
 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

21

A Study of In-depth Issues Surrounding Object Oriented

Languages using Object Oriented Design Patterns

Clarence J M Tauro

Christ University
Bangalore, India

N Ganesan

Director (MCA)
RICM, Bangalore

Krishna Priya R

Christ University
Bangalore, India

Bhavya F

Christ University
Bangalore, India

ABSTRACT

In this competitive world, all enterprises depend on the IT as

their active support for various purposes. As a result the

software projects are becoming larger and more complex.

Hence the developers face challenge of developing the

complex software’s more quickly. The best solution to this is

the concept of Reuse [1]. Through object oriented analysis

pattern it is possible to solve the problems occurring in

software development through its reusable capacity [1]. Good

OO designs are reusable and stable nature, this provides the

ability of this pattern to be used in Other applications which

share the same knowledge[7]. Patterns show you how to build

systems with good OO design qualities. The main aim of

“object oriented analysis pattern” is to provide expert solution

to recurring business problem and to produce more reliable

conceptual design. In this paper, we formally give an

overview on the state of Object-oriented modeling using

patterns and classification of analysis pattern and

development on analysis pattern and also the applications of

analysis patterns

General Terms

Object Oriented Programming, Object Oriented Analysis

Patterns.

Keywords

Design pattern, reusable, analysis patterns, development,

applications, Unified Modeling Language, Flexible Pattern

Oriented Modeling, Validation and Optimization Method.

1. INTRODUCTION
The main idea of Object oriented Analysis is to study and

model a given problem domain, user requirements by means

of identifying and defining classes and their objects found in

the specified domain. It mainly focuses on what the system

should rather than how it should do. A pattern is a recurring

motif, an event or structure that occurs over and over

again[14]. Design patterns are a popular and successful

means of implementing flexible and reusable software

systems [11][12]. It describes the communication of objects

and classes that are customised to solve a general design

problem in a particular context[15]. Among these Pattern

analysis is one of the forms of Object Oriented Analysis. It is

a general reusable solution to solve the problems occurring in

software design [1]. And also in software development,

conceptual models are usually used to develop good

understanding of the main concepts in the problem domain

and also facilitates communication between developers and

stake holders[5]. Patterns are basically a description or

template for how to solve the problems occurring in many

different situations. Object-oriented design patterns basically

shows the relationships and interactions between classes or

objects, without specifying the final application classes or

objects that are involved. Applying design pattern enables

developers to reuse it to solve a specified designing issue.

Design patterns help designers communicate architectural

knowledge and also help people learn a new design paradigm,

various patterns have been developed for each phase of

software development that involves the concept of re-use:

analysis patterns for the analysis phase, design patterns for the

design phase. The distinguishing feature of patterns is that

they provide expert knowledge for certain problems that have

been formatted for re-use, allowing the faster development of

more flexible applications which, through the use of tried and

tested solutions. Effective use of this helps in enormous cost

reduction since we avoid many possible faults which are very

crucial in development. In this section we will overview of

state of object oriented modeling and classifications of

analysis patterns and development on analysis pattern and also

the applications of analysis patterns.

2. OVERVIEW OF THE STATE OF THE

OBJECT ORIENTED MODELLING
The basic idea behind OOA is to analyze a problem domain,

and develop a conceptual model that can then be used to

complete the task. While analyzing a particular problem the

developer should consider what requirements needs to be met

by the system. The conceptual model that results from OOA

will typically consist of a set of use cases, interaction

diagrams etc. As denoted by its name an OOAP regards itself

as a pattern used in the OOA. It is basically an abstraction of a

group of related generic objects with expected relationships

which is likely to be helpful again and again in object oriented

development [2]. Analysts can reuse and incorporate analysis

patterns into their work to address their problems related to

their application area. Hence they can effectively utilize their

mailto:bhavyaf09.a@%20cs.christuniversity.in

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

22

time and resources consumed in the conceptual modeling.

Also, analysis patterns can allow other analysts to benefit

from the experience of pattern designers

Benefits brought by OOAP are:

• Concept of Reuse – This is one of the major

benefits. By reusing the existing designs the

analysts can solve various repeated problems. They

need not have to invent the solutions again. They

will just need to reuse it according to their

application needs. This can minimize the effort, as

well as time and cost.

• Establish common terminology – from a solution

readability and understandability perspective,

analysis patterns provide a common base

vocabulary and a common viewpoint of the problem

for system analysts.

• Promote modeling quality – as promoting proven

knowledge and solution to a recurring business

problem, analysis patterns can give some

indications to entire stakeholders about the quality

of the overall conceptual model. Particularly,

system analysts get the benefit of learning from the

experience of others. A preliminary study has

highlighted the effectiveness of applying analysis

patterns in helping the analyst identity missing

classes, associations and aggregations [2].

3. CLASSIFICATION OF ANALYSIS

PATTERN
As there is increase in the number of patterns, it is very

important to develop proper methodologies and techniques on

how to classify them. Domain analysis makes a necessary

contribution in supporting systematic reuse[10]. Pattern

classification is the organization of patterns into groups of

patterns sharing the same set of properties [1]. There are

various criteria based on which the patterns are classified like

discipline, domain, paradigm, scope, purpose etc. Through

design patterns it is possible to solve the problems occurring

in design issue. Design patterns help designers communicate

the structural knowledge, help people learn new design

categories and help new developers by committing errors and

facing difficulties that have been traditionally learned only by

costly experiences. There are various design patterns like

Strategy Pattern, Sampling Pattern, Iterator Pattern, Adapter

Pattern and Façade Pattern.

3.1 Sampling Pattern
This pattern represents the process of selecting a small portion

or piece of items as a sample to represent a larger item or

group of items [7]. Sampling is a widely used term that has

several built-in essential characteristics, such as its capacity to

cover multiple areas of application, its ability to enclosed

distinct selection methods within its core mechanism for

sampling, and the sampling capability itself which provides

the base for today’s used sampling techniques

3.2 Strategy Pattern
Strategy Pattern is an encapsulation of algorithms. It basically

separates algorithm itself and assigns different objects to

them. As shown in Fig 1, generally Strategy Pattern

encapsulates a family of algorithms into a Strategy of classes

as the subclass of an abstract Strategy super class. The

strategy pattern uses composition instead of inheritance and

also in strategy pattern behaviors are defined as separate

interfaces and specific classes that implements these

interfaces. Specific classes encapsulate these interfaces. This

allows better decoupling between the behavior and class that

uses the behavior.

Fig 1: Strategy Pattern Diagram

The significant drawback of this approach is behaviors must

be declared in each new sub class and managing of these

behaviors increases greatly as the number of model increases

and requires code to be duplicated across models and also it is

not easy to determine exact nature of the behavior for each

model.

3.3 Iterator Pattern
The Iterator pattern provides a way to access the elements of

an aggregate object sequentially without exposing its

underlying representation and it also gives you a way to step

through the elements of an aggregate without having to know

how things are represented under the covers. The effect of

using iterators in your design is very important: once you have

a uniform way of accessing the elements of all your aggregate

objects, you can write polymorphic code that works with any

of these aggregates, without caring if the elements are held in

an Array or ArrayList, as long as it can get hold of an Iterator.

The other important impact on your design is that the Iterator

Pattern takes the responsibility of traversing elements and

gives that responsibility to the iterator object, not the

aggregate object. Fig 2 shows the architecture of Iterator

pattern. Here remove method is considered optional where it

is not necessary to provide remove functionality but we need

to provide the method because its part of the Iterator

interfaces. The primary purpose of Iterator is to allow a user

to process every element of a container while isolating the

user from the internal structure of the container.

Fig 2:Iterator Pattern class diagram

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

23

3.4 Adapter Pattern
The Adapter Pattern converts the interface of a class into

another interface the clients expect. Adapter lets classes work

together that couldn’t otherwise because of incompatible

interfaces. The job of implementing the adapter is really

proportional to the size of the interface you need to support as

your target interface.

There are two kinds of adapters: object adapters and class

adapters [6]. The two diagrams specified in Fig 3 and Fig 4

look similar. The only difference is that with class adapter we

subclass the Target and the Adapter, while with object adapter

we use composition to pass requests to an Adapter. There are

some issues to be mentioned while considering object adapter

and class adapter pattern.

Fig 3:Object Adapter Pattern Class Diagram.

Fig 4: Class Adapter Pattern Class Diagram

3.4.1 Issues in Adapter Pattern
Object adapter pattern use composition, it can not only adapt

an adapter class, but any of its subclasses. Class adapter

pattern do have trouble with that because it’s committed to

one specific adapter class, but it have a huge advantage

because it doesn’t have to re implement its entire adapter.

Class adapter pattern can also override the behavior of my

adapter if it need to because it’s just sub classing. In object

adapter pattern, we like to use composition over inheritance;

class adapter may be saving a few lines of code, but all class

adapter is doing is writing a little code to delegate to the

adapter. Object adapter can keep things flexible. Using a class

adapter there is just one of that, not an adapter and an adapter,

which means efficiency. In general the adapter acts as the

middleman by receiving requests from the client and

converting them into requests that make sense on the vendor

classes, without changing your existing code .The Adapter

Pattern’s role is to convert one interface into another. While

most examples of the adapter pattern show an adapter

wrapping one adapter, we both know the world is often a bit

messier. So, you may well have situations where an adapter

holds two or more adapters that are needed to implement the

target interface.

3.5 Fascade Pattern
The Façade Pattern provides a unified interface to a set of

interfaces in the sub-system. It provides a higher level

interface that makes the subsystem easier to use. It also allows

us to avoid tight coupling between clients and subsystems,

and also helps us adhere to a new object oriented principle.

Façades don’t “encapsulate” the subsystem classes; they

merely provide a simplified interface to their functionality.

The subsystem classes still remain available for direct use by

clients that need to use more specific interfaces. This is a nice

property of the Façade Pattern: it provides a simplified

interface while still exposing the full functionality of the

system to those who may need it. As shown in Fig 5, façade is

free to add its own “smarts” in addition to making use of the

subsystem and also allows to decouple the client

implementation from any one subsystem.

Fig 5:Façade Pattern Class Diagram

4. DEVELOPMENT OF ANALYSIS

PATTERN
There are four main approaches that have been used to

develop analysis patterns. They are the direct approach,

specialization approach, analogy approach, and stability

approach. The Fowler's (1996) analysis patterns belong to the

direct approach category [2]. They are not generalized or

abstracted further after they are identified. In the

specialization approach, identified patterns are abstracted so

that they are easier to apply themselves in similar and related

applications than those patterns formed by direct approach.

Analysis patterns described in Coad et al.’s belong to this

approach. In the analogy approach, patterns are abstract to

construct templates such as “Resource Rental” pattern (Braga

et al., 1998) [3]. An analogy between the analysis pattern and

the new application is conducted in order to adopt the

identified pattern template to fit into the new application.

Finally, the stability approach is a layered approach for

developing new application. All these different approaches

share the common theme of capturing core knowledge of the

real-world problem for future modeling [2]. The Unified

Modeling Language (UML), can be used to represent

structural and behavioral information as part of commonly

occurring object analysis patterns[8]. We can also specify

design pattern transformations to evolve pattern instances like

refactoring transformation and Design pattern transformation

[13].

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

24

5. APPLICATION OF ANALYSIS

PATTERN
There are various applications of analysis pattern. Code

pattern is one of the analysis patterns which plays an

important role in understanding the run time behaviors of OO

systems[9]. Application of analysis pattern can be shown in

certain methods. And these methods are presented in the

simplified software development process which is shown in

the Fig 6.

This consists of the analysis of the requirements, the creation

of the analysis model, the creation of the design model, and

the implementation. The methods presented develop the

creation phase of the analysis model to a higher degree, with

the analysis pattern application explicitly not being limited

only to the static aspects of the model, but also extending to

the dynamic ones.

Fig 6: Simplified Software development process

Flexible Pattern Oriented Modeling Method (PMM), as well

as the Validation and Optimization Method (VOM) are the

two basic methods of the application of analysis patterns. All

the methods that have been previously introduced can be

subsumed under them. They were named according to their

properties as they affect the way of pattern application. They

are illustrated in the form of a UML activity diagram. Both

methods require the availability of one or more sources of

analysis patterns (e.g. pattern catalogue) they are, however,

designed in such a way that they allow modeling even when

there is no support from analysis patterns available.

5.1 Flexible Pattern-Oriented Modeling

Method (PMM)
The Fig 7 shows the sequence of the Flexible pattern –

oriented modeling method. This method is characterized by

the integral use of analysis patterns in the analysis model

development. It allows the use of analysis patterns at every

stage of the creation of the model.

The method starts after the requirements analysis and,

depending on the available patterns, begins either with the

identification of the central classes of the model (identify

central classes), or directly with the determination of a part of

requirements for which a pattern is searched (select new part

of requirements). The first alternative turns out to be useful

for specific pattern catalogues. If the patterns of COAD et al.

(1995) are used [3], their low complexity requires that the

process begins with the modeling of the central classes, and

the model is only completed afterwards with the support of

patterns. If no matching pattern can be found for the

requirements under consideration (no matching pattern

found), the corresponding part of the model has to be modeled

by hand (model selected part of requirements from scratch).

If, on the other hand, a matching pattern is found (matching

pattern found), then this is instantiated (instantiate analysis

pattern) and subsequently integrated into the model (integrate

analysis pattern into model). Then either the search for

another analysis pattern begins, (analysis model not complete)

or the model is complete and the design phase can be

commenced. As we shall see later the PMM combines the

known approaches for the application of analysis patterns

from the literature in a flexible manner. Particular value was

put on the method allowing it to be adapted to the available

analysis patterns at every stage of the model development. In

particular the PMM can (formally) also be applied if only a

pattern catalogue of limited size is available.

Fig 7: Flexible Pattern oriented Modeling method

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

25

5.2 Validation and Optimization Method

(VOM)
The sequence of the Validation and Optimization Method

(VOM) is shown in Fig 8. With this method analysis patterns

are applied only after completion of the analysis model; the

existing model is then validated and optimized with the help

of matching analysis patterns. The creation of the analysis

model and the review of the model with analysis patterns do

not have to be carried out by the same people. The method

can also be applied, therefore, in order to improve older

models or models that were created by others. For example,

when advisers join a project that has already been started,

with VOM they can check the existing analysis model. After

the requirements analysis the analysis model is modeled

without pattern support (model selected part of requirements

from scratch). This activity is continued until the model

appears to be complete (analysis model complete). Finally, the

model is validated and optimized with analysis patterns. All

the patterns that match the problems solved in the analysis

model have to at first be searched for – e.g. in a pattern

catalogue (Search for analysis pattern). If no matching

patterns are found (no matching patterns found), the design

phase is commenced. If at least one matching pattern is found,

then the first pattern (either the only one or the most suitable

one) is compared to the model in order to detect deficits and

find opportunities for optimization (compare model to one

analysis pattern). If an enhancement is necessary or possible

(enhancement necessary), it is carried out (enhance model). If

no Enhancement is necessary; the pattern is marked in the

model in order to improve the documentation and the

comprehensibility (mark pattern in model). If the review of

the model is complete, with all patterns found having been

applied, the design phase can be commenced (model

Reviewed completely). If the review is not yet complete, the

model is compared to the next pattern, and so on. With this

method analysis patterns are applied only after completion of

the analysis model; the existing model is then validated and

optimized with the help of matching analysis patterns. The

creation of the analysis model and the review of the model

with analysis patterns do not have to be carried out by the

same people. For example, when advisers join a project that

has already been started, with VOM they can check the

existing analysis model.

Fig 8: Validation and Optimization method

5.3 Example for the Application of

Analysis Patterns

5.3.1 Party Relationship Pattern
Party relationship pattern describes the parties and the

relationships between parties in a trading community. Various

problems that arise when we consider the context where

organizations in a trading community need to interact with

various other organizations. The Companies or organizations

need to interact with many other organizations or individuals

to conduct their business. Those organizations may have

complex relationships with the organization and with each

other. How do we model the complex relationship between

parties so that the company knows the answers to the

following key questions at all times: Who are my customers?

How are they related to each other? What are their

characteristics? Who are my competitors? Who are my

partners? Who are my suppliers?

The solution for the above problem is affected by the

following forces:

• We need to know how other parties are related to

our organization so our interactions with them are

appropriate and effective.

• Parties can be individuals or organizations, and we

want to consider both types.

• An organization is itself a party.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

26

• Parties can be related to each other in more than one

way in a peer or hierarchical fashion.

• A party can have many relationships with the

company, and furthermore, the relationships are

dynamic, they can change at any given time.

• Relationships are reciprocal; they can be

organization-to-organization, person-to-person, or

organization-to-person.

• We need to model inter- and intra- organization

relationships, and non-business relationships.

• Spouse Of or Child Of are examples of non-

business relationships.

• We need to describe any type of relationship,

including the ability to capture branches,

competitors, resellers, business partners, etc.

Fig 9: Class diagram for the Party Relationship pattern.

The Fig 9 describes the class diagram for the Party

Relationship Pattern. Here Party can be a Person or an

Organization that is of interest in a business context. Person is

a unique individual of interest to the organization.

Organization is a legal entity recognized by some government

authority, i.e. a branch, a subsidiary, a legal entity, a holding

company, etc. Party relationship links two Parties to indicate

the nature of the relationship between them. This association

may also indicate the direction of the relationship, superior or

subordinate, as well as their roles in the relationship. For

example, in an employee/employer relationship, employee is a

role while and employer is another role. Some example

relationships are: Client of/Contractor to, Supplier

to/Distributor for, Seller to/Customer of, Reports to/Manager

of, Employer of/Employee of, and Partner of.

6. CONCLUSION
In this paper we have given an overview on the importance of

pattern analysis mainly in reusing the existing design patterns

and finding the solutions for various repeatedly occurring

problems in software design. We have explained about the

different steps involved in analyzing a problem and

developing a design pattern and also the classifications of

patterns. We have also given a few commonly used analysis

patterns and also described various methods used to solve the

repeatedly occurring problems.

7. REFERENCES
[1] Jiang Shuai; Mu Huaxin; "Design patterns in object

oriented analysis and design," Software Engineering and

Service Science (ICSESS), 2011 IEEE 2nd International

Conference on, vol., no., pp.326-329, 15-17 July 2011

[2] Felix Leung, Narasimha Bolloju; "Object-oriented

Analysis using Patterns", http://www.pacis-

net.org/file/2005/398.pdf.

[3] Nicolas Blaimer, Andreas Bortfeldt, Giselher Pankratz

"Patterns in Object-OrientedAnalysis",

http://www.fernunihagen.de/wirtschaftswissenschaft/dow

nload/beitraege/db451.pdf

[4]Mei Fullerton, Eduardo B. Fernandez, “Analysis Pattern

for Customer Relationship Management (CRM)”,

http://www.cse.fau.edu/~security/public/docs/CRMPatt

Mar05.pdf

[5] Chen, Y.; Hamza, H.S.; Fayad, M.E.; , "A framework for

developing design models with analysis and design

patterns," Information Reuse and Integration, Conf,

2005. IRI -2005 IEEE International Conference on. ,

vol., no., pp. 592- 596, 15-17 Aug. 2005 doi:

10.1109/IRI-05.2005.1506538

[6] Xiaoxi Chen; Jia Chen; Shengwen Zhang; Lili Sui; ,

"Application of adapter pattern in container ship stowage

system," Industrial and Information Systems (IIS), 2010

2nd International Conference on , vol.1, no., pp.120-123,

10-11 July 2010 doi: 10.1109/INDUSIS.2010.5565897

[7] Sanchez, H.A.; Binbin Lai; Fayad, M.E.; , "The sampling

analysis pattern," Information Reuse and Integration,

2003. IRI 2003. IEEE International Conference on , vol.,

no., pp. 601- 608, 27-29 Oct. 2003 doi:

10.1109/IRI.2003.1251472

[8] 12Konrad, S.; Cheng, B.H.C.; Campbell, L.A.; , "Object

analysis patterns for embedded systems," Software

Engineering, IEEE Transactions on , vol.30, no.12, pp.

970- 992, Dec. 2004 doi:

10.1109/TSE.2004.102

[9] Chung-Chien Hwang; Shih-Kun Huang; Deng-Jyi Chen;

Chen, D.T.K.; , "Object-oriented program behavior

analysis based on control patterns ," Quality Software,

2001. Proceedings.Second Asia-Pacific Conference on ,

vol., no., pp.81-87, 2001 doi:

10.1109/APAQS.2001.990005

[10] Cohen, S.; Northrop, L.M.; , "Object-oriented technology

and domain analysis," Software Reuse, 1998.

Proceedings. Fifth International Conference on , vol.,

no., pp.86-93, 2-5 Jun 1998 doi:

10.1109/ICSR.1998.685733

[11] Mens, T.; Tourwe, T.; , "A declarative evolution

framework for object-oriented design patterns," Software

Maintenance, 2001. Proceedings. IEEE International

Conference on , vol., no., pp.570-579, 2001 doi:

10.1109/ICSM.2001.972774

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995

[13] C. Kramer and L. Prechelt. Design recovery by

automated search for structural design patterns in object-

oriented software. In Proc. Working Conf. Reverse

Engineering, pages 208–215, 1996.

http://www.cse.fau.edu/~security/public/docs/CRMPattMar05.pdf
http://www.cse.fau.edu/~security/public/docs/CRMPattMar05.pdf

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.8, March 2012

27

[14] Nierstrasz, O.; Demeyer, S.; , "Object-oriented

reengineering patterns," Software Engineering, 2004.

ICSE 2004. Proceedings. 26th International Conference

on , vol., no., pp. 734- 735, 23-28 May 2004 doi:

10.1109/ICSE.2004.1317511

[15] Dori, D.; Perelman, V.; Shlezinger, G.; Reinhartz-Berger,

I.; , "Pattern-based design recovery from object-oriented

languages to object process methodology," Software -

Science, Technology and Engineering, 2005.

Proceedings. IEEE International Conference on , vol.,

no., pp. 77- 82, 22-23 Feb. 2005 doi:

10.1109/SWSTE.2005.1

