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ABSTRACT 

Recombination is a binary operator in the set X of all 

chromosomes, i.e., it is a function R : X × X  P ( X ) , the 

power set of X.  This notion of recombination induces a 

closure operator given by       Cl ( A ) = { R ( x ,  y ) :  ( x , y ) 

 A × A }. However the neighbourhood structure so induced 

is not in general a topological space. In this paper we have 

attempted to study the recombination space in fuzzy setting by 

assigning possibilities to each offspring under the 

recombination operator. We have shown that a fuzzy 

pretopology is naturally generated in the recombination set. 

We have studied two unequal crossover models viz. 

unrestricted and restricted in this setting. We have further 

observed that both the models are incompatible with metric 

measures.  
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1.   INTRODUCTION 

All living organisms consist of cells. In each cell there is the 

same set of chromosomes. Chromosomes are strings of DNA 

and serves as a model for the whole organism. A chromosome 

consists of genes, blocks of DNA. Each gene encodes a 

particular protein. Basically it can be said, that each gene 

encodes a trait, for example colour of eyes. Possible settings 

for a trait (e.g. blue, brown) are called alleles. Each gene has 

its own position in the chromosome. This position is called 

locus. Complete set of genetic material (all chromosomes) is 

called genome. Particular set of genes in genome is called 

genotype. The genotype with later development is the base for 

the organism's phenotype, its physical and mental 

characteristics, such as eye colour, intelligence etc. Natural 

selection acts on genetic variation that comes from two 

principal sources: mutation and recombination. In 

recombination DNA molecules interact with one another to 

bring about a rearrangement of the genetic information or 

content in an organism. In eukaryotic system, the process that 

is responsible for chromosomal crossing-over during meiosis, 

which leads to offspring's having different combinations of 

genes from those of their parents. The frequency of 

recombination is actually not the same for all gene 

combinations. One may say that recombination is greatly 

influenced by the proximity of one gene to another. If two 

genes are located close together on a chromosome, the 

likelihood that a recombination event will separate these two 

genes is less than if they were farther apart. Genetic linkage 

describes the tendency of genes to be inherited together as a 

result of their location on the same chromosome  

Mathematical recombination is based on the notion of 

recombination function  R : X × X→P(X). The recombination 

set consist of all the possible offspring that are obtained by 

recombining two parents chromosomes say x and y using a 

given family of cross-over operators. This can be formalized 

by a weaker topological structure, known as neighbourhood 

space, which satisfies basic axioms of it under the closure 

operator [5]. A new way of constructing recombination spaces 

is introduced and the topological features of the resulting 

hypergraphs are analyzed in [8]. It is shown that types, which 

are neighbours in the point mutation space, are also 

neighbours in the recombination space, i.e. mutation and 

recombination spaces are homomorphic. This implies that the 

shapes of the fitness functions explored by mutation and 

recombination are similar. However, the potential of one-point 

and two-point recombination operators to explore the fitness 

landscape may differ dramatically from uniform 

recombination operators or mutation operators because of the 

limited number of recombinant types they can produce. In the 

classical model of  the recombination sets are considered as a 

sub-basis of the neighbourhood filters and construct the 

coarsest pretopology in which the recombination set are 

neighbourhoods and by adding the intersections of any finite 

number of recombination sets to the basis[6]. The structure of 

recombination space arising from few unequal cross-over is 

modeled in the context of pretopological space. On the other 

hand different possibilities of the recombinants (offspring) 

suggest a fuzzy version on the set of all chromosomes. In this 

paper we have outlined a general method to study the fuzzy 

topological features induced by recombination processes, 

where each offspring under fuzzy recombination operator 

posses some possible values. The main advantage of a fuzzy 

topological approach proposed here is that the tools can be 

applied to more and more general cases of recombination 

mechanism. We have discussed some theorems and 

definitions arising in fuzzy recombination set. We have shown 

that a fuzzy pretopology naturally arises in the recombination 

set of two crossover models viz. unrestricted unequal 

crossover and restricted unequal crossover and observed that 

both the models are incompatible with a fuzzy metric 

measure. 

2.  RECOMBINATION SETS 

The abstract definition of recombination spaces is based on 

the notion of the recombination functions R : X  X   P ( X ). 

Given a pair of parental chromosomes x and y the 

recombination set R ( x , y ) consists of all chromosomes that 

can be obtained by recombining x and y using a given family 

of crossover operators. Consider the following properties: 

http://web.mit.edu/esgbio/www/mg/meiosis.html
http://en.wikipedia.org/wiki/Genetic_linkage
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(X1)  { x  ,  y }      R ( x  ,  y ) , 

(X2)   R ( x  ,  y )  =  R ( y  ,  x ) , 

(X3)   R ( x  ,  x )  =  { x } , 

(X4)   For all  z  R ( x  ,  y ) holds  R ( x , z ) ≤  R ( x ,  y )  

The first condition is only for notational convenience. The 

second condition is a simple symmetry requirement. The third 

says that no new types are created from a single type by 

recombination and the fourth condition defines the topological 

implications of recombination. It essentially says that 

recombinants are more "similar" to the parental types than the 

two parental types. This is the idea that recombinants are 

mixtures of the two parental types. Furthermore this condition 

says that the more "similar" two types are, the fewer types can 

be created by recombination. 

A generalized recombination structure satisfies (X1) and (X2). 

The proper recombination structures of homologous crossover 

satisfy also (X3) and (X4) [8]. Recombination functions are 

considered as transit functions or P- structures if it satisfies    

( X1) , (X2) , (X3) [7]. It seems natural to interpret R ( x ,  y ) 

as neighbourhoods of  x  for each   y  X.  By (X1) we have   

x  R ( x  ,  y )  for all  x  ,  y . Thus the recombination sets 

form a neighbourhood basis if and only if for all  x ,  y ,  z  

there is a  v  such that 

 

R ( x , v )  R ( x , y)   R ( x  ,  z )                  (1) 

 

In general this condition will not be satisfied. We may, 

however, consider the recombination sets as a sub-basis of the 

neighbourhood filters and construct the coarsest pretopology 

in which the recombination sets are neighbourhoods by adding 

the intersections of any finite number of recombination sets to 

the basis. In the case of finite genome sets  X   there is always 

a smallest neighbourhood N ( x ), i.e., a minimal element of 

the neighbourhood basis. This is true in general if the 

neighbourhood filters have a finite basis, i.e., in Alexandroff 

spaces. Provided  X  is finite we can extract the vicinities 

directly from the (sub) basis of recombination sets: 

 

N ( x )  =   x  X  R ( x ,  y )                              (2) 

 

If  X  is infinite, however, the vicinity N ( x ) defined in the 

Equ. (2) need not be a neighbourhood of  x  in general. The 

intersection of a finite number of neighbourhoods of course is 

again a neighbourhood. Equ.(2) however defines 

neighbourhoods if the size of the recombination sets R ( x ,  y ) 

is bounded. The closure operator associated with a 

recombination function was introduced in  [3, 6]  as 

 

Cl ( A )  =  { R ( x ,  y )   :  ( x ,  y )    A × A }             (3) 

 

The closure operator in (3) defines a neighbourhood space, 

which is not  sub-additive in general.   

 

 

3. FUZZY SET AND FUZZY TOPOLOGY 

In this section we discuss some preliminaries on fuzzy sets[2] 

and fuzzy topology[3] that will be required in the sequel. 

Further we propose some new notions.  

Fuzzy (sub)sets are generalization of classical (sub)sets. In a 

classical subset an element of the universal set either belongs 

to the subset or not which can be identified by the 

corresponding characteristic function  A  :  X  { 0 , 1 } such 

that  A( x )  =  1,  if  x  A  and   A ( x )  =  0 , if x  A. Here 

the boundary of a fuzzy subset is not precisely defined and so 

an element of the universal set belongs to the fuzzy subset 

with some level of membership which can be identified by the 

membership function µA. In short fuzzy set expresses the 

concept of graded membership.  

Mathematically a fuzzy set  A  of a universal set  X  is a 

function 

µA
  :  X  →  [ 0 , 1 ] 

For each x  X ,  µA ( x ) is called the membership grade of x 

in A. For convenience the fuzzy subset as well as the 

corresponding membership function is represented by µ. 

Given two fuzzy sets A and B, their standard intersection         

A  B, standard union A  B  and standard complement  Ac  

are defined for all  x  X  by the equations  

          µ A   B  ( x )  =  min   [ µ A ( x )  ,   µ B ( x ) ]      

          µ A    B  ( x )  =  max  [ µ A ( x )  ,   µ B ( x ) ] 

          µ A
c  ( x )  =  1  µ ( x ) 

For infinite collection of fuzzy subsets, min and max are 

respectively replaced by infimum and supremum.  

A fuzzy set  A  is said to be contained in a fuzzy set  B ,  

denoted by A    B , if   

µ A  ( x )    µ B ( x )       x    X 

Definition 3.1 [1]   A  fuzzy  pretopology on a set  X  is 

described by an application  Cl  of I X into   I X, which verifies:  

P l   :   Cl (  )   =   , 

P2   :   Cl ( A )    A    for every    A    I X , 

(X , Cl) is then said to be a fuzzy pretopological space. 

Sometimes we suppose that  Cl  verifies some additional 

properties, for instance: 

Definition 3.2 [1] Let ( X ,  Cl ) be a fuzzy pretopological 

space, and let us consider the following properties: 

P 3   :    For every  A  and  B   I X,  such that  A    B   

we  have   Cl ( A )     C l ( B ) .  ( X  ,  Cl )   is  then said to 

be of type  I. 

P 4   :    For every  A  and  B   I X   

we have  Cl ( A  B )  =  Cl ( A )    Cl ( B ) .  ( X  ,  Cl )  is 

then said to be of type  D. 

P 5   :    For every A  I X we have 
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Cl 2 ( A )  =  Cl ( Cl  ( A ) )  =  Cl ( A ).  ( X  ,  Cl )  is said  to  

be  of  type  S. 

A fuzzy pretopological space which is of type  I ,  D ,  S  is a 

fuzzy topological space and  Cl  is its Kuratowsky closure. 

Definition 3.3  [1]  A  family  of  fuzzy  preneighbourhoods  

at  the  point    x    X   is a family B( x )  of fuzzy subsets  μ V  

which verify  μ V  ( x )  =  1. 

Definition 3.4 [1] Let  ( X  ,  Cl ) be a pretopological space. A 

family of fuzzy sets  B( x )  of  X  is called  preneighbourhood  

basis of   ( X  ,  Cl )  if it satisfies 

( i )    μ ( x )  =  1      μ   B( x ), 

( ii)  For   μ ,      B( x )        B( x )   :        μ   . 

Definition 3.5  [1]  Let    be an application of   I X  in to         

[ 0 ,  1 ] ,    is said to be a degree of non-vacuity ( it 

associates to every fuzzy subset a number which represents 

the fact that it is more or less void ) if it verifies:  

 

( i )       (  )  =  0 , 

( ii )      ( A )  =  1  if there exists  x  such that  μA  (x)  =  1 , 

( iii )    A    B  implies    ( A )     ( B ) . 

 

In particular   ( A )  =  sup  x  X   μA  ( x )  is the degree of 

non-vacuity.    If we define a fuzzy subset    of  X  such that   

  ( x )  =  inf     B ( x )     (   μ )  

Then we get a fuzzy closure  operator on X. This gives a 

connection between preneighbourhoods  and closure operator. 

Definition 3.6   [3]  A fuzzy point on a set X is a fuzzy subset 

of  X  that takes non-zero value at exactly one point of  X . If  

the  fuzzy  point  takes  non-zero  value   r  [ 0 ,  1 ]   at  the  

point  x    X, then it is denoted by  x r . 

Definition 3.7  A element  x  X  is said  to  belong  to  a 

fuzzy subset   μ   of   X  ( i.e.,  x    μ ) if   μ  ( x )    0 . 

There are different definitions of fuzzy metric [4]  in the 

literature. We propose a new one in this paper.  

Definition 3.8   A fuzzy metric d   on  X  is a classical metric 

on X  ( the set of all fuzzy point of X  ) ,  satisfying  the extra 

condition   d ( x r  ,  y s )  =  d   (  x s  ,  y r ) . 

Example 3.1 If  d  be a metric defined on a set  X , then a 

function  d   :   X  × X     [ 0 ,  ) defined as 

d  ( x r  ,  y s )  =  d ( x ,  y ) + | r – s | 

 is a fuzzy metric on  X .  

 

( i )  d ( x r  ,  y s )    0 ,       x r  ,  y s  X ,  Since  

          d   ( x  ,  y )      0  and  | r – s |     0     x  ,  y    X . 

( ii )  d ( x r  ,  y s)  =  0  

                                d ( x  ,  y)  + | s – r |  =  0           

                                 d ( x  ,  y )  =  0  and  | r – s |  =  0     

                               x  =  y  &  r  =  s       x r  =  y s , 

( iii )    d ( x r  ,  y s )    =   d ( y s   ,  x r )       x r  ,  y s    X          

 Since,  d ( x r  ,  y s )   =   d ( x  ,  y ) + | r – s |  

                                     =  d ( y  ,  x )  +  | s – r |    

                                     = d ( y s  ,  x r ) 

( iv )  Let us consider x r ,  y s ,  z t  are three fuzzy points on  X,  

then  

 d ( x r  ,  z t )  +  d ( z t  ,  y s )   

                       =  d ( x ,  z )  +  | r – t |  +    d ( z ,  y )  +  | t – s |               

                         d ( x ,  z )  +  d ( z ,  y ) + | r  t + t s |       

                          d ( x ,  y ) + | r – s | 

                       =  d  ( x r  ,  y s ) 

 d ( x r  ,   z t )  +  d ( z t  ,  y s )     d ( x r  ,  y s )  

Hence, d  this is a fuzzy metric on  X. 

Definition 3.9   Let  d   is a fuzzy metric on  X , let for  x  X  

and      0  

B ( x r  ,    )  =  {  y s   :    d  ( x r  ,  y s )      } 

B( x r  ,    )  =  {  y s   :     d  ( x r  ,  y s )  ≤    } 

 

are called open and closed ball with centred at x & radius  

respectively. These two balls can be looked upon as fuzzy 

subsets of X with the membership functions given by 

    B ( x r  ,   ) ( y )  =  sup {  s   :    d  (  x r  ,  y s )      } and 

B( x r  ,   ) ( y ) =  sup {  s   :   d  (  x r  ,  y s )  ≤    }. 

If  d  is a fuzzy metric on X , then the fuzzy topology induced 

by  d  is define by the neighbourhood  basis    

B ( x )   =  {  B  (  x ,    )    :          0  }  for each   x   X. 

Definition 3.10 A fuzzy pretopological space is said to be 

weakly metrizable if there is a fuzzy metric    

d : X × X  [ 0 ,  ) and  set  A ,  A  ( 0 ,  ) such that 

B ( x )  =  { B ( x ,   )  :     A } { B ( x ,    ) :     A }, 

is a fuzzy preneighbourhoods basis of  X , where B ( x ,    ) 

and B ( x ,   ) are open and closed ball respectively. 

Definition 3.11  A fuzzy topological space is called To  space 

if for all  x    y         B ( y ) such that  x      i.e.,   ( x ) 

= 0  or          B ( x ) such that  y      i.e.,   ( y )  = 0 . 

Definition 3.12 A fuzzy topological space is called  T1  space 

if for all  x   y      B ( y ) such that  x    i.e.,  ( x )  = 0. 

It is clear from the definition that   T1   implies  T o . 

Definition 3.13 A fuzzy topological space is called  R o  , if for  

x            implies   y           i.e., 
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        ( x )    0  implies         ( y )    0  for all  x  ,  y  X.  

[  Here, the fuzzy sub set { x }  takes the value 1 only at the 

point   x  and  0 at  all other points ] 

Theorem 3.1 A weakly metrizable fuzzy pretopological space  

X  is   R o . 

Proof  :   Since  X  is weakly metrizable pretopological space   

    A  ,  A   ( 0 ,  )  such that    

B ( x )  = { B ( x ,   ) :    A }  { B ( x ,    ) :     A }, 

Let   x                    ( x )    0  

  inf    B ( x )    ( y1  )    0 

  inf    B ( x )     ( y1     )     k ,   

 where    0     k     k   =  inf     B ( x )    ( y1    ) 

   ( y1     )    k              B ( x )  

  sup  u  X  ( y1     ) ( u )    k               B ( x ) 

  sup  u  X  ( y1 ( u )     ( u )    k            B ( x )   

  y1 ( y )     ( y )    k           B ( x )   

[  if  u    y ,   y1 ( u )   =  0   so  u  =  y ] , 

   ( y )    k            B ( x ) ,      since  y1  ( u )   =  1 

  B ( x ,   ) ( y )    k        A  or  

 B ( x ,   ) ( y )  k             A 

Therefore for each   A  or    A   at least one  

 s    k : 
sy


    B ( x ,    )  or     B  ( x ,   )  such that 

d  ( x , 
sy


)         A  or d  ( x , 
sy


 )  ≤      A  

  d  ( y ,  )              A   or 

 d (  y ,  )               A  [  From  Def.  3.6   ] 

  B  ( y ,   ) ( x )    s      A  or   

 B( y ,   ) ( x )    s       A 

  B ( y ,   ) ( x )    k         A   or   

B ( y ,   ) ( x )    k         A  [   since   s   k   ]  

   μ ( x )     k           μ    B ( y )            

   x1 ( x )    μ ( x )    k            μ  B ( y ) 

   sup u  X  { x1 ( u )    μ ( u ) }     k            μ   B ( y ) 

   sup  u  X  (  x1    μ ) ( u )     k                μ    B ( y ) 

   ( x1    μ )      k                        μ    B ( y ) 

  inf   (  x1    μ )     k                        μ    B ( y ) 

  inf   (  x1    μ )    0                    μ    B ( y ) ,          

 

         

               [since  0    k] 

        ( y )    0    y         

Hence the fuzzy pretopology is   R o. 

Theorem 3.2   If  X  be a fuzzy pretopological space then, 

( i )  X is T1 if and only if            = { x }   for all   x  X , 

( ii )  T1  implies   R o . 

 Proof: ( i )  

 Let   y                     ( y )    0     

 inf   ( x1     )    0        B ( y ) 

  ( x1  )    0       B ( y )   

  sup  uX   { (  x1     ) ( u ) }   0       B ( y ) 

  sup  uX  { x1 ( u )     ( u ) }    0        B ( y ) 

   x1 ( x )     ( x )    0        B ( y )     

[  if   u     x ,   x1 ( u )  = 0 ,   so u = x  ] 

    ( x )    0        B ( y ) 

which is a contradiction, since, X is T1,       B ( y ) such 

that x    i.e.,   ( x )  =  0. Consequently         = {x}.  

 Conversely, 

Let        = {x}   x    X , 

For  x     y  we have  {x} ( y )  =  0  

        ( y )  =  0 

 inf   ( x1     )  =  0        B ( y ) 

 inf   [ sup  u    X  { (  x1    ) ( u ) } ] = 0        B ( y ) 

 inf   [ sup  u    X  { (  x1( u)    ( u) } ] = 0     B ( y ) 

 inf    [  ( x )  ]  =  0        B ( y ) 

   ( x )  =  0        B ( y ) 

therefore       B ( y ) such that  x  .  Hence it is   T1 . 

( ii ) Since,  X  is  T1  

             =  { x }           x    X. 

 Now,   y                y  { x }    { x } ( y )    0     

   x  =  y    x         .   Hence  X  is R o . 

 

4.   FUZZY PRETOPOLOGY IN 

RECOMBINATION SPACE 

In general the entire recombinants yield from recombination 

event has different possibilities. If we assign some values of 

possibilities to each recombinant then the recombination set 

can be looked upon as a fuzzy set. We denote the fuzzy 

recombination set obtained from two chromosomes x and y by 

sy


sx


sx

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μ x y . The set  μ x y  consists of all possible recombinants 

between chromosomes with x and y numbers of gene copies 

with different grade of membership. If X denotes the set of 

chromosomes then the recombinant set corresponding to a pair 

( x  ,  y ) is a membership function  

μ x y  :  X →  [ 0  ,  1] 

Here, the fuzzy subset μ x y can be considered as a fuzzy pre-

neighbourhood of  x  as well as  y for each  x  ,  y    X  by 

considering   μ x y ( x ) = 1   and   μ x y ( y ) = 1   respectively.  

The concept of fuzzy pretopology on the set of chromosomes 

can be obtained from the closure operator defined by 

Cl ( μ ) ( x )  =  inf   B ( x )    (    μ )                 (4) 

where,  μ  is an arbitrary fuzzy subset on  X  and  B ( x ) is the 

set of all fuzzy preneighbourhood  x. This closure function 

satisfies following conditions   

( i )    Cl (  )  =  

( ii )   Cl ( μ )    μ  

( iii )  If  μ     then   Cl ( μ )    Cl (  ).      

Hence the fuzzy recombination set and the fuzzy closure 

defined in (4) satisfies the basic axioms of the type-I fuzzy 

pretopology, so we have a fuzzy pretopology on the set of all 

chromosomes.  

4.1 Unrestricted Unequal Crossover 

In the unrestricted unequal crossover model [6] an extreme 

form of unequal cross over is assumed that a crossover may 

happen with equal probability at all possible intergenic 

regions  as well as at both ends of the gene cluster. Each 

possible crossover event produces two recombinant 

chromosomes. In most of the cases the recombination events 

will yield chromosomes with different number of gene copies 

than the original ones. The recombination set R ( x  ,  y ) 

consists of all possible recombinants between chromosomes 

with  x  and  y  copies of gene i.e.,  R ( x ,  y ) = { 0 ,  1 ,  …  ,  

x + y }, where  N ( x ) =R ( x ,  0 ) = { 0 ,  1 ,  …  ,  x  } 

represents the smallest neighbourhood. In the fuzzy 

pretopological model we can consider each element of           

R ( x  ,  y )  having different possibilities of occurrence..  

Let us now consider  x  y  and  x  y  be two unequal 

chromosomes, then support of all preneighbourhoods of  y 

contains the elements of  R ( y , 0 ) with different possibilities, 

which also contains  x . There does not exist any such 

preneighbourhood of   y   which does not contain  x . So the 

space is not T1. Theorem 3.2 implies that it is not Ro. Finally 

we can conclude form the Theorem 3.1 that the unequal 

unrestricted crossover space is not weakly fuzzy metrizable  

space. Hence this space is incompatible with fuzzy metric.  

4.2. Restricted Unequal Crossover 

In restricted unequal crossover model the number of gene-

copies changes by at most one compared to the parental 

chromosome numbers. The recombination sets for this model 

are 

 

 

 

 

R ( x ,  y )  =  {  x  1  ,  x  ,  x  + 1 }  { y  1  ,  y  ,  y  +  1 }     

                      if   x  ,  y   1 

 R ( x ,  0 ) =  {  x  1  ,  x  ,  0  ,  x  + 1 }     if   x    1 

 R ( 0 , 0 )  =  { 0 }  

 

In this case  x  and  x  1  are two distinct chromosomes. The 

support of all preneighbourhoods of x contains all the element 

of  R ( x ,  0 ) ={ x  1,  x ,  0 ,  x  1 }, which contains x  1. 

Therefore there does not exist any such preneighbourhood of  

x which does not contain  x  1. In a particular  case  support  

of  all  the  preneighbourhoods  of  1  contains all the element 

of   R ( 1 , 0 ) = { 0 , 1 } which contains 0. Therefore no such 

neighbourhood of  1 exist which  does not contains 0. So, the 

space is not T1.   Once the space is not T1 , it is not  Ro. Which 

gives the fuzzy pretopological space is not weakly metrizable 

and incompatible with fuzzy metric.  

5. CONCLUSION 

The main conclusion of our discussion is that a fuzzy 

pretopological notion is naturally generated in recombination 

space. We have seen that a fuzzy pretopology is uniquely 

determined by fuzzy closure operator defined on the set of all 

fuzzy subset of all chromosomes. Each fuzzy recombination 

set is treated as a fuzzy preneighbourhood of each of its points 

which determines the recombination set. The concept of non-

vacuity is introduced to construct fuzzy closure of all fuzzy 

subsets on the recombination space. Weakly metrizable fuzzy 

pretopological space is defined to study the compatibility of 

metric in the fuzzy recombination set specially for the two 

crossover models namely unrestricted unequal crossover and 

restricted unequal crossover with few separation axioms and 

proofs in fuzzy environment, which eventually  shows the 

models are incompatible with fuzzy metric distance defined 

on it. 
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