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ABSTRACT 

Motif detecting in DNA sequences is one of the most popular 

tasks in computational biology, which is important for people 

to understand functions of genes.  Recently, the motif 

detecting problem was abstracted as a planted -motif 

problem and many instances of the problem have been 

proposed as challenges for motif detecting algorithms. In this 

work, we propose an improved immune genetic algorithm, 

called MRPIGA, to solve a class of specific planted -

motif problems, weak signal motif problems, in which a 

modified random projection strategy is applied to generate a 

good initial population of candidate solutions. Experimental 

results on stimulated data show that MRPIGA performs better 

than Random Projection, GARPS and MDGA.  We also test 

the MRPIGA on five groups of realistic biological data. It 

shows that the MRPIGA performs superior to detect motifs. 
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1. INTRODUCTION 
Genes are known as the basic fundamental units containing 

inherited information in deoxyribonucleic acid (DNA), which 

can be used as templates for the transcription of proteins. The 

process of protein transcription is called gene expression. It is 

a basic function of lives and begins with binding the 

transcription factor proteins to specific locations of genomic 

sequence. To the knowledge of biologists, the binding 

locations usually share common patterns of DNA segment 

with few variable nucleotides. These common DNA segments 

are known as motifs. Detecting motifs and their binding 

locations are two major tasks in molecular biology. Several 

experimental methods, such as DNase foot printing [1] 

method and gel shift assay method [2], are feasible in 

laboratories. However, with the development of high-

throughput sequencing technology in recent years, huge 

amount of DNA sequences data can be obtained in once 

sequencing experiment. Detecting motifs by experimental 

methods will be labor-intensive, time consuming and 

expensive. Recently, many computer algorithms have been 

proposed to detect motifs. For computer scientists, the motif 

detecting problem was formulated as the planted -motif 

problem [3].  

The Planted -Motif Problem: Let  be a fixed but 

unknown nucleotide sequence of length . Suppose that  

occurs once in each of  background sequences of common 

length , but that each occurrence of  is corrupted by 

exactly  substitutions in positions chosen independently at 

random. Given the  sequences, recover the locations of 

motif occurrences and the consensus . 

Computationally, the difficulty of the planted -motif 

problem arises from the fact that locations of the motifs can 

vary significantly on each background sequences. The planted 

-motif problem have been proved to be NP-complete. 

Some instances of such problems are taken as challenges to 

test motif detecting algorithms. Till now, many algorithms 

have been proposed to address the problems, and all the 

algorithms can be divided into two categories. (1) Exact 

algorithms, such as CENSUS [4], MITRA [5], PMS1 [6], 

PMSP [7] and SMILE [8], which always come up with the 

correct answer(s) to the problem. For small scale planted 

-motif problems, exact algorithms are practical and feasible to 

detect all the potential motifs, but when  and  are assigned 

with large values, exact algorithms will take an unacceptable 

time to exhaustively enumerate all the candidate solutions. (It 

is due to the fact that the solution space of the planted -

motif problem increases exponentially with the increment of   

and .) (2) Approximate algorithms were also designed to 

solve the planted -motif problem, which can significantly 

reduce computation time or space for motif detection. The 

approximate algorithms, such as Random Projection method 

[3], MEME [9], BioProspector [10] and BioOptimizor [11], 

give the correct answers to the problem with a certain rate. 

This rate is called accuracy rate of the algorithm. However, 

the approximate algorithms will become trapped in a local 

maximum, and failed in some challenge instances of the 

problem (associated with low accuracy rate). To avoid the 

local maximal trap, genetic algorithm (GA) was recently 

introduced to improve the performance of the approximate 

algorithms. Several GA based methods, such as GAME [12], 

MDGA [13] and GARPS [14], performs well to solve the 

problem, but failed in some weak signal motif detecting 

problems. Recently, immune genetic algorithm (IGA) was 

introduced to detect motifs in DNA sequences [15], and 

achieved superior performances to other algorithms. IGA 

adopts concentration regulation mechanism to maintain the 

population diversity and vaccine mechanism to inhibit the 

degeneracy. The initial population of IGA is randomly chosen 

as general GA. For large scale planted -motif problems, 

randomly generated initial population will rarely come close 
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to an optimal solution. It will yield to a long computation time 

for IGA to detect the motifs.  

In this work, we introduce an improved IGA to detect motifs 

from DNA sequences, where a modified random projection 

strategy is used to generate a good initial population. The 

initial population generated by modified random projection 

strategy is more likely to cover an optimal solution of the 

problem than the randomly generated population. Our 

algorithm is called MRPIGA. We test MRPIGA on simulated 

data to solve the weak signal motif problems. Experimental 

results show that the performances of our method are better 

than Random Projection, GARPS and MDGA. Five groups of 

realistic biological data, including preproinsulin, DHFR, 

metallothionein, c-fos, and Yeast ECB, which have been 

successfully detected in laboratories, are chosen to test 

MRPIGA. The motifs detected by MRPIGA the same as in 

[17]. 

2. CLASSIFICATION OF THE 

PLANTED -MOTIF PROBLEMS 
As stated in [16], the planted -motif problem models the 

motif detecting problem as a combinational optimization 

model. In the model, if the consensus is completely conserved 

in any background sequence, then the motif detecting problem 

can be reduced to the problem of counting the sequences with 

the maximal appearance in the background sequences. If there 

are a sufficient number of substitution points in the motif, 

then motif detecting problem becomes very hard, since the 

signal of the conserved positions in the motifs can be covered 

by the noise from the background sequences. The probability 

analysis of the planted -motif problem has been done in 

[16], as well as an expectation number  of counting 

motifs with at least one variant in each background sequence 

is defined as: 

, 

where  is the probability that a given -mer occurs with 

substitutions as certain position in a random DNA sequence, 

 is the length of background sequence, and  is the number 

of background sequences. According the expectation number 

, i.e., signal intensity, the instances of the planted  

-motif problem can be categorized into three classes: tiny 

signal motifs, faint signal motifs and weak signal motifs [14], 

as shown in Table 1. In this work, we deal with the class of 

weak signal motif problems. 

Table 1. The classification of instances of the planted -

motif problem 

Tiny Signal 

Motifs 

Faint Signal 

Motifs 

Weak Signal 

Motifs 

(8,2) (9,2) (10,2),(11,2) 

(10,3) (11,3) (12,3), (13,3) 

(12,4) (13,4) (14,4), (15,4) 

(14,5) (15,5) (16,5), (17,5) 

(16,6) (17,6) (18,6), (19,6) 

3. METHODS 

3.1 Modified random projection strategy 
In [3], the random projection strategy was used to generate 

potential motifs from background sequences. A position set  

with  positions was randomly chosen from  positions, and 

then each -mer in the background sequences can be hashed 

into a corresponding bucket based on projection at the  

selected positions. The -mers enriched in certain bucket were 

taken as potential motifs for further refining. 

 

Fig. 1: An example of reforming potential motifs from 

qualified projections  

We consider here a modified random projection strategy. Let 

 be a set of 

positions with  integers, and  be an -mer. We 

denote the projection of  on  by , which is the 

concatenation of the nucleotides at the  positions of . For a 

given set of positions  and  background sequences, a 

number of -mer projections can be obtained, and each of the 

projections appear at least once in one of the  background 

sequences. It is possible that certain projection appears more 

than one times out of the  background sequences. The 

projection appearing for significant times is called qualified 

projection. By repeatedly choosing position set  at random 

for several times, a set of qualified projections  and the set 

of their positions  can be obtained. Such a set of qualified 

projections  will be likely the enriched conserved patterns in 

planted motifs. We can refine a set of potential motifs from  

and . For each potential motif, a profile probability is 

associated, which is defined as 

 

 is the probability on the th position being certain 

nucleotide in these qualified projections. The refined potential 

motifs associated with significant profile probabilities (greater 

than a threshold ) are chosen to make up a qualified motifs 

set . An example of refining qualified motifs from qualified 

projections is given in Fig. 1, in which  

, ,  are qualified 

projections with , ,  

,  and . Two 

qualified motifs  and  

 are obtained according to the threshold  

3.2 Immune genetic algorithm 
Immune genetic algorithm (IGA) is a modified genetic 

algorithm, which is inspired from the biological evolution and 

immune function. In IGA, by evolution mechanism, the whole 

population can achieve a significant fitness score, and by 

immunization mechanism, adaptability of the individuals can 

be improved through the effect of the vaccine. In immune 

systems, concentration regulation mechanism is also used to 

keep the diversity of population.  The flowchart of IGA is 

shown in Fig. 2. 
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Fig. 2: The flowchart of IGA  

3.3 Detecting motifs by MRPIGA 
We propose an improved IGA, called MRPIGA, to detect 

motifs, in which the modified random projection strategy 

introduced in Section 3.1 are used to generate a good initial 

population and antigens are taken as target fitness function 

and antibodies as solutions. As classic IGA, the concentration 

mechanism is applied to maintain population diversity and 

vaccine mechanism is used to inhibit degeneracy during the 

evolution of generations in MRPIGA.  

In motif detecting problems, motif can be represented as a 

Position frequency matrix (PFM) by aligning the motifs. By 

 and , we denote motif and background PFMs, 

respectively. The fitness of an antibody  can be defined as:  

 

in which  and  are  scores on matrixes  and 

, respectively. The  score on certain PFM is  

  

where  is the normalized frequency of nucleotide  on 

column  of a matrix PFM,  is the frequency of the same 

nucleotide in background sequences and  is the length of 

motifs. The affinity of an antibody  with the antigen is 

defined as , where  is the 

antibody population. For two PFMs,  and , we define a 

scoring function for column-to-column comparisons:  

, 

where and  are the values of nucleotide  in the 

compared pair of columns in two different PFMs. The affinity 

of antibodies  and  is , where  is the total 

score of all positional comparisons of  and , and  is the 

length of the antibody. The value of  ranges from 0 to 1, 

with value 0 indicating total dissimilarity and value 1 

indicating complete similarity. The concentration of an 

antibody is the ratio of similar antibodies to the antibody. 

With the evolution of individuals, the diversity of the 

population decreases due to the increasing concentration of 

antibodies which are associated with higher fitness scores. By 

genetic operators, we can choose antibodies associated with 

high concentration in low probability. The concentration of an 

antibody  is  with 

 

where  is the similarity between antibody  and , and  

is a predefined threshold. Based on the concentration of the 

antibody , its selection probability is defined as:  

, 

where  and  are two predefined thresholds.  It is not hard to 

find that the higher value  of the antibody  is, the lower its 

selection probability is, and also the larger the fitness of the 

antibody  is, the higher its selection probability is. 

According to the selection probability, we can select 

antibodies with high fitness and low concentration to improve 

the diversity of the population during evolution. 

The MRPIGA starts with the initial population generated from 

the qualified motifs set , and performs genetic operators, 

mutation and crossover with probabilities  and , on the 

selected antibodies to generate new population. In MRPIGA, 

immune operators are also used. When new population is 

generated, the immune operator, called vaccine mechanism, is 

used to inhibit the degeneracy of the new population. The 

immune operation is completed in two steps: a vaccination (to 

increase the fitness) and an immune selection (to prevent the 

degeneracy of the population).  MRPIGA is capable of fast 

convergent to the best solution of the motif, and its pseudo-

code is described as follows.  

Algorithm MRPIGA 

Input:  

 

Output: The best individual of antibody 

1: ,  

2: for  to  do 

3:  generated at random 

4:      for  to  

5:           for  to  

6:             th subsequence with length  in  

7:             appearing more than  times 

8:             

9:            end for 

10:     end for 

11: end for 

12: for  to  do 

13:     Refine a set of potential motifs from  and  

14:    qualified motifs with profile probability greater 

than  

15: end for 

16: Generate initial population of antibodies  from  

17: Perform antigen recognition in  

18: Evaluate individual affinity  

19: Update the information to recognize antigen 

20: while the stop criteria is not satisfied do  

21:     Evaluate the concentration of any antibody  by   

22:     Evaluate the fitness of any antibody  by   

Check If Stop  
Criteria is Satisfied 

Yes Output the 
Best Individual 

End 

Evaluate Individual Affinity 

Generate Initial 
Population 

Evaluate Individual  
Concentration 

Perform Genetic Operators 

Abstract Vaccine 

Vaccination 

Immune Selection 

No 

Antigen 
Recognition 

Update 
Information  
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23:     Perform tournament selection according to  and  

24:     Perform mutation operators in probability  

25:     Perform crossover operators in probability  

26:     Generate a new generation 

27:     Abstract vaccine from the new generation 

 28:    Do the vaccination operation 

29: end while 

30: return the best individual 

 

In algorithm MRPIGA,  is the length of motifs;  is the 

number substitutions in motifs;  is the length of projection; 

is the length of background sequences;  are 

the  background sequences;  is the number of iterating 

times to generate projections;  is the threshold to select 

qualified projections;  is the threshold of profile probability 

to select qualified motifs;  and  are PFMs of 

motifs and background sequences;  and are probabilities 

associated with mutation and crossover operators;  and  are 

thresholds used to calculate the selection probability  of an 

antibody .  stores qualified projections,  stores positions 

of qualified projections,  stores qualified motifs, and  

denotes the initial population generated from . 

Line 1 initializes the set of  and  to be empty set. Lines 

2-11 literately choose  positions at random for  times. The 

obtained qualified projections are stored in , and their 

positions are stored in . Lines 12-15 refine a set of potential 

motifs. The ones with significant profile probability (greater 

than ) are chosen as qualified motifs and stored in . Line 

16 generates a initial population  from . Lines 17-19 find 

antigen in  and evaluate affinity of each individual. Based 

on the evaluation, the information to recognize antigen is 

updated. Line 20 checks if the stop criterion is satisfied. If so, 

then the algorithm stops and returns the best individual. If the 

stop criterion is not satisfied, then lines 21-28 do the evolution 

process. It firstly evaluates the concentration and fitness of 

each antibody, and then performs genetic operators, mutation 

and crossover, on the significant ones to generate a new 

population, from which vaccine is abstracted. After doing the 

vaccination operation, it jumps to line 20 to check if the stop 

criterion is satisfied to determine whether to do the while loop 

or not. 

4. RESULTS 

4.1 Experiments results on simulated data 
We test MRPIGA on a specific class of the planted -

motif problems, weak signal motifs problems. 20 background 

sequences with length 600 are randomly generated as the 

input instance, as well as an -mer consensus  is generated 

at random. The consensus  is randomly planted in each 

background sequence with  positions of substitutions chosen 

at random. The length of projection is . Projections 

appearing greater than  times are selected as qualified 

ones. The potential motifs with profile probabilities bigger 

than  make up the set of qualified motifs . The 

probabilities of genetic operators crossover and mutation are 

 and , respectively. The threshold values 

are  and .   

For different instances of the weak signal  -motif 

problems, we choose distinguish , which are shown in the 

last column of Table 2. For small scale problems,  is 

associated with smaller value. This is due to the fact that if we 

use large  in small scale problems, the noise from 

background sequences will cover the genetic information in 

qualified potential motifs. It can make initial population of the 

IGA have no difference comparing with randomly generated 

initial population. But for large scale problems, we should use 

large  to strengthen the genetic signal in those qualified 

potential motifs to give a good start for IGA to improve its 

performance.  

Let  be the set of known motif positions in the instances, 

and  be the set of predicted positions obtained by motif 

detecting algorithms. By , we denote the 

performance coefficient (PC). We run MRPIGA for 50 times 

for each weak signal motif problem (WSMP), and take the 

average value of PC over all 50 times. The average value of 

PC of Random Projection (RP), GARPS, MDGA and 

MRPIGA are shown in Table 2, where the corresponding 

results of Random Projection, GARPS and MDGA can be 

referred to [3,13,14]. 

Table 2. Experimental results on simulated data 

 

 As indicted in the column “MRPIGA (PC)” in Table 2, 

MRPIGA achieves superior performance coefficient (PC) to 

Random Projection, GARPS and MDGA to solve several 

instances of weak motif problems, except for (11,2) and (19,6). 

Although Random Projection and GARPS performs better 

than MRPIGA to solve (11,2) and (19,6) problems, MRPIGA 

can also achieve significant accuracy rates. 

IGA is known to detect motifs well for its global searching 

strategy, and can avoid trapping in local optimal solution. By 

using the modified random projection method, we can 

generate a better initial population for IGA to improve  its 

performance in detecting motifs.  

4.2 Experimental results on real data 
We use MRPIGA to detect realistic biological motifs from a 

test set of DNA sequences, which has been used to test 

existing algorithms [17].  We detect realistic biological motifs, 

preproinsulin, DHFR, metallothionein, c-fos, and Yeast ECB 

by MRPIGA. These motifs have been experimentally detected 

in laboratories. The problems of detecting realistic biological 

motifs are firstly reformulated as corresponding -motif 

problems, and then we use MRPIGA to detect these biological 

motifs. The obtained motifs are the same as the motifs 

published in [17]. The results are shown in Table 3.  

WSM

P 

RP 

(PC) 

GARPS 

(PC) 

MDGA 

(PC) 

MRPIGA 

(PC) 
 

(10,2) 0.82 0.906 0.876 0.945 50 

(11,2) 0.91 0.992 0.921 0.988 50 

(12,3) 0.81 0.805 0.762 0.861 100 

(13,3) 0.92 0.963 0.870 0.969 100 

(14,4) 0.77 0.873 0.798 0.904 600 

(15,4) 0.93 0.947 0.904 0.950 200 

(16,5) 0.70 0.725 0.688 0.734 600 

(17,5) 0.93 0.947 0.879 0.955 600 

(18,6) 0.74 0.814 0.800 0.837 600 

(19,6) 0.96 0.994 0.866 0.976 600 
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5. FINAL REMARKS 
In this work, we introduced an improved immune genetic 

algorithm to detect motifs, in which to avoid the defect of 

randomly generating initial population, a modified random 

projection strategy is proposed to provide a good initial 

population for further refine. The algorithm is called 

MRPIGA. In MRPIGA, by evolution mechanism, the whole 

population can achieve a significant fitness score, and by 

immunization mechanism, adaptability of the individuals can 

be improved through the effect of the vaccine. We test 

MRPIGA on several instances of weak motif detecting 

problem. MRPIGA achieves superior performance coefficient 

to Random Projection, GARPS and MDGA, except for 

instance (11,2) and (19,6). MRPIGA can also achieve 

significant accuracy rates to solve them. In realistic biological 

data test, we use MRPIGA to detect biological motifs, 

including preproinsulin, DHFR, metallothionein, c-fos, and 

Yeast ECB, which have been successfully determined in 

laboratories. MRPIGA performs well in detecting realistic 

motifs, obtains the same motifs as published in previous 

literatures.

Table 3. Experimental results on realistic biological data 
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Motifs Detected Planted Motif Published Motif 
-motif  

problem 

preproinsulin   (16,3) 

DHFR   (12,2) 

metallothionein ACAC  RCY  (19,4) 

c-fos   (10,2) 

Yeast ECB   (13,3) 


