
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.11, April 2012

27

CMS and G1 Collector in Java 7 Hotspot: Overview,

Comparisons and Performance Metrics

Clarence J M Tauro

Center for Research
Christ University
Bangalore, India

Manjunath V Prabhu
Department of Computer

Science
Christ University
Bangalore, India

Vernon J Saldanha
Department of Computer

Science
Christ University
Bangalore, India

ABSTRACT

Java is used in large enterprise server applications. Enterprise

applications are characterized by large amount of live heap

data and considerable thread level parallelism. Garbage

collectors are programs that attempts to reclaim garbage, or

memory occupied by objects that are no longer in use by

the main program [1]. The strength of Java platform is that it

performs automatic memory management, thereby shielding

developers from the complexity of explicit memory

management.

This paper provides an overview of features shared by most

Garbage collectors in the latest version of java (as of Jan-

2012) Java7. This document also attempts to compare the

CMS (Concurrent Mark and Sweep) collector against its

replacement and a new implementation in Java7, G1 aka

“Garbage first” [2].

General Terms

Garbage Collection, G1 collector, Concurrent Mark and

Sweep (CMS).

Keywords

Java 7 Hotspot, G1, Garbage First, CMS, Concurrent Mark

and Sweep, Performance, Comparisons.

1. INTRODUCTION
The Java platform is used for a wide array of applications

ranging from small applets to web services on large servers.

As part of its Memory Management, Java provides many

garbage collectors, namely-

• Parallel Scavenge.

• Serial Garbage Collector.

• Parallel New + Serial GC.

• CMS.

• G1 (available in Java7).

However it is important to note that the logic behind choosing

a particular garbage collector is out of the scope of this paper.

It is also important to note that the comparison test results

may vary based on the underlying hardware, but there will be

an attempt made at logically reasoning and generalizing the

results.

2. INTRODUCTION TO BASIC

CONCEPTS OF GARBAGE

COLLECTION
Moving forward, let us look at few concepts that form the

basis for this paper.

2.1 Memory Addresses
Memory is array of bytes, with addresses. Fig 1 shows a

diagrammatic representation of Memory and Memory

addresses.

Fig 1: Empty Memory and Memory Address

A 32 bit Processor basically means that the processor can read

32 bits or 4 Bytes at a time. A local variable creation is a

process of allocating a memory location that means, naming a

memory location.

For instance, Let us assume an integer type with value “10”.

Fig 2 shows the integer populated in memory address 2.

Fig 2: Populated Memory and Memory address

Java picks an appropriate memory address, assigns it and

keeps track of the address as well. JVM has an invisible Data

Structure, which keeps track of the free and allocated

memory.

2.2 Basic Garbage Collection Concepts
Garbage collectors are programs which are responsible for

various memory management activities such as –

• Memory allocation.

• Preserving and ensuring object references are

maintained in the memory.

• Reclaiming memory occupied by objects that are no

longer in use or are unreachable from references.

Java puts all the newly created objects in a “heap”. An object

that is being used or is going to be used by the application is

called a “Live Object” [3]. Opposite of a live object is garbage

as in, the application cannot reference and cannot reuse the

object. When the application no longer needs an object, the

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.11, April 2012

28

memory occupied by the object is cleared or reclaimed by the

garbage collector so that the application can use it.

Garbage collectors start collecting from the Root Objects [4].

Root object is an object which can be directly accessed that is,

without going through other references. Root objects are

Local variables in the stack or class variables that is, static

objects. An object is considered live if it is referenced by a

root object or other live object. A Depth First Search (DFS)

algorithm is used from the root object and each object visited

is tagged. This is not visible to main applications that are

running on the JVM.

2.3 Fragmentation
Fragmentation is the tendency of the memory to get broken up

into smaller pieces. Contiguous dead space between objects

may not be large enough to fit new objects [5].

If subjected to Mark and sweep repeatedly, overtime the heap

gets fragmented.

For Example as shown in Figure.3, Consider a scenario where

a memory has exactly 10 blocks. After Sweep phase, some of

the objects may have been reclaimed. Now suppose Object5

needs to be inserted into the memory array, there is no

Contiguous space to add the new object, in spite of having

enough space.

Fig 3: Example of fragmented memory space

Fragmentation is taken care by another phase called

Compaction. In this phase, Objects are rearranged so that

they occupy contiguous space. A compacting GC moves

object during sweep phase

The three phases are summarized in Fig 4

Fig 4: Mark, Sweep and Compact phases

2.4 References
A reference variable in Java contains an address, or a

reference to an address (similar to pointer variables in C++).

Java does not, however, allow this address to be arbitrarily

(randomly) edited or changed in any way. An object can be

referenced by many other objects. Figure.5 shows multiple

references to an object in the memory.

Fig 5: Object References

Since the memory is shifted during compaction, what will

happen to the references?

In Sun JVM, a reference is known as a Handle and not a

pointer [6]. A handle is a pointer to a pointer and is used to

reliably move these references.

Fig 6 shows the references to an object, using handles.

Fig 6: Java handle pointer

2.5 Characteristics of Garbage Collector
 A garbage collector must be both accurate and

comprehensive, by not wrongly freeing up memory

used by live objects and also reclaim garbage within

a small number of collection cycles.

 A garbage collector should be efficient and be

virtually untraceable, by not introducing long

pauses during application execution.

 It is desired that the garbage collector rearranges the

freed memory spaces into a single contiguous area

such that there is always memory for allocation of a

large object.

 Garbage collectors should be able to cater to scaling

memory allocation and garbage collection needs in

multithreaded or multi processor environments.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.11, April 2012

29

3. OVERVIEW OF VARIOUS

GARBAGE COLLECTING

ALGORITHMS
Some of the most widely used garbage collection algorithms

are –

3.1 Mark and Sweep Algorithm.

This is the most commonly used algorithm. As the name
suggests, this algorithm has two main phases

3.1.1 Mark Phase

Mark phase does a DFS from every root object. It basically

“paints” or “Marks” all the live objects [7]. During this phase

Application execution is momentarily frozen. A Garbage

collection safe point is a point or range in a thread’s execution

where the collector can identify all the references in that

thread’s execution stack [8]. All reachable objects will be

marked live, and all non-reachable objects will be marked

dead.

3.1.2 Sweep Phase:

In this phase, dead objects are “swept” which means, the

memory occupied by the dead objects are reclaimed.

3.2 Copy Garbage Collection

Copy garbage collection is much faster than Mark and sweep

algorithm because it has only one phase. In copy garbage

collector Memory is divided into two separate spaces called

the old space and the new space. It finds all the live objects

using Depth first Search algorithm. When it finds a live

object, it moves it to the new space immediately. Compaction

is automatically taken care as the object will be moved to the

first available memory location in the new space. Once all the

objects are moved, it forgets the old space. Next time, new

and old space trade places.

The disadvantage of the copy collector is the memory usage,

which means, memory is cut into two halves.

3.3 Generational garbage collector

This collector is based on a theory that majority of the objects

“Die young”, that is, in a Heap the following are true -

• Most objects have short life time.

• Only a few live very long.

• Longer they live, more likely they live longer.

Generational garbage collector divides objects into

generations and treats the old and new objects differently.

In Generational Garbage collection, the heap is divided into

two or more generations namely nursery, young, and old.

Nursery is nothing but newly created object. They may be of

different sizes and may also change during execution.

Every cycle of garbage collection cycle survived by an object

promotes it to the older generations from the younger or

nursery generations. It works on a principle of “Longer the

objects live, more likely they live longer”. This principle

allows the garbage collector not to worry about the older

generations as much, thereby restricting much of the garbage

collection to the younger generations. This leads to

significantly less CPU usage and increase in performance.

4. CMS versus G1
CMS and G1 are one of the many garbage collectors provided

by Java. This section delves into the characteristics of each of

these collectors.

4.1 Concurrent Mark Sweep GC (aka

CMS)
CMS is a Generational, stop-the-world collector which is

based on the Mark and Sweep algorithm [1]. It is Mostly

Concurrent, and is used when applications demand quick

response times

Garbage collection using CMS follows the process of -

• Mark concurrently while mutator is running

• Track mutations in card marks

• Revisit mutated cards (repeat as needed)

• Stop-the-world to catch up on mutations, reference

processing, etc.

The pauses in a CMS collector are relatively small due to the

concurrent marking of live objects. It thereby ensures

maximum response times.

Since CMS delivers on many fronts, response times are

increased. However as a trade-off it usually suffers an

overhead caused by revisiting the mutated cards. The

revisiting is necessary to correct all the references that may

have occurred while the collector was in the Concurrent Mark

phase [1].

Another drawback of CMS is that it does not compact the

fragmented memory [1]. Though it maintains a free list,

objects are not moved around. Due to this fragmentation may

occur. This also means that there is a need for larger heap size

for the concurrent marking and execution of the mutator

(which continues to allocate memory for new objects).

4.2 G1GC (aka “Garbage First Garbage

collector”)
Garbage-First is a server-style garbage collector, targeted for

multi-processors with large memories, that meets a real-time

goal [2]. In G1, there is no physical separation between the

young and old generations. There is a single contiguous heap

which is split into same-sized regions. The young generation

is a set of potentially non-contiguous regions, and the same is

true for the old generation. This allows G1 to flexibly move

resources as needed from the old to the young generation, and

vice versa [9]. Collection in G1 takes place

through evacuation pauses, during which the survivors from a

set of regions referred to as the collection set are evacuated to

another set of regions (the to-space) so that the collection set

regions can then be reclaimed. Evacuation pauses are done in

parallel, with all available CPUs participating. Most

evacuation pauses collect the available young regions, thus

are the equivalent of young collections in other HotSpot™

GCs. Occasionally, select old regions may also be collected

during these pauses because G1 piggybacks old generation

collection activity on young collections [9].

G1 is both concurrent and parallel. G1 takes advantage of the

parallelism that exists in hardware today [9]. It uses all

available CPUs (cores, hardware threads, etc.) to speed up its

“stop-the-world” pauses when an application's Java threads

are stopped to enable GC. It also works concurrently with

running Java threads to minimize whole-heap operations

during stop-the-world pauses.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.11, April 2012

30

Concurrency involves refinement, marking, cleanup and

parallelism involves multiple thread for various Stop the

world phases. Currently Full GC is serial mark Sweep

compact.

G1 GC has regionalized heap called heap regions. Heap is

split into fixed equal sized heap region. They are fixed for the

entire JVM process. However, if can be specified by the user

as well. If the user does not specify the heap regions, then

JVM chooses it heuristically [9]. Heuristics aims at creating

2000 Regions.

“G1HeapRegionSize” is the JVM parameter used to

specify the heap region. . The size can vary from a minimum

of 1 MB to a maximum of 32 MB

Heap regions are managed by Region lists which means,

Master Free list, Secondary free list, survivor list and

humongous list.

Like CMS collector G1 is generational Collector. The Young

generation is not fixed, and is determined logically.

Generational regions are just a set of regions and it may not be

contiguous [2].

The young generation further comprises of “Eden” where

objects are constantly created and destroyed. This the region

used for application allocation. It is basically a place where

most objects die. Regions used for application allocations.

The allocations are done “on demand” from the free list. As

the allocation demand come, when mutator allocation region

gets filled. On demand heap space is pulled from free list and

adds it to the Eden.

G1 also includes the survivor space. Survivor space contains

live object that have survived previous Garbage collection

cycles.

Fig 7 shows the Heap space distribution of free, Old, Survivor

and Young spaces

Fig 7: Heap space distribution

4.3 Comparison of Features of G1 and

CMS collector
G1 and CMS collectors have many similar and dissimilar

features. These features are compared in Table 1

Table 1: Feature comparison of G1 and CMS collector

Features

Garbage Collectors

Garbage

First(G1)

Concurrent

Mark

Sweep(CMS)

Concurrent and

Generational
Yes Yes

Releases Max Heap

memory after usage
Yes No

Low-latency Yes Yes

Throughput Higher Lower

Compaction Yes No

Predictability More Less

Physical Separation

between Young and old
No Yes

4.4 Performance Metrics
Several metrics are utilized to evaluate garbage collector

performance, but the three major attributes are:

• Throughput: The percentage of total time spent in

garbage collection and allowing the application to

perform, disregarding the pause times and memory

required.

• Pause time: The length of time during which application

execution is stopped while garbage collection is

occurring.

• Footprint: Amount of memory required by the garbage

collector to execute efficiently.

4.5 Tests
Tests conducted to measure performance and behavior of

CMS and G1 collectors are as follows -

4.5.1 Test Description
• The code creates and adds 150 integer Arrays into

an Array list.

• Each integer array reserves 4MB of memory that is

MB600iterations150MB4

MB4Bytes4102410241

• Arrays are removed during iteration.

• At every 10th iteration, System.gc() is called,

suggesting the Java Virtual Machine to start garbage

collection

• Visual VM provided in JDK is used to capture the

results.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.11, April 2012

31

4.5.2 Test Code

}

}

ep(3000);Thread.sle

);System.gc(

}ep(50);Thread.sle

}

);System.gc(

{ 0) == (i%10 if

1);-ize()ve(array.sarray.remo

{

+)+i150;<i0;=i (int for

 }

ep(50);Thread.sle

1024]); * 1024 * Integer[1 newarray.add(

{

 +)+i150;<i0;=i (int for

ep(15000);Thread.sle

{ dExceptionInterrupte

throws args) g[]main(Strin void static public

(150);>Integer[]<ArrayList new

array >Integer[]<ArrayList static private

{ GCTest class public

ArrayList;java.util. import

4.5.3 CMS collector results
Command line used to test CMS collector

GCTest 50=MillisMaxGCPause:XX-

49=oGCTimeRati:XX-G1GC.log:Xloggc-

tails+PrintGCDe:XX- rkSweepGC+UseConcMa:XX- java

Fig 8: Max allocated heap size and Max used heap

size for CMS collector

Fig 9: Application CPU usage and GC CPU usage

for CMS collector

4.5.4 G1 Collector Results.
Command line used to test G1 collector

GCTest 50=MillisMaxGCPause:XX-

49=oGCTimeRati:XX- G1GC.log:

Xloggc-tails+PrintGCDe:XX- +UseG1GC:XX- java

Fig 10: Max allocated heap size and Max used heap

size for CMS collector

Fig 11: Application CPU usage and GC CPU usage

for CMS collector

5. OBSERVATIONS
Observations based on multiple cycles of the tests on different

machines.

1. When G1 collector is used, the Max heap size is

reclaimed, but in case of CMS it is not reclaimed

2. In CMS Max used heap size is around 20 MB, but in G1

it is 600 MB.

3. Max heap size(available) in case of G1 it is 750 MB and

CMS it is 65 MB

4. Max Throughput of G1 was 2.8%, but in case of CMS

was well within 2%.

5.1 Results comparison
During execution of the test class, the following parameters
have been considered and noted down. Results of the test are
compared in Table 2

Table 2: Test results comparison

Parameters G1 GC CMS GC

Time taken for

execution
31 Secs 31 Secs

Max CPU

Usage
41.4% 20%

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.11, April 2012

32

Max GC

Activity
22% 5.1%

Max Heap Size 1000 MB 1000 MB

Max Used Heap 610 MB 610 MB

6. CONCLUSION
The paper has successfully presented an overview of the most

commonly used garbage collection algorithms namely – Mark

and Sweep, Copy GC, Generational GC. Its attempt to

compare the mature CMS with the newly conceptualized G1

resulted in the following conclusions.

1. When G1 collector is used, the Max heap size is

reclaimed, but in case of CMS it is not reclaimed

2. If a server has good CPU and RAM then G1 is a good

option.

3. If a server has average CPU and good RAM, then CMS

holds the edge over G1.

4. Application Performance is better in CMS than G1

owing to high CPU utilization.

7. ACKNOWLEDGMENTS
We are heartily thankful to Poonam Bajaj (Principal Member

of Technical Staff at Oracle), Charlie Hunt (Principal Member

of Technical Staff at Oracle), and Bengt Rutisson (Engineer

Software Sr at Oracle), whose encouragement, guidance and

support enabled us to develop an understanding of the subject.

8. REFERENCES
[1] Description of HotSpot GCs: Memory Management in

the Java HotSpot Virtual Machine White

Paper: http://java.sun.com/j2se/reference/whitepapers/me

morymanagement_whitepaper.pdf.

[2] The Garbage-First Garbage Collector, Oracle

Technology network

http://www.oracle.com/technetwork/java/javase/tech/g1-

intro-jsp-135488.html.

[3] Tuning Garbage Collection with the 1.4.2 Java[tm]

Virtual Machine,

http://java.sun.com/docs/hotspot/gc1.4.2/

[4] Luke Dykstra, Witawas Srisa-an, and J. Morris Chan,

“An Analysis of the Garbage Collection Performance in

Sun's HotSpotTM Java Virtual Machine”

[5] Witawas Srisa-an, Chia-Tien Dan Lo, and J. Moms

Chang, “Scalable Hardware-algorithm for Mark-sweep

Garbage Collection

[6] The Java Language Environment, Memory Management

and Garbage Collection,

http://java.sun.com/docs/white/langenv/Simple.doc1.htm

l#2333

[7] Formal Programming Language Theory, Dataflow

Analysis

http://www.cs.is.noda.tus.ac.jp/~mune/keio/m/chap2.pdf.

[8] Sergey V. Rogov, Viacheslav A. Kirillin, and Victor V.

Sidelnikov,”Optimization of Java Virtual Machine with

Safe-Point Garbage Collection”,

[9] The original G1 paper: Detlefs, D., Flood, C., Heller, S.,

and Printezis, T. 2004. Garbage-first garbage collection.

In Proceedings of the 4th international Symposium on

Memory Management (Vancouver, BC, Canada, October

24 - 25, 2004) http://labs.oracle.com/jtech/pubs/04-g1-

paper-ismm.pdf

http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

