
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.13, April 2012

27

Software Reliability Estimation Models: A Comparative

Analysis

Feroza Haque Sanjay Bansal
Amity University Amity University

Noida, India Noida, India

ABSTRACT

Software reliability is the ability of the software to perform its

specified function under some specific condition. Reliability

can be associated with both hardware and software. The

hardware reliability can easily be evaluated since hardware

get wear out but in case of software it be very difficult. In fact

we can‟t determine or predict the actual reliability of the

software by using some specified parameter. The paper

summarized the performance of different reliability models

till been designed and also reflect the different relationship

that exist between different parameters.

The paper will also introduce the concept of neural network

which is been considered as one of the efficient technique

been used for estimation or prediction. Generally

unsupervised learning technique is been used for generalizing

new optimizing technique. So if we use neural network for

calculating the software reliability then it may be possible for

us to predict the reliability more effectively.

General terms: Neural network, reliability, Exponential

model, Logarithm model.

Keywords: Reliability, Reliability Model, Estimation, Neural

Network

1. INTRODUCTION
Software reliability is basically defined as the probability of

the software system to complete the assigned function in the

given environment for a defined set of input cases

[3].Software reliability study is important for any software

development process because it will result in an efficient

system designing technique. Software reliability deals with

the rate of failure of a software system under some set of

condition over a specific time interval. We also consider the

non functionally factor ie customer specification while

evaluating the reliability. The software reliability can be

defined by the following characteristic:

 Correctness

 Consistency and precision

 Robustness

 Simplicity

 Traceability

Software reliability is one of the important factor been

considered while ensuring the software quality. In simple term

we can say that software reliability deals with the failure or

faults that exist in the system [5]. Failure and fault are two

different factors which are generally inbuilt in our software

during the development phase. Fault can be said as an error or

bug which are introduced during the development phase.

Failure occurs due to the presence of one or more than one

fault over a period of time. Failure can be said as in-

operational phase of a software system. Generally it has been

seen that as execution time increases the failure rate

decreases. A quantitative understanding of software quality

and the various factors influencing it and affected by it

enriches into the software product and the software

development process. This is used to monitor the operational

performance of software and to control new features added

and design [2].

Fig1: Software reliability curve

Neural Network is a technology generally been used for

optimizing problem. Neural network is a collection of fast

processing and computing nodes called artificial neurons. This

neurons are designed on the basis of study of the behavior of

biological neuron. These neurons are connected in a specific

manner that is layer like structure known as neural network

architecture.

Neural network is an output based computing technique. The

output of the system should be predicted previously based on

that we have to design our neural network. The system is also

trained, if it is not capable of achieving its target or desired

output. For the purpose of training we use different learning

technique which are broadly classified as supervised and

unsupervised learning [1].

The survey been conducted in this paper is summarized in

different section. In first section we have introduced basic the

concept of software reliability and neural network. In the

second section of the paper we will introduced the software

reliability model till been designed and the criteria been used.

In the third section of the paper we will discuss the neural

network architecture, basic properties and learning technique.

And in the last section of the paper we will propose a model

based on the previous study.

F
ai

lu
re

 i
n
te

n
si

ty

Time

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.13, April 2012

28

2. SOFTWARE RELIABILITY MODEL
Software reliability is the quantitative analysis of any software

been designed since it directly affect the quality of software

[2]. To have good software we need of effective software

reliability model. The reliability model till now been designed

are based on the study of failure associated with the code and

the environment where it is been implemented [18] .All the

software reliability models are designed on the basis of

execution time and calendar time. Execution time of any

program is the time that is actually required or spent by the

processor in executing the instruction of that

program[2].Calendar time is referred as the elapsed time from

start to end of program execution on a running computer.

2.1 Basic Execution Time Model
This model is based on the NHPP distribution of failure.

According to Non Homogenous Poison Process(NHPP) , the

real world events may be described as NHPP[10]. This model

is used to estimate the reliability of both hardware and

software[1]. The NHPP model calculates the cumulative

number of software failure occurred per unit of execution

time[4]. Suppose consider that

λ0 : initial failure intensity at the start of execution.

V0 : number of failure experienced in a program in a finite

time.

µ : average or expected number of failure experienced at a

given point.

Then the number of failure observed is given by

)0/1(0 V  …………………….(1.1)

The failure intensity per unit of failure can be calculated by

diffentiating the equation 1.1 and is given as

0

0

vd

d 



 
 ………………………..………(1.2)

The above expression is associated with a negative sign which

represent that the failure intensity is decreasing. The relation

between the failure time and mean execution time can be

shown by below figure.

 Fig 2: Curve representing the distribution of mean

failure

Fig3: Curve representing the relation between mean

failures with respect to Execution time

The failure experienced after λ time cab be calculated frm the

equation 1.1 and is given as

))0/0exp(1(0)(VV   ……………(1.3)

This above expression is useful for determining the present

failure intensity at any given value by diffentiating equation

1.3 , given as

)0/0exp(0)(V  ………………….(1.4)

Suppose consider that we have chosen a failure intensity

objective for a software product. We can easily calculate the

additional failure and execution time that we will required

while reaching our failure objective [1]. This is calculated on

the basis of the below figure.

Fig 4: Additional failure calculation

Where

λ0 : initial failure intensity λp : present failure intensity

λf : failure intensity objective

∆τ : expected additional execution time

 ∆µ : expected number of additional failure

)/ln(0/0

)(0/0

fpV

fpV








 ……………..(1.5)

2.2 Logarithmic Poisson Execution Time

Model
This model was again designed by JD Musa and is different

from that of the basic model because in this case the failure

intensity decreases exponentially whereas in case of basic

model it remains constant. The failure intensity function is

given by

)exp(0)(  ……………….……….(1.6)

F
ai

lu
re

 t
im

e

Mean

failure

λ0

V0

M
ea

n
 f

ai
lu

re
 e

x
p

er
ie

n
ce

d

Execution

time(τ)

λ
p

λ

λ
f

 µ ∆µ

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.13, April 2012

29

fig 5: Curve representing failure intensity

where  is the failure intensity decay parameter and this also

represent the relative change of failure intensity per failure

experienced. The failure intensity at a specific point of time is

given by obtaining the first order differentiation of equation

(1.6) ie

)exp(





d

d
 ………….….………..(1.7)

The number of failure experienced after a specific time is

given by

)10ln(/1)(  ………..…………(1.8)

and the failure intensity experienced after a specific time is

)10(0)(  t ……………………(1.9)

The comparison analysis of both the model can be shown by

using the below graph

Fig 6: Comparison between basic and logarithmic model

The relation for the additional number of failure and

additional execution time in this model is given by

)/1/1(/1

)/ln(/1

fp

fp








……………………..(1.10)

2.3 The Jelinski Moranda Model

The Jelinski Moranda Model is the one of the earliest and

probability the best known reliability model which is based on

the assumption that all failure has the same failure rate. It

means that the failure rate is a step function and the reliability

increase as the process continues. The proposed failure

intensity function is given as

)1()( iNt  …………..………………….(10)

where

φ= Constant of probability N= Total number of error

 i = number of interval found by time interval ti

This reflects that the failure intensity is directly proportional

to the number of error. So we can say that each error equally

effect the reliability of a software [6].

3. NEURAL NETWORK
The artificial neural network is designed on the basis of the

study of biological neural network. A human brain is

responsible for all the action and reaction taken by human

body. These actions are controlled by brain and are carried to

different parts of the body by a fast processing node known as

neurons. Similarly in case of artificial neurons also we have a

fast processing node responsible for performing the

computation and are known as Neurons[3]. A neural network

is a collection one to multiple neurons which are arranged in a

specific manner to perform the computation. The basic

structure of a neuron is represented in the given below figure

Fig 7: Structure of a Neuron

The model is designed for a set of input values and

corresponding desired output. Suppose consider that „I‟ is the

set of input values such that I={i1,i2…….in}and we associate

a variable parameter with it which controls the behavior of

neurons. Let us consider weights associated with the input as

the variable parameter such that W={w1,w2……….wn}.All

the input along with the weight is passed through the

summation unit where we compute the net input which given

by

Netinput = 

n

i
IiWi

1
 where n = number of input to the

network ……..(1.11)

 = i1*w1+i2*w2+i3*w3+…….+iiwi

We use different activation function to calculate the output.

In general we compare the net input with the threshold value

and if the net input value exceed the threshold value then the

model will produce an output. An example of activation

function is given below:

Y(output)= 1 if net input > Θ

 = 0 if net input <=Θ

These neurons are arranged in different layers to represent a

specific structure known as neural network architecture. For

designing a reliability model we will require a multilayer of

neurons. The neurons are arranged in three different layers

known as input layer, hidden layer and output layer. The multi

layer network is shown in below diagram.

Execution time(τ)

Basic model

M
ea

n
 f

ai
lu

re

F
ai

lu
re

 i
n
te

n
si

ty
 λ

0

Mean failure µ

Logarithmic,

model

 Θ

 Summation unit Threshold Unit

In
p
u

ts

o
u

tp
u

t

Weights

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.13, April 2012

30

Fig 8: A multi layer neural networks

4. RELATED WORK

4.1 AMRIT L. GOEL
A number of analytical models have been proposed during the

past 15 years for assessing the reliability of a software system.

In this work he has presented an overview of the key

modeling approaches, provide a critical analysis of the

underlying assumptions, and assess the limitations and

applicability of these models during the software development

cycle. He also propose a step-by-step procedure for fitting a

model and illustrate it via an analysis of failure data from a

medium sized real-time command and control software

system [7].

 4.2 SUNIL KUMAR KHATRI
The author in this paper has designed a Artificial Neural

Network which has been applied in calculating the software

reliability growth model [20]. Here the author has tried to use

the stochastic differential equation for the prediction

evaluation.The model has been validated, evaluated and

compared with other existing NHPP model by applying it on

actual failure/fault removal data sets cited from real software

development projects [19].
4.3 COBRA RAHMANI
The author has tried to design a neural network for calculating

the failure rate for the open source software on the basis of the

bug reported daily. The purpose of this study is to compare

the fitting (goodness-of-fit) and prediction capabilities of

three reliability models using the failure data of five popular

open source software (OSS) products. The failure data are

modeled by Weibull and two other Non Homogenous Poisson

Process (NHPP) models (Yamada S-Shaped and

Schneidewind)[8]. The OSS products considered are Eclipse,

Apache HTTP Server 2, Firefox, MPlayer OS X, and ClamWin

Free Antivirus.

4.4 SONA AHUJA
Here the author has used a new soft technique ie genetic

algorithm. GA is a method that deals with the evolution of

better result generation by generation [9]. The author has tried

to re-design the Jelinski- Moranda reliability [6] model by

using GA. They have re-scale all the parameters for better

result.

4.5 CHITRA S.
Here the author has presented a new method to deal with

defect density. The Neural Network-based Classification

Method (NNCM) was used to classify the data using record

set cyclomatic density and design density. The records were

preprocessed using normal distribution. The overall error in

the classification using NNCM after normal distribution was

found to be 0.38%. The reliability of classification with

goodness of fit measure results in and forms the subsequent

improvement of error classification among the dataset.

5. CONCLUSION
This paper gives a comparative analysis between the

reliability model designed based on the fault analysis

technique. Generally it has seen that the reliability is

evaluated on the basis of fault rate in some time. The main

purpose was to analysis and understands the different model.

Based on this study design a new estimation model which will

be capable of scaling the reliability of a software. In future we

are going to design a neural model for calculating the

reliability. A neural network is considered as an optimizing

technique which is used to scale the output. This paper

introduces the concept of neural model and its architecture.

6. REFERENCES

[1] “Neural Network, Fuzzy Logic , Genetic

Algorithm:Systhesis and application by S Rajshekharan

and GA Vijayalakhmi Pai”.

[2]”Software Engineering”By KK Agarwal and Yogesh

Singh.

[3] Musa JD “ Validility of the Execution time theory of

Software Reliability ”IEEE trans on Reliability R-283)

pp 181-191 Aug1979

[4] Belli F and Jedrcejowicz P “An approach to the reliability

Optimization of Software with Redundancy”IEEE trans

on software engineering.

[5] Y. S. Su, C. Y. Huang and Y. S. Chen, “An Artificial

Neural-Network Based Approach to Software Reliability

Assessment,” Proceedings of IEEE Region 10

Conference, Melbourne, 21-24 November 2005, pp. 1-6.

[6] Jelinski Z and Moranda “Software reliability research “in

statistical computer performance evaluation.

[7] A. L. Goel and K. Okumoto, “Time Dependent Error De-

tection Rate Model for Software Reliability and Other

Performance Measure,” IEEE Transactions on

Reliability, Vol. 3, 1992, pp. 206-211.

[8] A Comparative Analysis of Open Source Software

ReliabilityCobra Rahmani, Azad Azadmanesh and

Lotfollah Najjar College of Information Science &

TechnologyJOURNAL OF SOFTWARE, VOL. 5, NO.

12, DECEMBER 2010

[9] Jelinski – Moranda Model for Software Reliability

Prediction and its G.A. based Optimised Simulation

Trajectory Sona Ahuja, Guru Saran Mishra and Agam

Prasad Tyagi D.E.I. Dayalbagh, Agra, 2002, pp. 399-

404.

[10] S. Yamada and Y. Tamura, “A Flexible Stochastic Dif-

ferential Equation Model in Distributed Development

En-vironment,” European Journal of Operational

Research, Vol. 168, No. 1, 2006, pp. 143-152.

[11] Exploration for Software Reliability using Neural

Network-Based Classification method Chitra S,

Madhusudhanan B , Rajaram M International Journal of

Machine Intelligence, ISSN: 0975–2927, Volume 1,

Issue 2, 2009, pp- 10-13

[12] N. Karunanithi and Y. K. Malaiya, “The Scaling Problem

in Neural Networks for Software Reliability Prediction,”

Proceedings of the 3rd International IEEE Symposium of

INPUT LAYER
HIDDEN

LAYER

OUTPUT

LAYER

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.13, April 2012

31

Software Reliability Engineering, Los Alamitos, 7-10

Oc- tober 1992, pp. 76-82.

[13] N. Karunanithi, Y. K. Malaiya and D. Whitley, “Predic-

tion of Software Reliability Using Neural Networks,”

Proceedings of the 2nd IEEE International Symposium

on Software Reliability Engineering, Los Alamitos, 17-

18 May 1991, pp. 124-130.

[14] N. Karunanithi, D. Whitley and Y. K. Malaiya, “Using

Neural Networks in Reliability Prediction,” IEEE Soft-

ware, Vol. 9, No. 4, 1992, pp. 53-59.

[15] K. Y. Cai, L. Cai, W. D. Wang, Z. Y. Yu and D. Zhang,

“On the Neural Network Approach in Software

Reliability Modeling,” The Journal of Systems and

Software, Vol. 58, No. 1, 2001, pp. 47-62.

[16]S. A. Sherer, “Software Fault Prediction,” Journal of Sys-

tems and Software, Vol. 29, No. 2, 1995, pp. 97-105.

[17] T. M. Khoshgoftar and R. M. Szabo, “Using Neural Net-

works to Predict Software Faults during Testing,” IEEE

Transactions on Reliability, Vol. 45, No. 3, 1996, pp.

 [18] Eckhardth D.E et al “An experimental Evaluation of

Software redundancy as a strategy for improving

reliability” IEEE trans on software engineering

[19] P. K. Kapur, S. K. Khatri, M. Basirzadeh and N. Dembla,

“Modeling Software Reliability Growth in Distributed

Environment Using Artificial Neural-Networks,” In: S.

K. Khatri and B. Kumar, Eds., Proceedings of

International Conference on Reliability, Infocom

Technology and Op-timization, Faridabad, 1-3 November

2010, pp. 372-382.

[20] P. K. Kapur, S. K. Khatri and D. N. Goswami, “A Gener-

alized Dynamic Integrated Software Reliability Growth

Model Based on Neural-Network Approach,” Proceed-

