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ABSTRACT 
A common fixed point theorem using EA-property for four 

weakly compatible maps  is obtained in the setting of G- 

metric spaces without exploiting the notion of continuity. Our 

results generalize the results of Abbas and Rhoades[7], and 

Manro et. al.[11]. Moreover, we show that these maps satisfy 

property R. Applications to certain intergral equations and 

functional equations are also obtained.  
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1. INTRODUCTION AND 

PRELIMINARIES 
 In 2006, Mustafa and Sims [15] introduced a new notion of 

generalized metric spaces called G-metric spaces.  Later on  

several authors obtained some fixed point results under   

various contractive conditions in G-metric spaces (see[7], [8], 

[10], [11], [14]).  

The aim of this paper is to prove a fixed point theorem using 

EA-property for four weakly compatible maps (without 

exploiting the notion of continuity) in G- metric spaces. A 

major benefit of the “E.A. property” is that it ensures 

convergence of desired sequences without completeness. Our 

results generalize the results of Abbas and Rhoades[7], and 

Manro et. al.[11]. We also establish property R for these 

maps. An interesting fact about maps satisfying property R is 

that they have no nontrivial periodic points. Some papers 

dealing with property R are ([1], [3], [4]). At the end, 

applications regarding the existence and uniqueness of 

solutions of certain class of integral equations and functional 

equations are also obtained. 

Now, we give some definitions and results that will be needed 

in the sequel: 

Definition 1.1.[15] Let X be a nonempty set and let G : X  X 

 X → R+ a function satisfying the following axioms: 

(G1) G(x, y, z) = 0 if x = y = z, 

(G2) 0 < G(x, x, y) for all x, y 𝜖 X with x ≠ y, 

(G3) G(x, x, y)   G(x, y, z), for all x, y, z   X, with z  y, 

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in 

all the three variables), 

(G5) G(x, y, z)   G(x, a, a) + G(a, y, z), for all x, y, z, a   

X, (rectangle inequality). 

   Then the function G is called a generalized metric, or, more 

specifically a G-metric on X, and the pair (X, G) is called a G-

metric space. 

Definition 1.2[15]. Let (X,G) be a G-metric space, let {xn} be 

a sequence of points of X, we say that {xn} is G-convergent to 

x if 0),,(lim
,




mn
mn

xxxG ; that is, for any   > 0, there 

exists k 𝜖 N such that G(x, xn, xm) <  , for all n, m   k 

(throughout this paper we mean by N the set of all natural 

numbers). We call x the limit of the sequence and write xn 

x or lim xn = x. 

Proposition1.3[15].Let (X, G) be a G-metric space. Then the 

following are equivalent: 

(1) {xn} is G-convergent to x, 

(2) G(xn, xn, x)   0, as n   , 

(3) G(xn, x, x)   0, as n   , 

(4) G(xm, xn, x)   0, as m, n   . 

Definition 1.4[15]. Let (X, G) be a G-metric space. A 

sequence {xn} is called G-Cauchy if for each  > 0, there is k 

∈ N such that  G(xn, xm, xl) <  , for all n, m, l   k, that is, if 

G(xn, xm, xl)   0 as n, m, l   . 

Proposition 1.5[15]. Let (X, G) be a G-metric space, then the 

following conditions are equivalent: 

(1) The sequence {xn} is G-Cauchy. 

(2) For every   > 0, there exists k N such that G(xn, xm, 

xm) <  , for all n, m ≥ k. 

Proposition 1.6[15]. Let (X, G) be a G-metric space. Then f : 

X →  X is G-continuous at x ∈ X if and only if it is G-

sequentially continuous at x, that is, whenever {xn} is G-

convergent to x, {f(xn)} is G-convergent to f(x). 

Proposition 1.7[15]. Let (X, G) be a G-metric space. Then the 

function G(x, y, z) is jointly continuous in all the three of its 

variables. 

Definition 1.8[15].A G-metric space (X, G) is called G-

complete if every G-Cauchy sequence is G-convergent in (X, 

G). 

Proposition 1.9[15] Let (X,G) be a G-metric space. Then for 

any x, y, z, a   X it follows that: 

(1)   G(x, y, z) = 0, then x = y = z, 

(2)   G(x, y, z)  G(x, x, y) + G(x, x, z), 

(3)   G(x, y, y)   2G(y, x, x), 

(4)   G(x, y, z)   G(x, a, z) + G (a, y, z), 

(5)    G(x, y, z) 
3

2
 (G(x, y, a) + G(x, a, z) + G (a, y, z)),  

(6)       G(x, y, z)   (G(x, a, a) + G(y, a, a) + G (z, a, a)). 

Example 1.10[15]. Let (X, d) be a usual metric space, then 

(X,GS) and (X,Gm) are G-metric spaces, where 

GS(x, y, z) = d(x, y) + d(y, z) + d(x, z), for all x, y, z   X, 

Gm(x, y, z) = max{d(x, y), d(y, z), d(x, z)}, for all x, y, z    

X. 

Definition 1.11. Denote by   the set of non-decreasing 

continuous functions   : R+  R+ satisfying: 

(1)   (0) = 0, 

(2) 0 <   (t) < t for all t > 0, 

(3) the series 
1

)(
n

n t  converges for all t > 0. 
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From now unless otherwise stated we mean by   a -map. 

Definition 1.12[2] Two self mappings f and g are said to be 

weakly compatible if they commute at coincidence points.  

Definition 1.13. Let {Ti} be a sequence of selfmaps of a G-

metric space X. We shall say that this family has property R if 

)()(
n

iiii TFTF  . 

In 2002,  Amari and Moutawakil [9] introduced a 

generalization of non compatible maps as E.A. property in 

metric spaces. We shall study E.A. property in the frame work 

of G-metric spaces as follows: 

Definition 1.14 Let X be a G-metric space and S and T be two 

self mappings of X. Then S and T are said to satisfy E. A. 

property if there exists a sequence {xn} such that lim
n

 Sxn = 

lim
n

 Txn =t 

 for some t ∈ X. 

Example1.15. Let X = [0, 1]. Define S, T :X→X by Tx= 
𝑥

2
and 

Sx= 
𝑥

8
 , for all x in  X. Consider the sequence xn = 

1

n
. Clearly, 

lim
n

 Sxn = lim
n

 Txn =0. Then S and T satisfy E.A. property. 

Example1.16. Let X = [3, +∞). Define S, T :X→X by Tx= 

x+2 and Sx= 3x+2, for all x in X. Suppose that the E.A. 

property holds. Then, there exists in X a sequence {xn} 

satisfying lim
n

Sxn = lim
n

Txn = t for some t in X. Therefore, 

lim
n

 xn = t-2and lim
n

xn =
𝑡−2

3
Thus, t = 2, which is a 

contradiction, since 2 is not contained in X. Hence S and T do 

not satisfy E.A. property.  

2.  FIXED POINT RESULTS. 
Theorem 2.1 Let X be a G-metric space. Suppose the maps 

A, B, S, T : X → X satisfies for all x, yX 

(2.1.1)  G(Sx, Ty, Ty) ≤   (G(Ax,By,By))   

or 

(2.1.2)  G(Sx, Sx, Ty) ≤   (G(Ax, Ax,By))   

where  . If the maps A, B, S and T satisfy the 

following conditions: 

1. AXTX    and BXSX  , 

2. the pair (A, S) or (B, T) satisfies E. A. property. 

3. the pair (A, S) or (B, T) are weakly compatible, 

then A,B, S and T have a unique common fixed point. 

Proof. Suppose that the mappings A, B, S and T satisfy 

(2.1.1) and the pair (B, T) satisfy E. A. property. Then there 

exists a sequence {xn} in X such that 

(2.1.3) lim
n

 Bxn = lim
n

 Txn =t for some t ∈ X. 

Since AXTX    then there exist a {yn} in X such that 

 Txn = Ayn. Hence lim
n

 Ayn = t . First, we prove that  

lim
n

 Syn = t. In view of (2.1.1), we have   

             G(Syn, Txn, Txn) ≤   (G(Ayn, Bxn, Bxn)). 

Taking n → ∞ we get 

lim
n

 G(Syn , t, t) ≤   (G(t, t, t)) = )0( = 0. 

This implies  lim
n

 G(Syn , t, t) = 0,  

which gives  lim
n

 Syn = t. 

Since t ∈ TX   and AXTX   , there exists an element u ∈ 

X such that Au = t 

Subsequently,  

lim
n

 Bxn = lim
n

 Txn = lim
n

 Ayn = lim
n

 Syn =Au. 

 Using (2.1.1), G(Su, Txn, Txn) ≤  (G(Au, Bxn, Bxn)). 

Taking n →  ∞, yields  

G(Su, Au, Au) ≤  (G(Au, Au, Au)) =  (0) = 0, implies that 

G(Su, Au, Au) = 0,  which gives Su = Au.  

Since BXSX   ,then there exists v ∈ X such that Su = Bv. 

We claim that Bv = Tv. Using (2.1.1), 

G(Bv, Tv, Tv) = G(Su, Tv, Tv) ≤  (G(Au, Bv, Bv)) 

                     =   (G(Au, Au, Au)) =  (0) = 0.  

This implies G(Bv, Tv, Tv) = 0, which gives, Bv = Tv. 

Therefore, we obtain   

       Au = Su = Bv = Tv = t.  (2.1.4) 

Since (A, S) and (B, T) are weakly compatible. Then  ASu = 

SAu and BTv = TBv. Using (2.1.4), we have    

             At = St and Bt = Tt (2.1.5) 

Thus, t is common coincidence point of A, B, S and T. Now, we 

show that St = t. Using (2.1.1),  

G(St, Tv, Tv) ≤  (G(At, Bv, Bv)). 

From (2.1.4) and (2.1.5) we get  

G(St, t, t) ≤  (G(St, t, t)) < G(St, t, t). 

This implies  G(St, t, t) = 0, which gives, St =t. 

Hence, At = St = t.   (2.1.6) 

Now, we show that Tt = t. Using (2.1.1), we have  

G(Su, Tt, Tt) ≤  (G(Au, Bt, Bt)). 

From (2.1.4) and (2.1.5) we get  

G(t, Tt, Tt) ≤  (G(t, Tt, Tt)) < G(t, Tt, Tt). 

This implies  G(t, Tt, Tt) = 0, which gives, Tt = t. 

 Hence Tt = t = Bt. Thus, t is common fixed point of A, B, S and 

T. If the pair (A, S) satisfy E. A. property, we obtain the 

similar result. 

Uniqueness, Let w be another common fixed point of A, B, S 

and T. Then, using (2.1.1), we have  

G(t, w, w) = G(St, Tw, Tw) ≤  (G(At, Bw, Bw)  

               =  (G(t, w, w)) < G(t, w, w). 

Thus, G(t, w, w) = 0, which implies that, t = w.  

The proof using (2.1.2) is similar. 

Corollary 2.2.  Let X be a G-metric space. Suppose the maps 

A, B, S, T : X → X satisfies: 

  G(Sx, Ty, Ty) ≤ qG(Ax,By,By)   

or 

  G(Sx, Sx, Ty) ≤ qG(Ax, Ax,By)   

for all x, y ∈ X where 𝑞 ∈[0, 1).  If the maps A, B, S and T 

satisfy the following conditions: 

1. AXTX    and BXSX  , 

2. the pair (A, S) or (B, T) satisfies E. A. property, 

3. the pair (A, S) or (B, T) are weakly compatible, 

then A,B, S and T have a unique common fixed point. 

Proof: Define    : [0, ∞) → [0, ∞) by   (t) = qt. 

Then, it is clear that   .. So, the result follows from 

Theorem 2.1. 
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Corollary 2.3.  Let X be a G-metric space. Suppose the maps 

A, S : X → X satisfies for all x, y ∈ X: 

  G(Sx, Sy, Sy) ≤   (G(Ax, Ay, Ay)) 

or 

  G(Sx, Sx, Sy) ≤   (G(Ax, Ax, Ay))   

where  . If the maps A and S satisfy the following 

conditions: 

1. BXSX   , 

2. the pair (A, S) satisfy E. A. property. 

3. the pair (A, S) is weakly compatible, 

then A and S have a unique common fixed point. 

Proof: Follows from Theorem 2.1 by taking S = T and A = B. 

Special case of above result is Theorem 2.1 of [11]. 

Corollary 2.4.  Let X be a complete G-metric space. Suppose 

the maps S : X → X satisfy one of the following conditions: 

  G(Sx, Sy, Sy) ≤   ((G(x, y, y)) 

or 

  G(Sx, Sx, Sy) ≤   (G(x, x, y))   

for all x, y ∈ X , where  . Then S has a unique fixed 

point. 

Proof: Follows from Theorem 2.1 by taking S = T and A = B 

= I(Identity mapping). 

Special case of above result is Theorem 2.1 of [7]. 

Corollary 2.5.  Let X be a complete G-metric space. Suppose 

the maps S : X → X satisfy one of the following conditions: 

  G(Sx, Sy, Sy) ≤ 𝑞((G(x, y, y)) 

or 

  G(Sx, Sx, Sy) ≤ 𝑞(G(x, x, y))   

for all x, y ∈ X , where 𝑞 ∈[0, 1). Then S has a unique fixed 

point. 

The following example illustrates Theorem 2.1 . 

Example. 3.6.  Let X = [2, 20]. Define A, B, S, T : X → X by 

Sx=2 if x=2 or x>5; Sx= 6 if 2<x<5, 

Bx= 2 if x=2 or x>5; Bx= 12 if 2<x<4; Bx= 6 if 4<x<5, 

Tx = 2 if x=2 or x>4; Tx= 4 if 2<x<4, 

Ax= 2 if x=2 or x>7, Ax=16 if 2<x<4, Ax= 5 if 5<x<7, Ax= 4 

if x=7. 

Then , (1) AXTX    and BXSX   , 

 (2) the pair (A, S) satisfy E. A. property with xn = 7+1/n 

or (B, T) satisfy E. A. property with xn = 5+1/n. 

 (3) the pair (A, S) and (B, T) are weakly compatible, 

Define G: X x X x X → R+ by 

G(x, y, z) = max{ 𝑥 − 𝑦 ,  𝑦 − 𝑧 ,  𝑧 − 𝑥 } Then (X,G) is G-

complete. 

Also define   : [0, ∞) → [0, ∞) as   (t) =
2

t
.Then A, B, S, 

T and ∅ satisfies all the hypothesis of Theorem 2.1. Here 2 is 

the unique common fixed point of A, B, S and T. 

Remark. The maps A, B, S, and T are discontinuous even at 

the common fixed point x=2. 

3. PROPERTY R 
In this section, we shall show that maps satisfying (2.1.1) or 

(2.1.2) possess property R. 

Theorem 3.1. Under the conditions of Theorem 2.1, A, B, S 

and T have property R. 

Proof. From Theorem 2.1, A, B, S and T has a fixed point.  

Therefore, F(Am) ∩  F(Bm) ∩  F(Sm) ∩ F(Tm) ≠  ∅  for each 

positive integer  m. Let m > 1 and suppose that p ∈ F(Am)∩ 

F(Bm) ∩ F(Sm) ∩F(Tm). 

We claim that p ∈ F(A)∩ F(B) ∩ F(S) ∩F(T). Then , for any 

positive integer i,l,r,t satisfying  1< i,l,r,t < m, and using 

(2.1.1), we get 

(3.1.1)     G(SiAj p, TkBl p, TkBl p)  

                 (G(A(Si-1Aj p, B(Tk-1Bl p) ,B(Tk-1Bl p))) 

 =  ( G(Si-1Aj+1 p, Tk-1Bl+1 p, Tk-1Bl+1 p)) <  , 

where   =
mlkji  ,,,1

max  G(SiAj p, TkBl p, TkBl p).  

Assume   > 0,  then using  (3.1.1), we obtain  

 < ( )< , which is a contradiction. Therefore  = 0, 

which implies that 

G(Sp,p,p) = G(Ap,p,p) = G(p,Tp,Tp) = G(p, Bp, Bp) = 0.  

This implies that Sp = Ap = Tp = Bp = p.  

Hence  p ∈ F(A)  F (B)  F (S)  F(T). Thus A, B, S and 

T have property R. 

4. APPLICATION TO INTEGRAL 

EQUATIONS 
The existence of solutions of Integral equations has been 

studied by several authors (see [5], [6]). In this section we 

prove an existence of a solution for a certain non-linear 

integral equation in G-metric space using corollary 2.5.  

 

Consider the integral equation: 

 

T

thdssustKtu
0

)())(,,()( ,     t ∈[0, T]        (4.1.1) 

where T>0. Let X=C([0, T]) be the set of all continuous 

functions defined on [0, T].  

Define G: X × X×X → R+ by 

)()(
],0[

sup
)()(

],0[

sup
),,( tzty

Tt
tytx

Tt
zyxG 







 ,)()(
],0[

sup
txtz

Tt



         

Then (X,G) is G-complete metric space. Now we prove the 

existence of the solution of the integral equation (4.1.1). 

Theorem.4.1 Suppose the following assumptions hold: 

(a)  K: [0,T] × [0,T] × R→R and h: R→R are continuous. 

(b) There exist a continuous function G: [0,T] × [0,T]→R+ 

such that  

vustGvstKustK  ),(),,(),,(  

  for each u, v ∈ R and s, t ∈[0, T] . 

(c)  


T

qdsstG
Tt 0

),(
],0[

sup
    for some q ∈[0,  1). 

Then the integral equation (4.1.1) has a solution u ∈X. 

Proof.  Define S: X →X by  

 

T

thdssxstKtSx
0

)())(,,()( ,  t ∈[0, T]. 

For x, y ∈X, we have 

)()(
],0[

sup
2),,( tSytSx

Tt
SySySxG 


  

           

 



T

dssystKsxstK
Tt 0

)))(,,())(,,((
],0[

sup
2  
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 



T

dssystKsxstK
Tt 0

))(,,())(,,(
],0[

sup
2  

 







T

dsstG
Tt

tytx
Tt 0

),(
],0[

sup
)()(

],0[

sup
2     

 (using condition (b))  

 =   


T

qdsstG
Tt

yyxG
0

),(
],0[

sup
),,( . 

By using condition (c), there is a q  ∈ [0,  1) such that 

 


T

qdsstG
Tt 0

),(
],0[

sup
.  Then, we have  

                 G(Sx, Sy, Sy )≤ 𝑞 𝐺 𝑥, 𝑦, 𝑦 .  
Thus all the required hypothesis of corollary 2.5 are satisfied 

and hence there exists a continuous solution u∈  X of the 

integral equation (4.1.1). 

5. APPLICATION TO FUNCTIONAL   

EQUATIONS 
  The existence and uniqueness of solutions of 

functional equations arising in dynamic programming have 

been studied by various authors (see [12], [13]). In this section 

we prove existence and uniqueness of a solution for a class of 

functional equations in G-metric space using corollary 2.5. 

 Let U and V be Banach spaces, W⊂ U, D ⊂ V and 

R is the field of real numbers. Let X= B(W) denote the set of 

all bounded real valued functions on W. Define G: X × X × 

X → R+ by G(x, y, z) =max { 𝑑 𝑥, 𝑦 , 𝑑 𝑦, 𝑧 , 𝑑(𝑧, 𝑥)},  

where  d: X × X → R+ is defined as  

d(x, y) =  )()(
sup

tytx
Wt




, 

then (X,G) is G-complete metric space. Consider the 

following functional equation  

p(x) =  ))),((,,(),(
sup

yxpyxMyxg
Dy




,   

x∈W        

…..(5.1.1)                             

where g: W× 𝐷 → 𝑅  and M: W× 𝐷 ×  R→ 𝑅  are bounded 

functions. We consider W and D as the state and decision 

spaces, respectively, 𝜏: 𝑊 × 𝐷 → 𝑊 represents transformation 

of the process and p(x) represents the optimal return function 

with initial state x. Now we prove the existence and 

uniqueness of the solution of the functional equation (5.1.1). 

Theorem 5.1 Suppose that there exists a q ∈[0,  1) such that 

for every 

 (x, y) ∈W× 𝐷, h1, h2∈X, t ∈W, the inequality  

)()())(,,())(,,( 2121 ththqthyxMthyxM 

, 

                                                                                      

..(5.1.2)         

holds, then the functional equation (5.1.1) has a unique 

bounded solution in X. 

Proof Define S: X →X by  

S(h(x)) =  ))),((,,(),(
sup

yxhyxMyxg
Dy




 

where x∈W ,  h∈X                                                   …(5.1.3) 

Let 
 
be an arbitrary positive real number and h1, h2∈X. 

For x∈W, we choose  

y1, y2 ∈ D so that 

S(h1(x)) < g(x, y1) + M(x, y1, h1(𝜏1))  +     ,        (5.1.4)     

S(h2(x)) < g(x, y2) + M(x, y2, h2(𝜏2))  +    ,           (5.1.5)   

where  𝜏1 = 𝜏(x, y1) and 𝜏2 = 𝜏(x, y2). 

From  the definition of mapping S, we have 

S(h1(x)) ≥ g(x, y2) + M(x, y2, h1(𝜏2)),                   (5.1.6)   

S(h2(x)) ≥ g(x, y1) + M(x, y1, h2(𝜏1)),   (5.1.7)   

Now, from (5.1.2), (5.1.4) and (5.1.7), we obtain 

 



))(,,())(,,(
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                                                                              (5.1.8)         

Similarly, from (5.1.2), (5.1.5) and (5.1.6), we obtain 

 )()())(())(( 2112 xhxhqxhSxhS  

                                                                            (5.1.9)         

 

Hence from (5.1.8) and (5.1.9) we have 

 )()())(())(( 2121 xhxhqxhSxhS  

                                                                          (5.1.10)      

Since the inequality (5.1.10) is true for all x∈W and arbitrary  

  >0, then we have 

        G(Sh1, Sh1, Sh2) ≤   q G(h1, h1, h2). 

Thus all the conditions of corollary 2.5 are satisfied for the 

mapping S and hence the functional equation (5.1.1) has a 

unique bounded solution. 

6.  CONCLUSION   

In this study we obtained common fixed point results in a G-

metric space without using stronger conditions like continuity 

of the mappings involved and completeness of the space. Thus 

our results improve and extend many recent results existing in 

the literature. An important consequence of our results is that 

none of these maps has nontrivial periodic points. 

Applications regarding the existence of solutions of certain 

integral equations and functional equations are also discussed.  
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