
International Journal of Computer Applications (0975 – 8887) 

Volume 43– No.16, April 2012 

21 

Implementation of Power Efficient Vedic Multiplier 

 
Sree Nivas A 

Amrita Vishwa Vidyapeethem 
Coimbatore, India 

Kayalvizhi N 
Amrita Vishwa Vidyapeethem 

Coimbatore, India 

 

ABSTRACT 

Vedic multiplier is based on the ancient algorithms (sutras) 

followed in INDIA for multiplication. This work is based on 

one of the sutras called “Nikhilam Sutra”. These sutras are 

meant for faster mental calculation. Though faster when 

implemented in hardware, it consumes more power than the 

conventional ones. This paper presents a technique to modify 

the architecture of the Vedic multiplier by using some existing 

methods in order to reduce power. The 32 X 32 Vedic 

multiplier is coded in Verilog HDL and Synthesized using 

Synopsys Design Compiler. The performance is compared in 

terms of area, data arrival time and power with earlier existing 

architecture of Vedic multiplier. The proposed design shows 

very good improvements in terms of power. 

General Terms 

Algorithms. 
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1. INTRODUCTION 
Multipliers play a vital role in any DSP processors or in any 

DSP applications. Multipliers are classified based on how the 

data is been processed. They are broadly classified as serial 

multipliers and parallel multipliers.  

The add and shift multiplier [1] will work as normal array 

multiplier. The way of multiplying in this type of multiplier is 

similar to normal manual calculation. The parallel multipliers 

are mainly classified as array based and tree based multipliers. 

C.S Wallace proposed a tree based multiplier called Wallace 

tree multiplier [2] which operates at high speed. The 

irregularity in structure is the main disadvantage in this 

multiplier. Braun Multiplier is one of the parallel array based 

multiplier which requires n2 gates and (n-1) adders. So the 

area complexity increases (almost quadratically) with the 

number of bits. Baugh-Wooley multiplier [3] [4] is an array 

multiplier that can perform signed multiplication but again it 

has a drawback on area. A.D.Booth [5] introduced Booth 

multiplier for signed binary numbers. They are also called as 

radix-2 multiplier. This multiplier will not work when it has 

alternate zeros and ones, and it requires more number of 

additions and subtractions. This problem is overcome by 

Modified booth multiplier [6] or radix-4 multiplier, in which 

number of partial product rows is reduced by half. It will 

perform very well in terms of speed and power consumption. 

The main disadvantage of this type of multiplier is, it will not 

work for negative numbers. 

Ancient Indian mathematics is called as Vedic Mathematics 

[7]. Vedic mathematics from Vedas was first proposed by Sri 

Bharati Krsna Tirtha, after his survey on Vedas [8]. Vedic 

mathematics reduces the complexity in calculations that exist 

in conventional mathematics. Generally there are sixteen 

sutras available in Vedic mathematics. Among them only two 

sutras are applicable for multiplication operation. They are 

Urdhva Triyakbhyam sutra (literally means vertically and 

cross wise) and Nikhilam Sutra (literally means All from 9 

and last from 10). The logic behind Urdhva Triyakbhyam 

sutra is very much similar to the ordinary array multiplier. 

In the next section, the basic working of Vedic multiplier is 

explained with its architecture. In section 3, the circuit is 

modified for better speed and area. In section 4, the proposed 

method for improving the power is explained. In section 5, the 

implementation details are, and the result analysis are made.  

2. VEDIC MULTIPLIER 
This work mainly focuses on the implementation of Nikhilam 

Sutra. The operation behind this type of sutra is very simple 

[9].  

96 * 93 

96   (100-96) 

93  (100-93) 

                           Column1                      Column 2 

  96       4 

  93       7 

  89      28 

 

                                               8928 

Fig 1. Example of multiplying two numbers using 

Nikhilam Sutra 

The nearest base is chosen first. The multiplicand and the 

multiplier will be subtracted from the nearest base, which is 

equivalent to taking two’s complement. Then   the product of 

the two’s complement and the common difference will give 

the final result. 

Fig.1 shows an example [9] for multiplying two numbers 

(96*93). In this case the common base is 100. Both 96 and 93 

are subtracted from 100 which will give 4 and 7 respectively. 

The product of 4 and 7 is 28 and the common difference (96 – 

7) and (93 – 4) is 89. By concatenating 89 and 28 the final 

result is obtained. 
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With this logic Manoranjan Pradhan et.al. [9] had proposed an 

architecture for Nikhilam sutra. Choosing a nearest base and 

subtracting the multiplicand and multiplier is equivalent to 

taking two’s complement of the numbers. Fig.2 shows the 

architecture of the Nikhilam Sutra multiplier. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Architecture of Nikhilam Sutra 

The two’s complement is taken for the Multiplier and the 

Multiplicand. The output of the two’s complement is then 

multiplied. If it is a N X N bit multiplication this multiplier 

will have 2N number of bits as output. The lower half i.e. the 

last (N) bits will be the result of the multiplier and the first N 

bits will be the result of the carry save adder. 

Nikhilam sutra multiplier will operate at high speed [9], but 

the power consumed by this multiplier will also be high. The 

power can be reduced by making modifications in the 

architecture shown in Fig.2. The architecture mainly consists 

of two two’s complement block, a multiplier block and an 

adder block. The modifications can be done at the two’s 

complement block and the multiplier block in order to reduce 

the power consumption. 

3. TWO’S COMPLEMENT BLOCK 

MODIFICATION 
Jung-Yup Kang et.al. [10] have proposed a new way of 

finding a two’s complement. In conventional way the binary 

number is complemented and one is added to the 

complemented number. In their proposed work the first step 

was to find the right most one of the binary number. Then the 

bits before the right most one is complemented and the 

remaining bits are left unchanged. The advantage of finding 

two’s complement by this method is that the addition stage 

will not be necessary here. So the power consumed by the 

adder will be reduced. 

4. MULTIPLIER BLOCK 

MODIFICATION 
V.S.Dimitrov et.al. have proposed [11][12] a multiplier based 

on multiple radix representation which consumes very less 

power. The multiple radix multiplier is based on Double Base 

Number System (DBNS). 

Definition : Given p,q are two different prime numbers, the 

double base number system is a representation scheme in 

which every positive integer n is represented as the sum or 

difference of {p,q} – integers. 

 

                                                                                           

(1) 

 

where si  ε {-1, 1} and ai, bi are nonnegative integers. Equation 

(1) gives the general representation of a double base number 

system (DBNS). The term l represents size or the length of the 

DBNS. In general    {2, 3} are used as bases. There are many 

ways to represent a particular number in DBNS. This type of 

representation is called canonic representation. The 

representation among many possibilities is said to be good, 

when it contains minimum number of {2, 3}. 

Any one either the multiplier or the multiplicand is broken 

into a segment of seven bits for encoding. Here the 7-bit (for 

example A) is encoded into 11-bits. These 11-bits will act as 

the control bits in the architecture of the multiple radix 

multiplier. Fig. 3 shows how the 7-bits is encoded into 11-

bits.  

 

                                          Digit Selection    Binary exponent     Digit Selection     Sign       Binary exponent 

A (7-bits Number)                              2 bits                        3 bits                     2 bits               1 bit               3 bits 

 

                                                                    Fig 3: Encoding scheme for 7-bit number 
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The first two bits represents the digit selection bits, next three 

represent binary exponent, next two represent the digit 

selection, next one bit represent sign bit and the last three bits 

represent binary exponent. From Table 1 we can see that 89 is 

encoded as (01 101 11 0 000). As it is a seven bit encoding, 

the odd numbers till 7 is taken as {1, 3, 5, 7}. 

This multiple radix multiplier will work on LUT based 

approach. Larger the LUT’s are, fewer the number of 

additions/subtractions will be used. To perform 32 bit 

multiplication, numbers from 0 to 127 is converted into 

canonical representation with minimum number of {2,3} and 

it should be stored in the LUT. The conversion is made from 0 

to 127 because as it is a 7-bit encoding the maximum 

possibility will be 27 (128 data i.e. from 0 to 127). Table 5 of 

[11] is the LUT [4] for a seven bit encoding. 

From Table 5 of [11] we can see that 89 is encoded as (01 101 

11 0 000). As it is a seven bit encoding, the odd numbers till 7 

is taken as {1, 3, 5, 7}. 

Fig.4 shows an example how the encoding is done for 89. The 

first block represents 01, so the first value from the set i.e. 3 is 

taken. The second block is 101 which is equivalent to 5.            

So 3 is multiplied with 2101 which will give 96. The fourth 

block is 0 which represents negative sign and if it is 1 then it 

is positive. The third block is 11, so the fourth value from the 

set i.e. 7 is taken. The fifth block is 000 which is equivalent to 

zero. So 7 is multiplied with 2000 which will give 7. Finally 

(96-7) will give us 89. 

 

3 * 2101 = 3*32 = 96 

         7 * 2000 =  7*1   =  7 

                             89 

Fig 4: Example of encoding a number 89 

These 11 bits will act as a control bits for the architecture [11] 

shown in Fig 8. The multiplicand A is broken into segments 

of 7 bits. After splitting, every 7 bits are encoded into 11 bits. 

The 32 bit multiplier B is made used to find the values of 3B, 

5B and 7B. These values are found by using shift and 

addition/subtraction method. The main advantage of this 

method is the number of adders will get reduced when 

compared to conventional way of multiplying.  

The first block (2 bits) of the encoded output will act as a 

control signal t1 for a 4X1 multiplexer. The second block (3 

bits) will be the control signal a1 for a barrel shifter. The third 

block (2 bits) of the encoded output will act as a control signal 

t2 for a 4X1 multiplexer. The fourth block (1 bit) will be the 

sign bit control signal s2 for a addition/subtraction block. The 

fifth block (3 bits) will be the control signal a2 for a barrel 

shifter.  

Fig 5: Architecture of Multiple radix muliplier using 7-bit encoding 

 

- 
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The performance of the multiplier after such modifications is 

compared with the unmodified Vedic multiplier. 

5. RESULT AND COMPARISION 
All implementations are done using Verilog HDL and the 

performances of the multipliers are compared on the basis of 

area, data arrival time and power consumed. The 32X32 

multipliers are synthesized with Synopsys Design Compiler 

using lsi_10k.db library file. Table.1 shows the comparison of 

the performance of Vedic multiplier in three cases. 

 Table 1.  Comparison of synthesis report of 32 X 32 Vedic 

multiplier 

 

 

Case 

 

Area 

µm2 

 

 

Data 

Arrival 

Time 

   ns 

 

Power 

mW 

1. Vedic 

Multiplier 

without any 

Modification 

 

 

8364 

 

 

99.43 

 

 

2.3077 

2. Vedic 

Multiplier 

with modified 

Two’s 

complement 

block 

 

 

 

8274 

 

 

 

97.69 

 

 

 

2.2966 

3. Vedic 

Multiplier 

with modified 

Two’s 

complement 

and multiplier 

blocks 

 

 

 

12167 

 

 

 

158.71 

 

 

 

1.2215 

 

The first case in Table 1 shows the actual 32X32 Vedic 

multiplier without any modification as shown in Fig.2. We 

can observe that the power consumed by the multiplier is very 

high. The result of case 2 is obtained by modifying only the 

two’s complement block in the Fig.2 by the method 

mentioned in section 3. From this we can observe that there is 

little bit improvement in all three parameters. The result of 

case 3 is obtained by modifying both the two’s complement 

block and the multiplier block in the Fig.2 by the method 

mentioned in section 3 and section 4 respectively. From this 

case we can see that the power is reduced to an extent but we 

should compensate in terms of area and delay. 

6. CONCLUSION 
In this paper, a new architecture for a power efficient Vedic 

multiplier is presented. Simulation and synthesis are carried 

out for three different cases. The multipliers can be chosen 

depending on what the performance it is required. The 

proposed Vedic multiplier architecture shows good 

improvement in power consumption in third case. This 

multiplier can be efficiently used in any DSP application or in 

any DSP processors that requires low power consumption. 
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