
International Journal of Computer Applications (0975 – 8887) 

Volume 43– No.12, April 2012 

21 

A Lagrangian Decomposition Model for Unit 

Commitment Problem 

 
S. Maheswari 

Department of Mathematics 
Sathyabama University 

Chennai – 119 

C. Vijayalakshmi 
Department of Mathematics 

Sathyabama University 
Chennai – 119 

 

ABSTRACT 

This paper designs an optimization model for Unit 

Commitment Problem (UCP) which is formulated as a Non 

Linear Programming Problem (NLPP) with respect to various 

constraints. The model can be solved by Lagrangian 

Decomposition (LD) problem and it is obtained by relaxing 

the constraints from NLPP using Lagrangian Relaxation 

Method. Generation scheduling is used to find the maximum 

demand utilized in the planning horizon by the minimum 

generation cost. It reveals the fact that Maximum profit can be 

achieved for power generating utility in order to supply the 

load in a reliable manner.  Based on the numerical 

calculations and graphical representations, the optimum value 

is obtained by the proposed model for electrical power system 

cycles.   
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1. INTRODUCTION 
In recent years, power demand has been increased because of 

raising population. So the electrical engineers are planning for 

efficient power utilization, operation and scheduling of 

generation in the power system. Any system whose supplying 

services to a large population experience as cycles.  For 

example transportation system, communication system and 

electrical power system. Particularly in electrical power 

system, the use of electric power has a cycle.  The total load 

on the system will generally be higher during day time and 

early evening when industrial loads are high; lights are on and 

lower during the late evening and early morning when most of 

the population is asleep. The problem is in the operation of an 

electric power system.  That is to generate the units when the 

units are “turn it on” and “turn it off”. Generating unit is to 

“turn it on” which is defined as “commit”.  Simply “commit” 

enough units to cover the maximum system load. Allen et.al. 

(1984) have discussed the unit commitment problem in power 

generation operation and control. 

The Unit Commitment Problem (UCP) gives the optimization 

of the generation of the units, how the money can be saved by 

turning units off (decommitment them) when they are not 

needed. Schedule the generation units in order to serve the 

load (demand) at the minimum operating cost while meeting 

all plant and system constraints.  F.N. Lee (1989) has 

designed a fuel constrained unit commitment method. 

Generation scheduling involves the determination of startup 

and the generation levels for each unit over a given scheduling 

period.  

 

 

 

 

 

 

 

 

 

 

S. Viramani et.al. (1989) have discussed the implementation 

of a Lagraginan relaxation based unit commitment problems. 

Rudolf et.al. (1989) has designed a genetic algorithm for 

solving the unit commitment problem of a hydro thermal 

power system. Lagrangian framework is a successful method 

as discussed by A. Cohen et al. (1987), J.J. Shaw et al. (1985), 

L.A.F.M. Fesseira et al. (1989), A. Renaud (1993), S. 

Maheswari et al.(2011,2012) and S.J. Wang et al. (1995). 

In this paper, the Lagrangian multipliers are used in the 

objective of LD model which leads to the faster convergence. 

These were added in the objective function as a penalty 

function which are determine the optimal solution of NLPP 

with respect to various system operating conditions. 

2. OPTIMIZATION MODEL 
The objective of this model is to generate the k units that 

would satisfy the expected demand and to give the minimum 

power generation cost in the planning time interval. 

2.1 System Parameters 
Z           Total generation cost of the generation units 

Bj   The cost associated with the build of generation  

Scheduling period for generating units 

one day  

(24 hrs) 

 

one week  

(168 hrs) 
one month  

(720 hrs) 

weekdays weekends working 

days 
holidays early evening  

and day time 

early morning  

and late evening 

higher demand higher demand higher demand lower demand lower demand lower demand 
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   Units 

Mj(P)   Maintenance cost for generation of units 

CFj(P)    Power production cost (based on fuel consumed) 

Sj   Startup cost, thermal units which depends on  

  Prevailing temperature of the boilers 

ℓ(t)   Power generated must be equal to the demand  

  (Load) at time„t‟ 

Tj(P)  Transportation cost for the generation of units 

ICj  The cost is related to the interest on working  

  Capital 

IVj   The cost is return on investment 

Lj   Labour cost 

TSj  Transmission cost 

Tℓj   Transmission loss cost 

2.2 Decision Variables 
Pj(t)  :  Amount of power produced by unit j at time „t‟ 

vj(t) :  Control variable of unit j at time „t‟ 






t'' at timeon  is junit  if1

t'' at time off is junit  if0
(t)v j  

xj(t) :  xj(t) 
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

 
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otherwiseS

t(t) xifS

h

start coldjc
 

Where Sc  cold startup cost which applies for the thermal  

    Unit has been off for a long period 

           Sh  hot startup cost which applies for the unit  

    recently turned off 

min
jP  : Minimum power that can be generated by unit j  

   (MW) 

max
jP  : Maximum power that can be produced by unit j  

  (MW) 

An optimal commitment schedule, there are two decision 

variables.  The first variable [Pj(t)] denotes the amount of 

power to be generated and the second is control variable [vj(t)] 

whose value is 1 if the generating unit j is committed at hour 

„t‟ and 0 otherwise. The cost of the power produced by the 

generating unit j depends on the amount of fuel consumed. 

The objective is to minimize the cost of the power produced 

by generation units. 

2.3 Objective Function: 
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3. LAGRANGIAN DECOMPOSITION 

MODEL 
The objective of LD model is obtained by relaxing the 

constraints from NLPP using Lagrangian Relaxation Method. 

It gives minimum generation cost of the electrical power 

system. 

Relaxing the equation (1) 
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Subject to  
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Here µPj is a penalty function with respect to the power factor. 

3.2 Lagrangian Relaxation Method 
Lagrangian relaxation replaces the original problem with an 

associated Lagrangian problem whose optimal solution will 

provide a bound on the objective function of the original 

problem.  This is achieved by eliminating (i.e., relaxing one or 

more) of the constraints of the original model and adding 

these constraints, multiplied by an associated Lagrange 

multiplier, to the objective function.  The main objective is to 

relax constraints that will result in a relaxed problem that 

given values of the multipliers, is much easier to solve 

optimally.  The role of these multipliers is to drive the 

Lagrangian problem toward a solution that satisfies the 

relaxed constraints.   

The Lagrangian relaxation approach replaces the problem of 

identifying the optimal values of all of the decision variables 

with one of finding optimal or good values for the Lagrangian 

multipliers.  Most Lagrangian-based heuristics use a search 

heuristic to identify the optimal multipliers. A major benefit 

of Lagrangian-based heuristics is that they generate bounds 

(i.e., lower bounds on minimization problems and upper 

bounds on maximization problems) on the value of the 

optimal solution of the original problem. For any set of values 

for the Lagrangian multipliers, the solution to the Lagrangian 

model is less than or equal to the solution to the original 

model.   

The solution to the Lagrangian problem for any given values 

of the Lagrangian multipliers will generally violate one or 

more of the relaxed constraints.  Many Lagrangian based 

algorithms incorporate additional heuristics to convert these 

infeasible solutions to feasible ones.  In this way, the 

researchers can produce good solutions to the original model.  

The best feasible solution among those found by the 

procedure at any point represents the upper bound on the 

value of the true optimal solution.  The difference between the 

upper and lower bounds is referred to as the “gap”.  If the gap 

reaches zero (or some minimum value based on the integer 

properties of the model) then it should be found the optimal 

solution.  Otherwise, when the gap gets sufficiently small (e.g. 

less than 1%), the analyst may stop the procedure and be 

satisfied that the current best solution is within 1% of 

optimality. 

An excellent tutorial on the general application of Lagrangian 

relaxation can be found in Fisher (1985).  An exposition of its 

use in location models is in the text by Daskin (1995). 

In this paper, the optimal solution of NLPP is obtained by 

Lagrangian Decomposition Model with respect to the power 

factor which satisfies the load in the power system. 

4. NUMERICAL CALCULATIONS AND 

GRAPHICAL REPRESENTATIONS 
Generation Scheduling gives the cycles for generation of 

units. The optimal value of LD is obtained by the algorithmic 

approach which is implemented in MATLAB 7.0.  

Computations were performed on an acer pc.  The testing data 

sets are summarized in table.1. 

Based on numerical calculations and graphical 

representations, the minimum power generation cost Rs. 

38513 lakhs is obtained in the month August while the 

planning schedule period is April to August. Generation 

Scheduling gives the minimum production cost over a time 

interval which satisfies the demand and operating constraints 

of power system cycles.  That is, it gives maximum power 

utility in the planning horizon which meets out all the 

demand. If the generation scheduling period is one day, then 

the computation is easy.  Complication is in the computation 

of one week and one month period. 
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Table 1. Optimum Generation Cost 

 

Period 

T (hrs) 

Units 

(K) 

Cost 

function 

CFj 

 (units) 

Start up 

cost 

Sj 

 (units) 

Power 

Function 

(million 

units) 

Variable 

cost 

(lakhs) 

Maintenance 

Mj 

(lakhs) 

Depreciation 

Tℓj 

(lakhs) 

Return  

on 

investment 

IVj 

(lakhs) 

Interest  

on  

capital 

ICj 

(lakhs) 

Fixed  

Cost 

(lakhs) 

Total  

cost 

(lakhs) 

April 17 214 67 1678.519 35987.13 4341.54 2990.81 3413.12 459.23 11204.70 47191.83 

May 17 217 76 1475.131 31909.68 4356.68 2990.81 3413.12 485.61 11246.22 43155.90 

June 17 210 67 1662.957 34886.74 4350.12 2990.81 3413.12 484.59 11238.64 46125.38 

July 17 196 66 1722.533 33838.96 4415.53 2990.81 3413.12 467.44 11286.90 45125.86 

August 17 177 70 1559.443 27581.08 4099.24 2990.81 3413.12 429.55 10932.72 38513.80 

 

 

Figure 1. Optimization Graph 

5. CONCLUSION 
In this paper, the model is designed for Unit Commitment 

problem which is formulated as Non Linear Programming 

Problem and then decomposed by Lagrangian Relaxation 

Method. Lagrangian Decomposition model gives minimum 

generation cost for the generating thermal units over a time 

interval.  That is, the maximum power utilized in the planning 

period. Based on the numerical calculations and graphical 

representation, the optimum value of NLPP is achieved from 

Lagrangian Decomposition model with respect the generation 

scheduling of an electric power system. It leads to the 

effective power utility in the planning horizon. 
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