
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.10, April 2012

25

Modified Non-Recursive Algorithm for Reconstructing a
Binary Tree

Nitin Arora
Dept. of Computer Science &

Engineering
G. B. Pant Engineering College,

Pauri, Uttarakhand, INDIA

Vivek Kumar Tamta
Dept. of Computer Science &

Engineering
G. B. Pant Engineering College,

Pauri, Uttarakhand, INDIA

Suresh Kumar
Dept. of Computer Science &

Engineering
G. B. Pant Engineering College,

Pauri, Uttarakhand, INDIA

ABSTRACT
Binary tree traversal refers to the process of visiting each node

in a specified order. Given the inorder traversal of a binary

tree, along with one of its preorder or postorder traversals, the

original binary tree can be uniquely identified. Many

recursive and non recursive method of construction of the tree

from inorder and any of the postorder or preorder traversal

have been proposed. In this paper one of the proposed

algorithms has been examined. This algorithm computes the

wrong tree for some input sequences. We show a particular

situation in which the algorithm fails and a solution for this

situation is proposed. The proposed a modified non-recursive

algorithm for reconstructing a binary tree which generates the

correct tree otherwise an error has been reported.

Keywords
Binary Tree Reconstruction, Traversal, Non Recursive

Algorithm.

1. INTRODUCTION
There are many data structures (linear or non-linear) used in

computer science. The tree is one of the non-linear

fundamental data structure. Almost all the operating systems

store files in trees or tree like structures. We use trees in

compiler design, text processing and searching algorithms [1].

A binary tree is an ordered tree in which each node has

maximum of two children, referred to as left and right tree.

[1, 2, 3, 4, 5] A binary tree can either be empty or recursively

consists of a root, left sub tree and right sub tree. Commonly

there are three traversing methods:
 Inorder Traversal

 Preorder Traversal

 Postorder Traversal

In an inorder traversal first the left child is processed

recursively, then processes the current node followed by the

right child. In preorder traversal first the root is processed

followed by the left child and the right child. Similarly in

postorder traversal first the left child, then right child followed

by the current node processed recursively. [6]

The output of the different tree traversal algorithm of the

binary tree shown in figure1 is [1]:

inorder traversal: F, J, G, A, H, K, I, B, C, L, D, E

preorder traversal: A, F, G, J, B, H, I, K, C, D, L, E

postorder traversal: J, G, F, K, I, H, L, E, D, C, B, A

Fig 1: Binary Tree Containing 12 nodes

And output of the different tree traversal algorithm of the right

skewed binary tree shown in figure2 is:

inorder traversal: A, B, C, D, E

preorder traversal: A, B, C, D, E

postorder traversal: E, D, C, B, A

Fig 2: Right Skewed Binary Tree Containing 5 nodes

For a correct constructed tree the same inorder, preorder and

postorder sequences must be generated from the constructed

tree. In this paper we have point out a correction in the

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.10, April 2012

26

algorithm proposed by Vinu V Das “A new non-recursive

algorithm for reconstructing a binary tree from its traversals”

[1]. This algorithm computes the wrong binary tree for some

input sequences. We have shown a particular situation in

which the algorithm used by Vinu V Das fails and a solution

for this situation is proposed. The proposed solution generates

the correct tree if the tree can be constructed otherwise an

error has been reported i.e. tree can’t be constructed from the

given input sequences.

The remainder of this paper is organized as follows. Section 2

introduces the related work; Section 3 describes our proposed

solution, Section 4 describes performance evaluation,

conclusion and future scope in Section 5, given

acknowledgments in Section 6 and all the used references are

given in section 7.

2. RELATED WORK
A unique original binary tree can be constructed from the

given inorder traverse of a binary tree, along with one of its

preorder or postorder traversals. Binary tree reconstruction

from its traversals is not a difficult task [7]. The computation

time required is O(n2) where n is the number of nodes in the

tree. A non-recursive algorithm for reconstructing a binary

tree from its inorder-preorder sequences (in short i-p

sequences) [5] had been presented by H A Burgdorff [8] and

their algorithm takes O(n2) computation time. A non recursive

algorithms from for constructing a binary tree has been

proposed by Chen [9] and it takes of time completing O(n)

and inefficient space. Vinu V Das [1] presented a non-

recursive algorithm for reconstructing a binary tree from its

inorder-preorder sequences (in short i-p sequences) and their

algorithm takes O(n) time and O(nlogn) space. This non-

recursive algorithm works on the following lemma. The

algorithm proposed by Vinu V Das is based on following

lemma [1]:

Lemma: Let P[j] be the parent of P[i], (where j <

i) then Lp[j] be the corresponding index in the inorder

sequence of node P[j] and Lp[i] be the corresponding index

in the inorder sequence of node P[i]. If Lp[j] is greater than

Lp[i] then P[i] is the left child of P[j] otherwise it is the right

child. The binary tree can be reconstructed by exploiting the

following three properties of the above lemma.

1. First node in the preorder sequence will be the root of the

binary tree

2. The node(s) which comes to the left of root node in the

inorder sequence will be the nodes in the left sub tree and

node(s) in the right are the nodes in the right sub tree of the

reconstructed root node.

3. Apply the second property recursively to the left and right

sub tree of the root node to obtain the complete binary tree.

Following is the reconstruction algorithm for binary

tree from its traversals.[1]

/*Variable Declarations*/

left = 0; right = 0; count1 = 0; count2 = 0; data = P[0]; root

= NULL;

for (count1 = 0 ; count1<n ; count1++)

{

 /*Create a new node*/

 newnode->info = data;

 newnode->lchild = NULL;

 newnode->rchild = NULL;

If (root == NULL)

 root=newnode;

 /*Intially the linked list is empty*/

 while (I[count2] is present in the linked list)

 {

 presentnode = address of I[count2];

 remove the I[count2] from the linked list;

 right=1;left=0;count2++;

 }

 If(data != I[count2])

 {

 Add the data into the linked list;

 If (left == 1)

 Place the newnode as left child of presentnode

 If(right == 1)

 Place the newnode as right child of presentnode

 left=1;right=0;

 }

 else

 {

 If(left == 1)

 Place the newnode as a left child of presentnode

 elseif(right == 1)

 Place the newnode as right child of presentnode

 left=0;right=1;count2++;

 }

 data=P[count1+1];

 presentnode = newnode;

} /* for loop end */

3. MODIFIED NON-RECURSIVE

RECONSTRUCTING ALGORITHM
The algorithm reference [1] is implemented in C language and

checked for some different input sequences. The algorithm

worked correctly for some sequences but on the other side it

generated a wrong binary tree for some other input sequences.

We made some changes in the algorithm according to the

proposed solution as: If before printing the binary tree we first

generate the related sequences and compare with in input

sequences supplied. If both the sequences are same then only

the correct binary tree can be generated otherwise an error

message can be reported.

The modified Non-Recursive algorithm for generating a tree

from its inorder and preorder traversals is:

/*Variable Declarations*/

left=0; right=0; count1=0; count2=0; data=P[0]; root=NULL;

m=0; /* New variable in our program which keeps a count of

the number of nodes having 2 children */

for (count1 = 0 ; count1<n ; count1++)

{

 /*Create a new node*/

 newnode->info = data;

 newnode->lchild = NULL;

 newnode->rchild = NULL;

 If (root == NULL)

 root=newnode;

 /*Intially the linked list is empty*/

 while (I[count2] is present in the linked list)

 {

 presentnode = address of I[count2];

 remove the I[count2] from the linked list;

 right=1;left=0;count2++;

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.10, April 2012

27

 /*Here a small modification is done*/

 m++;

 }

 If(data != I[count2])

 {

 Add the data into the linked list;

 If (left == 1)

 Place the newnode as left child of

presentnode

 If(right == 1)

 Place the newnode as right child of

presentnode

 left=1;right=0;

 }

 else

 {

 If(left == 1)

 Place the newnode as a left child of

presentnode

 elseif(right == 1)

 Place the newnode as right child of

presentnode

 left=0;right=1;count2++;

 }

 data=P[count1+1];

 presentnode = newnode;

} /*For loop end*/

If (m is greater than zero or check if the inorder traversal of

the tree formed matches with the given inorder sequence)

{

 Print the tree ;

}

else {

 Print that a legitimate tree cannot be constructed

with the sequences;

}
The time complexity of our modified algorithm is O(n) where

n is the number of nodes.

4. PERFORMANCE EVALUATION
We have checked both the algorithms for different types of

input sequences and generated the binary tree.

4.1.Sample input sequences and output tree

in vertical fashion:
Supplied input sequence preorder: 1 2 4 8 9 5 3 6 7 and

inorder: 8 4 9 2 5 1 6 3 7 to the previous algorithm and our

proposed algorithm. Both the algorithm generates the same

output correct tree (shown in vertical fashion) as shown in

figure 3.

Fig 3: Correct Generated tree by the algorithm

Above produced binary tree is correct binary tree because we

can generate the same given preorder and inorder sequences

from it.

If we supplied the different input sequence preorder: 1 2 4 8 9

5 3 6 7 and inorder: 7 3 6 1 5 2 9 4 8 to both the algorithms.

We got a binary tree from the previous algorithm as shown in

figure 4. This tree is wrongly constructed. We are not able to

generate the same sequences from the generated binary tree.

Fig 4.A wrong binary tree has been constructed from the

previous algorithm.

In the same case our proposed algorithm performs better. It

generates an error message if the supplied input sequences are

not correct as shown in figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.10, April 2012

28

Fig 5: Error message has been generated if the supplied

input sequences are not correct.

If the input sequences are preorder: 1 2 3 4 5 6 7 and inorder:

7 6 5 4 3 2 1 then the correct binary tree can be constructed

using both the algorithms as shown in figure 6.

Fig 6: constructed binary tree.

5. CONCLUSION AND FUTURE SCOPE
The proposed solution has been successfully implemented in

C language and checked for the different input sequences. Our

proposed solution did not create a tree for a combination

which is not correct. Also in the future better algorithm can

be find out than the above proposed one which would further

reduce the complexity of the algorithm.

6. ACKNOWLEDGMENTS
Our thanks to Dr. A.K. Swami, Principal, G. B. Pant

Engineering College, Ghurdauri, for providing necessary

infrastructure for the research work. We would also like to

thank Mr. Sashi Kant Verma, Head, Department of

Computer Science and Engineering, G. B. Pant Engineering

College, Ghurdauri, for his unconditional and valuable

support in writing this paper.

7. REFERENCES

[1] Vinu V Das, “A new Non-Recursive Algorithm for

Reconstructing a Binary Tree from its Traversals”, IEEE

Comm., pp. 261-263, 2010

[2] Vinu V Das, “Principles of Data Structures Using C and

C++”, New Age International Publishers, Reading,

Mass., 2005.

[3] M. Weiss, Data Structures & Problem Solving Using

Java, 2"d ed., Addison Wesley, 2002

[4] D. E. Knuth, The Art of Computer Programming, Vol. 3

(2nd ed.): Sorting and Searching, Addison Wesley, 1998.

[5] J. Driscoll, and Y. Lien, A Selective Traversal

Algorithm for Binary Search Trees, Communications of

the ACM, Number 6, Vol. 21, 1978, pp. 445-447.

[6] R. Sedgewick, Algorithms in Java, 3d edition, Addison

Wesley, 2003

[7] D.E. Kunth, “The Art of Computer Programming”, Vol.

1:Fundamental Algorithm, Addison-Wesley, Reading,

Mass., 1973

[8] H.A. Burgdorff, S. Jojodia, F.N. Springsteel, and

Y.Zalcstein, “Alternative Methods for the Reconstruction

of Tree from their Traversals”, BIT, Vol. 27, No. 2, p.

134, 1987

[9] G.H. Chen, M.S. Yu, and L.T. Liu, “Non-recursive

Algorithms for Reconstructing a Binary Tree from its

Traversals”, IEEE Comm., Vol. 88, pp. 490-492, 1988.

