelligence and

Security (AISec 2009), pp. 55-62.

[6] Yi-Dong Shen, Zhong Zhang and Qiang Yang. 2002.

Objective-oriented utility-based association mining. In

Proceedings of the IEEE International Conference on

Data Mining (ICDM 2003), pp. 426-433.

[7] Yanfang Ye, Dingding Wang, Tao Li and Dongyi Ye.

2007. IMDS: Intelligent malware detection system. In

Proceedings of the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(KDD‟07), pp. 1043–1047.

[8] Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye and

Qingshan Jiang, “An intelligent pe-malware detection

system based on association mining,” Journal in

Computer Virology, vol. 4, pp. 323–334, Feb. 2008.

[9] Jiawei Han and Micheline Kamber. 2006. Data mining:

Concepts and Techniques, Morgan Kaufmann publishers:

San Francisco, 2nd edition.

[10] Yanfang Ye, Tao Li, Qingshan Jiang and Youyu

Wang. 2010. CIMDS: Adapting Postprocessing

Techniques of Associative Classification for Malware

Detection. In Proceedings of the IEEE Transactions

On Systems, Man, And Cybernetics - Part C:

Applications And Reviews, vol. 40, No. 3, pp. 298-

307.

[11] Overview of the Windows API. Available at:

http://msdn.microsoft.com/en-

us/library/aa383723(VS.85).aspx.

[12] VX Heavens Virus Collection. Available at:

http://vx.netlux.org/.

[13] IAT-Hooking-Revisited. Available at:

http://www.autosectools.com/IAT-Hooking-

Revisited.pdf.

[14] Understanding the Import Address Table. Available at:

http://sandsprite.com/CodeStuff/Understanding_impor

ts.html.

[15] IAT Function Hooking. Available at:

http://sandsprite.com/CodeStuff/IAT_Hooking.html

http://msdn.microsoft.com/en-us/library/aa383723(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa383723(VS.85).aspx
http://vx.netlux.org/
http://www.autosectools.com/IAT-Hooking-Revisited.pdf
http://www.autosectools.com/IAT-Hooking-Revisited.pdf
http://sandsprite.com/CodeStuff/Understanding_imports.html
http://sandsprite.com/CodeStuff/Understanding_imports.html
http://sandsprite.com/CodeStuff/IAT_Hooking.html

