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ABSTRACT 

    In this paper, we present a new approach to identify 

multivariable Hammerstein systems based on the Singular 

Value Decomposition (SVD) method. The technique allows 

for the determination of the memoryless static nonlinearity as 

well as the estimation of the model parameters of the dynamic 

Auto-Regressive model with eXogenous input (ARX) part. 

First of all, an iteration procedure is proposed to identify the 

parameters of Multi-Input Multi-Output (MIMO) 

Hammerstein models by using the Recursive Least Squares 

(RLS) algorithm. Secondly, the obtained parameter estimates 

of the identification model include the product terms of the 

parameters of the original systems. So, to separate these 

parameters of the original parameters from the product terms, 

the singular value decomposition method is discussed. 

Finally, a simulation study is performed to demonstrate the 

effectiveness of the proposed method compared with the 

existing approaches.   
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1. INTRODUCTION 
    Transfer function models are used for design of control 

systems for mildly nonlinear systems. However, for highly 

nonlinear systems, the controller design based on the linear 

model may not be adequate. For such cases, the linear model 

based on a fixed controller will not give a satisfactory 

response. Indeed, a suitable nonlinear model representation 

will be desirable [16]. Two of the most frequently studied 

nonlinear systems are the Hammerstein and Wiener models 

where the nonlinear block is static and follows or followed by 

a linear system. A Hammerstein model consists of static 

nonlinear block followed by a linear dynamic block, and a 

Wiener model consists of linear dynamic block followed by a 

static nonlinear function. 

    To identify the Hammerstein model, a various system 

identification methods have been proposed in the literature. 

However, most of the methods focus on Single-Input Single-

Output (SISO) processes [4 – 10, 32]. The first work which 

developed an iterative identification procedure for 

Hammerstein model is presented by Narendra et al. [26]. 

Recently, to guarantee the global convergence of the model 

parameters in an iterative manner [14] developed an updating 

algorithm based on the Lyapunov approach. In addition, 

several approaches have been proposed to identify 

Hammerstein models in a non-iterative fashion. For examples 

Pottmann et al. in [27] proposed a two-stage identification 

algorithm to extract the model parameters. To separate the 

identification of the linear dynamic part from that of the static 

nonlinear part, Sung  in [29] used a special test signal. 

Laksminarayanan et al. in [19] proposed multivariate 

statistical tools to identify the Hammerstein models. Al-

Duwaish et al. in [2] used an hybrid model consisting of a 

neural network to identify the static nonlinear part in series 

with Auto-Regressive Moving Average (ARMA) model for 

identification of SISO and Multi-Input Multi-Output (MIMO) 

Hammerstein models. Several other identification and 

controller design methods for Hammerstein models were 

developed by [1, 20, 30]. 

    Although there are some methods that can handle MIMO 

processes [22], many of them assume the structure of the 

nonlinearity to be separate [28], i.e., the ith output of the 

nonlinear function is only affected by the ith input. neural 

networks or fuzzy logic [1, 2, 14, 15], and polynomial with 

cross-terms have often been used to deal with more general 

nonlinearities. Recently, several approaches have been 

proposed to identify MIMO Hammerstein models. For 

examples, Liu et al. in [22] extended Sung’s [29] decoupling 

method to MIMO systems, which however requires nonlinear 

optimization. Kwong et al. in [18] extended Ramos’s [28] 

method to MIMO models. They proposed an approach based 

on multivariable cardinal cubic spline functions to model the 

static nonlinearities. The proposed method is effective in 

modeling processes with hard and/or coupled nonlinearities.  

    The authors in [12, 13] presented a method for the 

identification of Hammerstein models based on Least Squares 

Support Vector Machines (LS-SVMs). It will be shown that 

the linear model parameters and the static nonlinearity can be 

obtained by solving a set of linear equations with size in the 

order of the number of observations. Hlaing et al. in [11] 

proposed a generalized Hammerstein model consisting of a 

static polynomial function in series with a time-varying linear 

model in order to model the Hammerstein-like multivariable 

processes whose linear dynamics vary over the operating 

space. An iteration procedure is proposed to identify the 

generalized Hammerstein model by using the Just-In-Time 

Learning (JITL) technique. 
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    For Hammerstein systems, the parameters from the 

identification model include the products of the original 

system parameters [3, 25], so separating the original 

parameters from the obtained parameter estimates of the 

product terms is required. The authors in [6 – 9] proposed a 

simple average method of separating parameters for 

Hammerstein models. Another separating parameter method 

is the singular value decomposition done by Bai in [3].  

    This paper presents an algorithm for identification of 

MIMO Hammerstein nonlinear systems by using the 

Recursive Least Squares (RLS) with an exponential forgetting 

factor and uses the singular value decomposition method to 

separate the system estimated parameters. 

     The paper is organized as follows. Section 2 describes the 

system formulation related to the MIMO Hammerstein 

models. Section 3 presents an identification algorithm to 

estimate the parameters of the system. Section 4 introduces a 

separating parameter method. The main results are given in 

section 5. Section 6 gives some conclusions. 

2. PROBLEM FORMULATION 
    Two possible structures as depicted in figures 1 and 2 can 

be used to describe a MIMO Hammerstein model depending 

on whether the nonlinearities are separate or combined [2, 

19]. The combined nonlinearity case is more general, but it 

can cause a very challenging parameter estimation problem 

because of the large number of parameters to be estimated 

[11]. Therefore, the MIMO Hammerstein model with separate 

nonlinearities will be considered in this paper (figure 2). As 

mentioned previously, the system consists of a static part 

which contains all the nonlinearity followed by a Linear Time 

Invariant (LTI) model 
1( )H q

 which contains all the 

dynamics of the process. 
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  are the system input, 

output and white noise with zero mean at time k respectively. 
fi(.)  are polynomials of a known order in the input as follows :  
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parameters. 

    Assume that the LTI system has the Auto-Regressive with 
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denote the linear system parameter matrices. 

    Assume that for k ≤ 0, uj(k) = 0, yj(k) = 0 and ej(k) = 0 for 

j {1, …, ny} and nA, nB, mj for j {1, …, nu}, ny and nu 

represent the order of the output, the order of the input, the 

order of the nonlinearity, the number of outputs and the 

number of inputs respectively.  

    This paper presents an identification algorithm to estimate 

the parameters i

k ja , i

k jb  and r

i  of the system in (2) from 

given input – output data {ui(k), yi(k)} and to evaluate the 

accuracy of the estimated parameters by simulation on 

computers. 

Fig 1 : MIMO Hammerstein model with combined 

nonlinearities. 
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Fig 2 : MIMO Hammerstein model with separate 

nonlinearities. 
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    The ith output equation from system (2) can be written as 

follows 

:
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where 1 2 y

j j j j

i i i i nA a a a 
 

 ,  for j  {1, 2, …, nA} and 

for i  {1, 2, …, ny}. 

    Then, we can write all the parameters of the system in (4) 

as a vector form :  

1 1
1

A B

u

T
n n

i i i i i nA A B B         (5) 

where 1 2 u

j j j j

i i i i nB b b b    ,   for j  {1, 2, …, nB} and 

for i  {1, 2, …, ny}. 

    Before closing this section, we observe that the 

parameterization of the MIMO Hammerstein model is 

actually not unique. For instance, any pair  1,j r

i i i iB    for 

some nonzero and finite constants δi provides an identical 

system as the one in (4). In the other words, any identification 

experiment cannot distinguish between the parameter vector 

sets  ,j r

i iB   and  1,j r

i i i iB   . Therefore, to obtain a unique 

parameterization, without loss of generality, one of the 

elements of  ,j r

i iB   has to be fixed. So, we adopt the 

following assumption : 

Assumption :  For system (4), assume that  
T

j r

i iB   are not 

zero and 
2

1r   or 
2

1j

iB   (
2

  stands for the 2-norm) 

where  r = 1, 2, … , nu,   i = 1, 2, … , ny   and   j = 1, 2, … , nB 

[1, 26]. 

3. IDENTIFICATION OF THE MIMO 

HAMMERSTEIN MODEL 
    Define the parameter vector 

i  and information vector 
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    Then, equation (4) is rewritten as :  

     T

i i iy k k e k                (8) 

    Equation (7) is formulated in a standard state space format 

for the nonlinear MIMO Hammerstein ARX system in (4). 

Note that  k and  k in the information vector  k are 

available.  

    We define the prediction error  i k by the following 

expression : 

       ˆ 1T

i i ik y k k k      (9) 

    The RLS method is an effective approach in online 

identification. 

    This technique is to discount old measurements so that the 

model adapts to the changing situation dynamically. The 

complete algorithm [17, 19, 32] of the RLS method for ARX 

modeling is given as follows [24] : 
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where   0 0xn n
P k  is the parameter estimation error 

covariance matrix with  
0 0

0 xP In n  , where α is a 

positive scalar. Also, λ(k) is an exponential forgetting function 

to discount old measurements and can be determined by the 

following first-order difference equation : 

     0
0 01 1k k         (11) 

where  0 0
00 1,  0 1 and lim

k
k   


     . 

    For the purposes of comparison, three different 

performance criteria have been computed. Namely, the Mean 

Square Error (MSE), the Variance Accounted For (VAF) and 

the best FIT criterion who are given by the following 

expressions, respectively :  
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where  iy k  denotes the real output,  ˆ
iy k  denotes the 

output of the model, M is the number of validation data and 
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 .Va r  denotes the variance of a quasi-stationary signal [24, 

25]. 

 
1 x100

 

i i v
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i i mean

Y Y
FIT

Y y

 
  
 
 

 (14) 

where Yi is a vector containing the output of the model when 

it is simulated with the validation input data, Yi v is a vector 

with the validation output data and yi mean is the mean value of 

the output yi [16]. 

4. SEPARTING PARAMETERS : 

SINGULAR VALUE DECOMPOSITION 

METHOD (SVD METHOD) 

    After getting the estimates of the parameter vector  ˆ
i k  

(for i  {1, …, ny}) by the above RLS algorithm, the following 

step is to obtain the estimated parameter vector  ˆ
i k  of i  

from the parameter vector  ˆ
i k . 

    Firstly, the estimates  ˆ j
iA k  of j

iA (for j  {1, …, nA}) can 

be read from the first nA . ny entries of the parameter vector 

 ˆ
i k . Secondly, to obtain the other parameters which 

include the estimates of the elements products of the 

parameter vector  ˆ
i k , the singular value decomposition 

method is discussed. 

    Under assumption 1 with 
2

1i   (for i  {1, …, nu}), the 

singular value decomposition method [25] is applied to 

decompose the parameter vector  ˆ
i k  of the ith 

Hammerstein  system. 

    To simplify the matrix expression, we omit (k) and denote 
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where 1 2ˆ ˆ ˆˆ Bn
j i j i j i jb b b  

 
  and for j  {1, …, nu}. 

    The problem is how to estimate the parameter vectors j  

and j from the estimate ˆ j
i . It is clear that the closest 

estimates ˆ
j  and ˆ

j , in the 2-norm sense, are those that 

solve the following optimization problem : 
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    The solution to this optimization problem is provided by 

the SVD of the matrix ˆ j
i . The result is summarized in the 

following theorem [4]. 

Theorem 1 :  Let  x mˆ n  have rank k > p, and let the 

economy-size SVD of j
i  be given by : 
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where k  is a diagonal matrix containing the k nonzero 

singular values  ,  1,...,i i k   of ̂  in nonincreasing order, 

the matrices    x 
1
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k kR r r    and 

   x 
1

m k
k kW w w    contain only the first k columns 

of the unitary matrices  x  x  and n n m mR W    is provided 

by the full SVD of ̂ , ˆ TR W  , respectively. Then, the 

matrices  x  x ˆˆ  and n p m pa b    that minimize the norm 
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and the approximation error is given by : 

2
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    Using this input, we can improve the linear part of the 

model. So, this algorithm can be summarized as follows: 

Algorithm : 

Step 1: Compute the least squares estimate  ˆ
i k  as in (10), 

and the matrix ˆ j
i  such that : 

 ˆ ˆblockvec j

i i    (21) 

Step 2: Compute the economy-size SVD of ˆ j
i  as in Theorem 

1, and the partition of this decomposition as in Eq. (19). 

Step 3: Compute the estimates of the parameter matrices j  

and j  as respectively : 

1
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5. SIMULATION EXAMPLES AND 

DISCUSSIONS 
    To illustrate the proposed identification approach, we 

introduce two simulation examples. Without loss of 

generality, a multivariable process with two inputs and two 

outputs will be utilized to detail the proposed identification 

procedure. 

5.1 Example 1 
    Consider a process with two inputs and two outputs 

described by the following equations : 
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where the nonlinearities are given by :  
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    The inputs     1 2,u k u k  are a multi-step signal sequence 

which shown in Fig. 3, and     1 2,e k e k  are a white noise 

sequence with zero mean and variance 2 20.1  . The output 

responses     1 2,y k y k  and their estimates are shown in 

Fig. 4 and Fig. 5 respectively. True nonlinearity and mean 

estimated nonlinearity are shown in Fig. 6 and Fig. 7 

respectively. 
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Fig 3. The training input sequence for  1u k  and  2u k . 

 

 

  

 

 

 

 

 

Fig 4. The 1st output and its estimate 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. The 2nd output and its estimate. 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. The 1st nonlinearity and its estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. The 2nd nonlinearity and its estimate. 

    By using the proposed method, the matrices in the ARX 

model and the vectors of the nonlinearities are converged to 
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    It is clear that the matrices  1Â k  and  2Â k  are closed to 

the same matrices in the ARX plant model. But the matrix 

 1B̂ k  and the vectors 1 2
ˆ ˆ and   are different from the model. 

This uncertainty is related to the SVD approach. However, the 

multiplication and the output of the system converged to the 

nonlinearities at the inputs which are shown in Figs. 4, 5, 6 

and 7. The different performance criteria with the SVD 

method between the actual and identified nonlinearities are 

shown in Table 1. 

 

 1st system 2nd system 

MSE 4.3804e-007 6.7237e-007 

VAF (%) 100.0000 100.0000 

FIT (%) 99.9734 99.9660 

 

Table 1. The different performance criteria 

 

5.2 Example 2 

    Consider a nonlinear process described by the Hammerstein 

system as follows : 
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where the nonlinearities are given by :  
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    The inputs     1 2,u k u k  are a multi-step signal sequence 

which shown in Fig. 8, and     1 2,e k e k  are a white noise 

sequence with zero mean and variance 2 20.1  . The output 

responses     1 2,y k y k  and their estimates are shown in 

Fig. 9 and 10 respectively. True nonlinearity and mean 

estimated nonlinearity are shown in Fig. 11 and Fig. 12 

respectively. 
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   Fig. 9. The 1st output and its estimate.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The 2nd output and its estimate. 
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Fig. 11. The 1st nonlinearity and its estimate.  

 

 

 Fig. 11. The 1st nonlinearity and its estimate 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The 2nd nonlinearity and its estimate. 

 

    By using the proposed method, the matrices in the ARX 

model and the vectors of the nonlinearity are converged to the 

following : 

1 2

1 2

0.6861 0.1968 0.1796 0.0987ˆ ˆ;  ;  
0.0995 0.4958 0.1468 0.1373

0.2329 0.0637 0.0455 0.0117
ˆ ˆ;  

0.3861 1.0093 0.0086 0.0243

A A

B B

   
    

   

   
    

   

 

   1 2
ˆ ˆ0.5794 0.5782 ; 0.9568 0.2183    

    The results were obtained using the same algorithm that the 

matrices  1Â k ,  2Â k ,  1B̂ k  and  2B̂ k  are closed to the 

same matrices in the ARX plant model. In the same way, the 

output of the system converged to the nonlinearities at the 

inputs which are shown in Figs. 9, 10, 11 and 12. The 

different performance criteria with the SVD method between 

the actual and identified nonlinearities are shown in Table 2.  

 1st system 2nd system 

MSE 1.1988 e-005 7.5143 e-007 

VAF (%) 100.0000 100.0000 

FIT (%) 99.9357 99.9578 

Table 2. The different performance criteria 

 

5.3 DISCUSSIONS 

   In this paper, MIMO Hammerstein model identification 

based on RLS algorithm and SVD method for decomposition 

of the linear and nonlinear parameters have been 

demonstrated for two simulation examples. This approach 

offers the advantage of being more general than the other 

approaches to present in other papers such as the LS-SVM 

approach presented by [13] and JITL approach presented by 

[11] of made that these two approaches consider that the 

matrices are selected equal to the identities, on the other hand 

in our approach we consider the case more general where B is 

unspecified. 

    It is important to know the conditions under which the 

RLS/SVD algorithm will converge. The RLS/SVD is a 

combination of the RLS and SVD algorithms. Hence, the 

convergence properties of the RLS/SVD algorithm are 

directly associated to the convergence properties of the RLS 

and SVD algorithms. For deterministic systems, it is well 

known that the RLS produces unbiased estimates of the 

parameters provided that the process order is known and the 

input is persistently exciting [23]. On the other hand, the 

linear model parameters and the static nonlinearity can be 

obtained simultaneously by solving a set of linear equations 

followed by the singular value decomposition (SVD). Then, 

by recurring to SVD and rank reduction, optimal estimates of 

the parameter matrices characterizing the linear and nonlinear 

parts can be obtained. 

    Comparing the nonlinearities in Figs. 6 and 7 in the first 

example and Figs. 11 and 12 in the second example, we can 

consider that the approach is satisfactory by identifying the 

nonlinearities. The inputs of the first example are shown in 

Fig. 3 and that of the second example are shown in Fig. 8. The 

comparison between real and estimate output curves of the 

system are given in Figs. 4 and 5 for the first example and 

Figs. 9 and 10 for the second example. 

    From Tables 1 and 2 and Figs. 3 to 12, we can infer the 

following conclusions: 

 The parameter estimates provided by the identification 

algorithm converge to their true values. 

 The responses of the original system and the identified 

system are very similar. 

 It is clear that the errors are becoming smaller as k 

increases. This remark confirms the proposed algorithm. 

 For the same data length, the recursive algorithm gives 

good estimated parameters. 

 The convergence of the estimated parameters to their 

true values. 

 The MIMO Hammerstein model outperforms the 

estimates model for each of the three considered criteria. 

This state shows that the proposed algorithm is 

effective. 

6. CONCLUSION 

    Exhaustive simulations have been used to study the 

convergence properties of the RLS/SVD algorithm and to 

study the effects of the type of static nonlinearity, and noise 

on the behavior of the RLS/SVD algorithm. In all cases, 

strong convergence is observed provided that some guide 

lines are followed. 
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    In this paper, we have proposed a new technique for the 

identification of MIMO Hammerstein ARX systems. The 

method is based on recursive least squares (RLS) 

approximation and allows to determine the memoryless static 

nonlinearity as well as the linear model parameters from a 

linear set of equations. The obtained estimated parameters of 

the identification model include the products of the original 

system parameters. To separate the estimated parameters into 

the original parameters, the singular value decomposition 

(SVD) method is discussed. Moreover, the proposed method 

is applicable to MIMO systems with separate or combined 

nonlinearities. The recursive algorithm is a novel combination 

of RLS and SVD algorithms. Simulation results reveal the 

robustness and effectiveness of the proposed method. 
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