
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.16, April 2012

21

Implementation of Power Efficient Vedic Multiplier

Sree Nivas A

Amrita Vishwa Vidyapeethem
Coimbatore, India

Kayalvizhi N
Amrita Vishwa Vidyapeethem

Coimbatore, India

ABSTRACT

Vedic multiplier is based on the ancient algorithms (sutras)

followed in INDIA for multiplication. This work is based on

one of the sutras called “Nikhilam Sutra”. These sutras are

meant for faster mental calculation. Though faster when

implemented in hardware, it consumes more power than the

conventional ones. This paper presents a technique to modify

the architecture of the Vedic multiplier by using some existing

methods in order to reduce power. The 32 X 32 Vedic

multiplier is coded in Verilog HDL and Synthesized using

Synopsys Design Compiler. The performance is compared in

terms of area, data arrival time and power with earlier existing

architecture of Vedic multiplier. The proposed design shows

very good improvements in terms of power.

General Terms

Algorithms.

Keywords

Vedic Multiplier, Low power multiplier, Nikhilam Sutra.

1. INTRODUCTION
Multipliers play a vital role in any DSP processors or in any

DSP applications. Multipliers are classified based on how the

data is been processed. They are broadly classified as serial

multipliers and parallel multipliers.

The add and shift multiplier [1] will work as normal array

multiplier. The way of multiplying in this type of multiplier is

similar to normal manual calculation. The parallel multipliers

are mainly classified as array based and tree based multipliers.

C.S Wallace proposed a tree based multiplier called Wallace

tree multiplier [2] which operates at high speed. The

irregularity in structure is the main disadvantage in this

multiplier. Braun Multiplier is one of the parallel array based

multiplier which requires n2 gates and (n-1) adders. So the

area complexity increases (almost quadratically) with the

number of bits. Baugh-Wooley multiplier [3] [4] is an array

multiplier that can perform signed multiplication but again it

has a drawback on area. A.D.Booth [5] introduced Booth

multiplier for signed binary numbers. They are also called as

radix-2 multiplier. This multiplier will not work when it has

alternate zeros and ones, and it requires more number of

additions and subtractions. This problem is overcome by

Modified booth multiplier [6] or radix-4 multiplier, in which

number of partial product rows is reduced by half. It will

perform very well in terms of speed and power consumption.

The main disadvantage of this type of multiplier is, it will not

work for negative numbers.

Ancient Indian mathematics is called as Vedic Mathematics

[7]. Vedic mathematics from Vedas was first proposed by Sri

Bharati Krsna Tirtha, after his survey on Vedas [8]. Vedic

mathematics reduces the complexity in calculations that exist

in conventional mathematics. Generally there are sixteen

sutras available in Vedic mathematics. Among them only two

sutras are applicable for multiplication operation. They are

Urdhva Triyakbhyam sutra (literally means vertically and

cross wise) and Nikhilam Sutra (literally means All from 9

and last from 10). The logic behind Urdhva Triyakbhyam

sutra is very much similar to the ordinary array multiplier.

In the next section, the basic working of Vedic multiplier is

explained with its architecture. In section 3, the circuit is

modified for better speed and area. In section 4, the proposed

method for improving the power is explained. In section 5, the

implementation details are, and the result analysis are made.

2. VEDIC MULTIPLIER
This work mainly focuses on the implementation of Nikhilam

Sutra. The operation behind this type of sutra is very simple

[9].

96 * 93

96 (100-96)

93 (100-93)

 Column1 Column 2

 96 4

 93 7

 89 28

 8928

Fig 1. Example of multiplying two numbers using

Nikhilam Sutra

The nearest base is chosen first. The multiplicand and the

multiplier will be subtracted from the nearest base, which is

equivalent to taking two’s complement. Then the product of

the two’s complement and the common difference will give

the final result.

Fig.1 shows an example [9] for multiplying two numbers

(96*93). In this case the common base is 100. Both 96 and 93

are subtracted from 100 which will give 4 and 7 respectively.

The product of 4 and 7 is 28 and the common difference (96 –

7) and (93 – 4) is 89. By concatenating 89 and 28 the final

result is obtained.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.16, April 2012

22

With this logic Manoranjan Pradhan et.al. [9] had proposed an

architecture for Nikhilam sutra. Choosing a nearest base and

subtracting the multiplicand and multiplier is equivalent to

taking two’s complement of the numbers. Fig.2 shows the

architecture of the Nikhilam Sutra multiplier.

Fig 2: Architecture of Nikhilam Sutra

The two’s complement is taken for the Multiplier and the

Multiplicand. The output of the two’s complement is then

multiplied. If it is a N X N bit multiplication this multiplier

will have 2N number of bits as output. The lower half i.e. the

last (N) bits will be the result of the multiplier and the first N

bits will be the result of the carry save adder.

Nikhilam sutra multiplier will operate at high speed [9], but

the power consumed by this multiplier will also be high. The

power can be reduced by making modifications in the

architecture shown in Fig.2. The architecture mainly consists

of two two’s complement block, a multiplier block and an

adder block. The modifications can be done at the two’s

complement block and the multiplier block in order to reduce

the power consumption.

3. TWO’S COMPLEMENT BLOCK

MODIFICATION
Jung-Yup Kang et.al. [10] have proposed a new way of

finding a two’s complement. In conventional way the binary

number is complemented and one is added to the

complemented number. In their proposed work the first step

was to find the right most one of the binary number. Then the

bits before the right most one is complemented and the

remaining bits are left unchanged. The advantage of finding

two’s complement by this method is that the addition stage

will not be necessary here. So the power consumed by the

adder will be reduced.

4. MULTIPLIER BLOCK

MODIFICATION
V.S.Dimitrov et.al. have proposed [11][12] a multiplier based

on multiple radix representation which consumes very less

power. The multiple radix multiplier is based on Double Base

Number System (DBNS).

Definition : Given p,q are two different prime numbers, the

double base number system is a representation scheme in

which every positive integer n is represented as the sum or

difference of {p,q} – integers.

(1)

where si ε {-1, 1} and ai, bi are nonnegative integers. Equation

(1) gives the general representation of a double base number

system (DBNS). The term l represents size or the length of the

DBNS. In general {2, 3} are used as bases. There are many

ways to represent a particular number in DBNS. This type of

representation is called canonic representation. The

representation among many possibilities is said to be good,

when it contains minimum number of {2, 3}.

Any one either the multiplier or the multiplicand is broken

into a segment of seven bits for encoding. Here the 7-bit (for

example A) is encoded into 11-bits. These 11-bits will act as

the control bits in the architecture of the multiple radix

multiplier. Fig. 3 shows how the 7-bits is encoded into 11-

bits.

 Digit Selection Binary exponent Digit Selection Sign Binary exponent

A (7-bits Number) 2 bits 3 bits 2 bits 1 bit 3 bits

 Fig 3: Encoding scheme for 7-bit number

ii
i

bqap
l

i

sn 




1

2’s Complement

Multiplier

Carry Save Adder

2’s Complement

LHS of product RHS of product

Multiplier Multiplicand

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.16, April 2012

23

The first two bits represents the digit selection bits, next three

represent binary exponent, next two represent the digit

selection, next one bit represent sign bit and the last three bits

represent binary exponent. From Table 1 we can see that 89 is

encoded as (01 101 11 0 000). As it is a seven bit encoding,

the odd numbers till 7 is taken as {1, 3, 5, 7}.

This multiple radix multiplier will work on LUT based

approach. Larger the LUT’s are, fewer the number of

additions/subtractions will be used. To perform 32 bit

multiplication, numbers from 0 to 127 is converted into

canonical representation with minimum number of {2,3} and

it should be stored in the LUT. The conversion is made from 0

to 127 because as it is a 7-bit encoding the maximum

possibility will be 27 (128 data i.e. from 0 to 127). Table 5 of

[11] is the LUT [4] for a seven bit encoding.

From Table 5 of [11] we can see that 89 is encoded as (01 101

11 0 000). As it is a seven bit encoding, the odd numbers till 7

is taken as {1, 3, 5, 7}.

Fig.4 shows an example how the encoding is done for 89. The

first block represents 01, so the first value from the set i.e. 3 is

taken. The second block is 101 which is equivalent to 5.

So 3 is multiplied with 2101 which will give 96. The fourth

block is 0 which represents negative sign and if it is 1 then it

is positive. The third block is 11, so the fourth value from the

set i.e. 7 is taken. The fifth block is 000 which is equivalent to

zero. So 7 is multiplied with 2000 which will give 7. Finally

(96-7) will give us 89.

3 * 2101 = 3*32 = 96

 7 * 2000 = 7*1 = 7

 89

Fig 4: Example of encoding a number 89

These 11 bits will act as a control bits for the architecture [11]

shown in Fig 8. The multiplicand A is broken into segments

of 7 bits. After splitting, every 7 bits are encoded into 11 bits.

The 32 bit multiplier B is made used to find the values of 3B,

5B and 7B. These values are found by using shift and

addition/subtraction method. The main advantage of this

method is the number of adders will get reduced when

compared to conventional way of multiplying.

The first block (2 bits) of the encoded output will act as a

control signal t1 for a 4X1 multiplexer. The second block (3

bits) will be the control signal a1 for a barrel shifter. The third

block (2 bits) of the encoded output will act as a control signal

t2 for a 4X1 multiplexer. The fourth block (1 bit) will be the

sign bit control signal s2 for a addition/subtraction block. The

fifth block (3 bits) will be the control signal a2 for a barrel

shifter.

Fig 5: Architecture of Multiple radix muliplier using 7-bit encoding

-

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.16, April 2012

24

The performance of the multiplier after such modifications is

compared with the unmodified Vedic multiplier.

5. RESULT AND COMPARISION
All implementations are done using Verilog HDL and the

performances of the multipliers are compared on the basis of

area, data arrival time and power consumed. The 32X32

multipliers are synthesized with Synopsys Design Compiler

using lsi_10k.db library file. Table.1 shows the comparison of

the performance of Vedic multiplier in three cases.

 Table 1. Comparison of synthesis report of 32 X 32 Vedic

multiplier

Case

Area

µm2

Data

Arrival

Time

 ns

Power

mW

1. Vedic

Multiplier

without any

Modification

8364

99.43

2.3077

2. Vedic

Multiplier

with modified

Two’s

complement

block

8274

97.69

2.2966

3. Vedic

Multiplier

with modified

Two’s

complement

and multiplier

blocks

12167

158.71

1.2215

The first case in Table 1 shows the actual 32X32 Vedic

multiplier without any modification as shown in Fig.2. We

can observe that the power consumed by the multiplier is very

high. The result of case 2 is obtained by modifying only the

two’s complement block in the Fig.2 by the method

mentioned in section 3. From this we can observe that there is

little bit improvement in all three parameters. The result of

case 3 is obtained by modifying both the two’s complement

block and the multiplier block in the Fig.2 by the method

mentioned in section 3 and section 4 respectively. From this

case we can see that the power is reduced to an extent but we

should compensate in terms of area and delay.

6. CONCLUSION
In this paper, a new architecture for a power efficient Vedic

multiplier is presented. Simulation and synthesis are carried

out for three different cases. The multipliers can be chosen

depending on what the performance it is required. The

proposed Vedic multiplier architecture shows good

improvement in power consumption in third case. This

multiplier can be efficiently used in any DSP application or in

any DSP processors that requires low power consumption.

7. ACKNOWLEDGEMENTS
We thank Dr. S. Krishna Kumar of Amrita Vishwa

Vidyapeetham for his constant support in performing the

hardware implementation.

8. REFERENCES
[1] C.N.Marimuthu, P.Thangaraj, Aswathy Ramesan, “Low

power Shift and add multiplier design”, International

Journal of computer science and information technology,

vol.2, no.3, June 2010.

[2] Wallace, C S. “A suggestion for a fast multiplier,” IEEE

Transactions on Electronic Computers, vol EC-13, pp

14-17, Feb 1964.

[3] C.R Baugh and B.A Wooley,” A Two’s Complement

Parallel Array Multiplication Algorithm,” IEEE

Transactions on Computers, Vol. 22, No 12, pp.1045-

1047, December 1973.

[4] Aswathy Sudhakar , D. Gokila , ”Proposal for an

Efficient Reconfigurable Fixed-Width Multiplier”,

ICNVS'10 Proceedings of the 12th international

conference on Networking, VLSI and signal processing,

ISBN: 978-960-474-162-5,2010

[5] A.D. Booth, “A signed Binary Multiplication

Technique,” Quart. J.Mech. Appl. Math.v, 4 part2, pp

236-240, 1951.

[6] P.E.Madrid, B.Miller and E.E.Swartzlander,” Modified

Booth Algorithm for High Radix Fixed -Point

Multiplication,” IEEE Transactions on Very Large Scale

Integeration (VLSI) Systems, Vol .1, No. 2, pp 118-121

June 1993.

[7] Honey Durga Tiwari, Ganzorig Gankhuyag, Chan Mo

Kim, Yong Beom Cho, “Multiplier design based on

ancient Indian Vedic Mathematics,” in IEEE

International SoC Design Conference, pp. II-65 - II-68,

November 2008.

[8] Jagadguru Swami, Sri Bharati Krishsna Tirthji

Maharaja,” Vedic Mathematics”, Motilal Banarsidas,

Varanasi, India, 1986.

[9] Manoranjan Pradhan, Rutuparna Panda, Sushanta Kumar

Sahu, “Speed Comparison of 16x16 Vedic Multipliers,”

International Journal of Computer Applications (0975 –

8887), vol 21– No.6, May 2011.

[10] Jung-Yup Kang and Jean-Luc Gaudiot, “A Simple High -

Speed Multiplier Design,” IEEE trans. on computers,

vol. 55, no. 10, pp. 1253-1258, October 2006.

[11] V. Dimitrov, K. Jarvinen, and J. Adikari, "Area-efficient

multipliers based on multiple-radix representations,"

IEEE Transactions on Computers, vol. 60, no. 2, pp. 189

-201, February 2011.

[12] A. Edirisuriya and A. Madanayake, J. Adikari, v. S.

Dimitrov, “An Architecture For A 7 x 7-bit Multiple-

Radix Multiplier Building Block,” in IEEE 54th

International Midwest symposium , pp 1- 4, September

2011.

