
 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

26

Automatic Test case Generation From UML State Chart

Diagram

Ranjita Swain1, Vikas
Panthi2

Rourkela Institute of Mgt.
Studies, Rourkela

1

National Institute of
Technology, Rourkela

2

Prafulla Kumar Behera
Dept. of Comp. Sc.,and

Application
Utkal University,

Bhubaneswar

Durga Prasad Mohapatra
Dept. of Comp. Sc. and Engg.,

National Institute of
Technology, Rourkela

ABSTRACT

More than 50% of software development effort is spent in

testing phase in a typical software development project. Test

case design as well as execution consumes a lot of time. So

automated generation of test cases is highly required. We

present a testing methodology to test object oriented software

based on UML state chart diagrams. In our approach we

apply function minimization technique and generate test

cases automatically from UML state chart diagrams. Here,

first the state chart diagram is constructed. Then the diagram

is traversed. Here, we perform a DFS to select the associated

predicates. After selecting the predicates, we guess an initial

dataset. These conditional predicates are, then transformed to

generate test cases automatically. Our technique achieves

adequate test coverage without unduly increasing the number

of test cases. Our approach achieves many important coverage

like state coverage, transition coverage, transition pair

coverage etc.. This paper also describes how minimization

technique is used in testing.

Keywords

Unified Modelling Language, State Chart Diagram, Function

Minimization Technique, Test Cases, FSM or EFSM, Model

Junit.

1. INTRODUCTION
Testing activities consist of designing test cases that are

sequences of inputs, executing the program with test cases,

and examining the results produced by this execution. Testing

can be carried out earlier in the development process so that

the developer will be able to find the inconsistencies and

ambiguities in the specification and hence will be able to

improve the specification before the program is written [12].

It is still a major problem to meet the requirement

specification for the systematic production of high-quality

software. Many researchers are doing research on to find

effective test cases to minimize time and cost. Hence, it is

important to generate test cases based on design specifications

[23].

Unified Modeling Language has become the de facto standard

for object-oriented modeling and design. It is widely accepted

and used by industry [4]. The complexity of system testing

can possibly be attributed to the fact that it involves testing a

fully integrated system that may be large and complex. Not

surprisingly, system testing of typical systems often

overwhelms manual test design efforts. Therefore, with

continually increasing system sizes, the issue of automatic

design of system test cases is assuming prime importance

[25]. UML models are popular not only for designing and

documenting systems; the importance of UML models in test

case design has also been well recognized [25].

The information about a system is distributed across several

model views of a system, captured through a large number of

diagrams. UML models are intended to help reduce the

complexity of a problem, with the increase in product sizes

and complexities. Still, the UML models themselves become

large and complex involving thousands of interactions across

hundreds of objects. Many present day software products are

state based. In such systems, the system behaviour is

determined by its state. In other words, a system can respond

differently to the same event in different states. Therefore,

unless a system is made to assume all its possible states and

tested, it would not be possible to uncover state-based bugs.

Adequate system testing of such software requires satisfactory

coverage of system states and transitions. Generation of test

specifications to meet these coverage criteria can be

accomplished by using the state model of a system. It is a

major problem to meet the requirement specification for the

Systematic production of high-quality software. However, it is

a non-trivial task to manually construct the state model of a

system. Therefore, with continually increasing system sizes,

the issue of automatic design of system test cases is assuming

prime importance [25]. A properly generated test suite may

not only locate the errors in a software system, but also help

in reducing the high cost associated with software testing.

The UML state model of an actual system is usually

extremely complex and comprises of a large number of states

and transitions. Possibly for this reason, state models of

complete systems are rarely constructed by system developers

[25]. In case of component-based software development, test

case generation based on program source code proves to be

inadequate, where even the source code may not be available

to the developers. Hence, it is important to generate test cases

based on design specifications [23].

With this motivation, we fix our objective on test case

generation, automatically, using UML state chart diagram.

The rest of the paper is structured as follows: A brief

discussion on UML diagrams is described in the Section 2.

Then, we discuss some basic concepts of UML State chart

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

27

diagram in Section 3. In Section 4, we explain our

methodologies for construction of state chart diagram and test

cases generation of using state chart diagram. Section 5

provides the working of our methodology with the SVM (Soft

drink Vending Machine) case study. Section 6 explains an

implementation of our approach and the experimental studies

with result analysis. Section 7 discusses some related work.

Finally, Section 8 concludes the paper.

2. UML DIGRAMS
The Unified modelling language is a visual language for

specifying, constructing and documenting the artefacts of

system [29]. Hence the definition indicates that UML is a

language for modelling and representation of systems in

general. It reflects various views of a system, in order to

capture its different aspects.

UML 2.0 is a whole extensive and more complex than earlier

version. The extent of UML documentation has also further

increased. The system model consists of four different views

each of which emphasizes certain aspects and which are

closely related to each other. UML specification defines two

major kinds of UML diagram: structural diagrams and

behavioral diagrams.

Structural diagrams show the static structure of the system

and its parts on different abstraction and implementation

levels and how they are related to each other. The elements in

a structure diagram represent the meaningful concepts of a

system, and may include abstract, real world and

implementation concepts.

Behavioural diagrams show the dynamic behavior of the

objects in a system, which can be described as a series of

changes to the system over time.

A state chart diagram specifies the possible states that a model

element may assume, the transitions allowed at each state, the

events that can cause transitions to occur and the actions that

may occur in response to events. Events, states and transitions

are the basic components of a state charte diagram. States of

an object are essentially determined by the values that certain

variables (attributes) of the object may assume. Conceptually,

an object continues to remain in a state, until an event causes

it to transit to another state. An event is any noteworthy

occurrence. An event occurrence may be of some

consequence to the system. However, the same event can have

different effects (or may even have no effect) in different

states. A transition is a relationship between two states

indicating a possible change from one state to another. Figure

1 shows the state chart diagram depicting the behaviour of the

objects in a simple state chart diagram. A state in a state chart

diagram can either be simple or composite type. A simple

state does not have any sub-states. A composite state, on the

other hand, consists of one or more regions. A composite state

can either be sequential or concurrent. A composite state can

be in any one of its sub-states, but not in more than one sub-

state at any time. On the other hand, in a concurrent type, the

state is determined by an object and logic of its sub-states [1].

The object is considered to be in all the concurrent states at

the same time.

3. BASIC CONCEPTS
In this section, we discuss some basic concepts which will be

used subsequently in our paper. A state chart can be

summarized by the following statement:

Usually, a state chart exists in a current state. When an event

occurs, the state chart may take an action and may make a

transition into a new state. A range of representations exist

for modelling the behaviour of a state chart in the design of

the software.

Enrollment
Being Toughtterm startedterm started Final Examclasses Endclasses End

CancledCancled

ClosedClosed

Fig. 1. A Simple state chart diagram Showing States &

Events

 State : The state of a state chart will normally be represented

in software by a state variable, represented by a discrete data

type. A state chart has a fixed set of possible states. The

properties and behavior of the state chart are identical

whenever it is in a particular state. A state is an abstraction of

the values and links of an object. Sets of values and links are

grouped together into a state according to the gross behaviour

of the object [25]. For example, the state of a bank could be

either solvent or insolvent, depending on whether its assets

exceed its liabilities. It is generally represented by a rectangle

with rounded corners.

 A state may be subdivided into multiple compartments,

which are separated from each other by horizontal lines. The

different compartments of a state are: Name compartment is

optional which holds the name of the state as a string. Internal

activities compartment contains a list of internal actions or

state activities that are performed while the element is in the

state. Internal transitions compartment contains a list of

internal transitions. An internal transition executes without

exiting or re-entering the state in which it is defined. The

Possible states of an object are as follows :

 Initial state: A transition leading from an initial event shows

the state that an object goes into when it is created or

initialized. This is shown as a small black disk. A state chart

diagram can have only one initial state.

Final state: Like initial state the state diagram shows final

state. It represents the state reached when an object is

destroyed, switched off or stops responding to events. This is

shown as a small black disk within a large circle. A state chart

may have more than one final state.

Activity state: An activity state represents a period of time

during which an object is performing some internal

processing. As such it is shown as a normal state that contains

only an activity. For example, as soon as customer‟s input to

a transaction is complete the activity state becomes active,

corresponding to the vending machine working out whether it

is capable of returning the change required to complete the

transaction.

Event: An event is caused by inputs to a state chart. In

response to an event, a state chart may take an action and

make a transition to a new state. In any particular state, some

events will cause associated transitions to new states, whilst

other events will not cause transitions. An event is also an

occurrence at a point of time. Events often correspond to

verbs in the past tense e.g.(power turned on, alarm set) or to

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

28

the honest of some condition e.g.(paper tray becomes empty,

temperature becomes lower than freezing) etc.[5].

Action : Associated with a particular state and event may be

an action. An action may include a transition to a new state,

but may also result in an output from the state chart.

Transitions and Conditions: Transition is an instantaneous

change from one state to another.

Ordered In Maintenance

Scheduled for Maintenance

Ready For Use

Plane Delivered/

Complete Flight[No More Flights]
Plane Available/

Plane not Available/

Scheduling Plane for Maintenance/

Plane Delivered/

Complete Flight[No More Flights]
Plane Available/

Plane not Available/

Scheduling Plane for Maintenance/

Fig. 2. State chart diagram of Flight Object showing

Transitions and Guard Conditions

For example, when a called phone is answered, the phone

transitions from the ringing state to the connected state.: A

transition is triggered by an event occurring in a particular

state. In response to the event, a transition is made from one

state of a state chart (the current state before the transition),

to another state of a state chart (the new state after a

transition).

 A guarded transition fires when its event occurs, but only

if the guard condition becomes true. A guard condition is

checked only once, at the time the event occurs. The transition

fires if the condition is true. The UML syntax for a transition

is:

event-name argument-list [guard predicate]/action-

expression

4. TEST CASE GENERATION FROM

STATE CHART DIAGRAM
In this section, we describe our proposed approach to generate

test cases automatically from UML state chart diagrams. First

we present few definitions and the relevant test coverage

criteria, which will be required in our approach. Then, we

describe our approach for the generation of test cases.

4.1 Some Basic definitions

The following terms will be used to describe our

methodology.

Def 1 Test case: A test case normally consists of a unique

identifier, requirement references from a design specification,

preconditions, events, a series of steps (also known as actions)

to follow, input, output, expected result, and actual result.

Clinically defined a test case is an input and an expected

result. A test case in software engineering is a set of

conditions or variables under which a tester will determine

whether an application or software system is working

correctly or not [30].

 A test case is the triplet [I, D, O], where I is the initial state of

the system at which the test data is input, D is the test data

input to the system and O is the expected output of the system

[18], [19]. The output produced by the execution of the

software with a particular test case provides a specification of

the actual software behaviour.

Def 2 A State chart graph: It is a diagram, which can be

viewed as a graph called a state chart graph G = (N, T),

where N is the set of nodes (vertices) of G and T is the set of

edges. In G, nodes represent states and edges represent

transitions between states. Without any loss of generality, we

assume that there is a unique node that corresponds to the

initial state and that one or more nodes represent the final

states. The initial state is represented as the root of the tree.

States at each level of nesting are considered as a sub graph.

Sub states of a composite node will become child nodes of

that composite node in the tree [23].

Def 3 Sub Path: A sub path P from vertices ni to nk is a

sequence of nodes ni, ni+1, . . . , nk, where for each adjacent

pair of nodes (ni+j , ni+j+1) there is an edge in G for 0 <i< k - i.

Def 4 Initial path: Consider a path P on a graph G. A sub

path of P that starts from the node representing the initial state

is refered to as a initial path of P.

Def 5 Transition path: We consider any sequence of

transitions from the initial state to a final state in a state chart

graph to be a transition path.

Def 6 Boundary: Every path domain is surrounded by a

boarder. A boundary is defined by a set of data points. A

boundary consists of several segments and each segment of

the boundary is called a border. Each border is determined by

a simple predicate in the path condition [9]. In Figure 4,

consider the condition

N1(AvailableSoftDrink_Type_1) ≤ 10,

N2(AvailableSoftDrink_Type_2) ≤ 10,

N3 (AvailableSoftDrink_Type_3) ≤ 10 .

Here the variable N represents the number of Available

SoftDrink Types requested, in one transaction. The domain of

the variable N is the set of all integers. For values of N

greater than 10 (N > 10), the condition turns out to be false. A

boundary crossing occurs for some input where the

conditional predicate changes its Boolean value from true to

false or vice versa.

Def 7 Path domain: Consider a path P on a state chart graph.

The path condition of the path P is the conjunction of all the

individual predicates present along the edges in P. For

example, in Fiure 4, N ≤ 10 and Returnmoney ≥ 0 (here

Returnmoney represents the balance or change remained after

calculating the amount) form the path condition for the sub

path from Idle_Machine state to SoftDrinkDispenser state.

The conjunction of all the individual predicates present along

a initial path is termed as initial path condition. The path

domain is the set of all input data values for which the path P

is traversed satisfying the path condition (i.e. path condition

evaluates to true).

4.2 Coverage criteria

In this section, we discuss some of the relevant coverage

criteria which are achieved in our approach.

4.2.1 State Coverage

 It covers every state in every state chart for basic test

generation. State coverage is a test adequacy criterion that

requires tests to check programs‟ output variables [31]. All

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

29

variables still defined when executing in test scope (even

those which are not visible, such as private fields of objects)

are considered by state coverage.

4.2.2 Transition path coverage

 A test set TS is said to achieve transition path coverage if

given a state chart graph G, TS causes each possible transition

path in G to be taken at least once [19]. Cover all arbitrarily

long distinct paths through transitions for exhaustive test

generation. As there is a defined set of transitions in the state

model, a coverage measure associated with this strategy is to

measure the proportion of transitions exercised by a set of test

cases.

Transition coverage = (Number of transitions

exercised)/(Total number of transitions in the state model).

4.2.3 Transition-pair coverage

It is required to cover each pair of adjacent transitions at least

once in some test case. Therefore, the transition-pair coverage

subsumes the all-transitions coverage. The transition-pair

coverage criterion generates more test cases than the transition

coverage criterion[33]. For each pair of adjacent transitions Si

: Sj and Sj : Sk in SG, T must contain a test that traverses each

transition of the pair in sequence [32].

4.2.4 Boundary-testing criterion

The boundary-testing criterion is satisfied for inequality

borders. If each selected inequality border B is tested by two

points (ON-OFF) of test input domain such that, if for one of

the point the outcome of a selected predicate r is true, then for

the other point the outcome of r is false. Also the points

should satisfy the initial path associated with B and the

considered points should be as close as possible to each other.

We shoud test carefully because domain boundaries are

particularly fault prone [11]. Boundary-testing criterion is a

criterion for ensuring that a boundary is tested adequately.

Instead of generating several test data values that achieve

transition path coverage, we only test the border determined

by a simple predicate. It helps to reduce the number of test

cases significantly; at the same time, the generated test cases

achieve very high test Coverage [11].

4.3 AGeTeSC–Our proposed approach to Generate Test

Cases

In this section we, discuss our proposed approach to generate

test cases from UML state chart diagram. We have named our

appoach, Automatically Generating Test cases from State

Chart Diagram (AGeTeSC).

Our approach for generating test cases is schematically shown

in figure 3 . The first step is construct the state chart diagram.

The next step is to convert the state chart diagram into state

chart graph. Then the graph is traversed to select the predicate

functions. In fourth step, we transform the predicate into

source code. Then, we construct the Extended Finite State

Machine (EFSM) from the code. Finally, we generate the

test data corresponding to the transformed predicate functions

and store the generated test data for future use. The test case

generation steps are discussed below in more detail.

4.3.1 Construction of state chart diagram

First, we construct the state chart diagram. Statecharts offer a

system-level view that describes the complete function of a

system or application because a statechart diagram captures

each possible state of the system. Therefore, the use of

statechart helps reduce the possibility of software “hangs”

and other unexpected behavior because you are forced to

consider every alternative to which the software needs to

respond.

Constuct EFSM from source code

Convert State chart diagram to corresponding graph

Traversal of the graph to select predicate Transform the predicate to JAVA Code

Generate and store test sequence

Constuct EFSM from source code

Fig 3 : Figure showing of Test Case Generation scheme

You can design a system so that it scales to handle multiple

state reactions and transitions based on any combination of

events. Statecharts are similar to graphical dataflow programs

in that they are self-documenting and promote the easy

transfer of knowledge between developers. A new member of

a design team can look at a state chart diagram and quickly

grasp the elements of a system.

4.3.2 Conversion of state chart diagram into state

chart graph

 Then, we convert the state diagram into state graph. a state

chart graph G = (N, T), where N is the set of nodes (vertices)

of G and T is the set of edges. In G, nodes represent states and

edges represent transitions between states. Without any loss of

generality, we assume that there is a unique node that

corresponds to the initial state and that one or more nodes

represent the final states. The initial state is represented as the

root of the tree. States at each level of nesting are considered

as a sub graph.

4.3.3 Selection of Predicate

Then, we perform a traversal on the state chart graph for

selection of predicate. For traversal, we can use any traversal

technique like depth first search (DFS) or breadth first search

(BFS) to ensure that every transition is considered for

predicate selection. In this work, we have used a DFS

traversal, as with DFS, it becomes easy to keep track of the

initial path in DFS. This also helps in achieving the transition

path coverage. All pseudo states are treated at par with a

simple state during DFS traversal. For example, within a

composite state, the traversal begins with the default initial

state or at an entry point. During traversal, conditional

predicates are looked, on each of the transition.

4.3.4 Transformation of Predicate into source code

Consider an initial set of data B0. Here, B0 consists of all the

variables that affect a predicate r in the path P of a state chart

diagram. As mentioned in our approach, we compute two

points named ON and OFF for a given border satisfying the

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

30

boundary-testing criterion. We transform the relational

expressions of the predicates to a function F called predicate

function. If the predicate r is of the form (Exp1 op Exp2),

where Exp1 and Exp2 are arithmetic expressions and op is a

relational operator; then F = (Exp1- Exp2) or (Exp2- Exp1)

depending on whichever is positive for the data B0. Next, we

successively modify the input data B0 such that the function F

decreases and finally turns negative. When F turns negative, it

corresponds to the alternation of the outcome of the predicate.

Hence, as a result of the predicate transformation, the point at

which the outcome of a predicate r changes, corresponds to

the problem of minimization of the function F, which is

achieved through repeated modification of the input data

values. We have transformed these predicate into source code.

4.3.5 Construction of EFSM from the source code

In this step, the Extended Finite State Machine (EFSM) is

constructed from the source code automatically. EFSM [7],

[24] is very popular for modelling state-based systems like

computer communications, telecommunications, and

industrial control systems. An EFSM consists of

states(including an initial state and an exit state) and

transitions between states. A transition is triggered when an

event occurs and a condition associated with the transition is

satisfied. When a transition is triggered, an action(s) may be

performed. Theaction may manipulate variables, read input or

produce output.

4.3.6 Generation and Storage of test cases

 For finding the minimum of a predicate function F, the basic

search procedure we use is the alternating variable method

[9], [14]. This method is based on minimizing F with respect

to each input variable in turn. An initial set of inputs can be

randomly generated by initializing the data variables. Two

data values Bin (inside boundary) and Bout (outside boundary)

are generated using the search procedure mentioned. These

two points are on different sides of the boundary. For finding

these two data points, a series of moves is made in the same

direction determined by the search procedure mentioned

above and the value of F is computed after each move. The

size of the step is doubled after each successful move. This

makes the search for the test data quick. A successful move is

one where the value computed by the predicate function F is

reduced. When the minimization function becomes negative

(or zero), the required data values Bin and Bout are noted.

These points are refined further to generate a data value,

which corresponds to a minimum value of the minimization

function along the last processed direction. This refinement is

done by reducing the size of the step and comparing the value

of F with the previous value. Also, the distance between the

data points is minimized by reducing the step size. Now, we

generate the test data for each conditional predicate in the

state chart diagram. Then, the generated test data are stored in

a file. Now, we present our AGeTeSC algorithm to generate

test cases, for Soft Drink Vending Machine , in pseudocode

form.

Pseudocode of AGeTeSC algorithm for Soft Drink

Vending Machine

Input: State Chart Diagram Diagram, Amt (Money entered),

RSDT1(required Soft Drink Type 1), RSDT2 (required Soft

Drink Type 2), RSDT3 (required Soft Drink Type 3), {P1,

P2, P3(Prices for each softdrink type)}

Output: TSi(Test Sequence), SC (State Coverage),

TC (Transition Coverage), ACC (Action Coverage), TPC

(Transition Pair Coverage), EFSM Graph

IntialState: Start State of Transition

Current State: Current State of The Transition

Final State: Final State of the Transition

Begin

State enum {Idle_Machine, Coins_Colletor, Selection_Panel,

Order_Controller, SoftDrinkDispenser, Change_Dispenser,

Display_For_Customer, Exit}

 If (state=Idle_Machine) then

 Print (TSi, Current State, Final State)

 State← Selection_Panel

 End if

 If (state= Order_Controller) then

 Print (TSi, Current State, Final State)

 State ← Selection_Panel

 End if

If (state=Selection_Panel) then

 Print (TSi, Current State, Final State)

Print(ASDT1, ASDT2, ASDT3)

state← Display_For_Customer

End if

If (state=Display_For_Customer AND Selectiion=true) then

 Print (TSi, Current State, Final State)

 Print (RSDT1, RSDT2, RSDT3)

 state← Selection_Panel

End if

If (state=Selection_Panel AND selection=true) then

 If((RSDT1<ASDT1) AND (RSDT2<ASDT2) AND

(RSDT3<ASDT3))

 Print (TSi, Current State, Final State)

Print(ASDT1 after sell, ASDT2 after sell, ASDT3 after sell)

state← Order_Controller

End if

End if

If (state= Selection_Panel) then

 Print (TSi, Current State, Final State)

 State ← Money_Collector

 End if

 If (state= Money_Collector) then

 Print (TSi, Current State, Final State)

 State ← Order_Controller

 End if

 If (state= Order_Controller) then

 Print (TSi, Current State, Final State)

 State ← Order_Controller

 End if

If (state=Order_Controller AND Selection=true) then

If((RSDT1<ASDT1) AND (RSDT2< ASDT2) AND

(RSDT3<ASDT3))

If(RSDT1>0)

 Total Money= (RSDT1 × MPSDT1)+ (RSDT2×

MPSDT2) +(RSDT3× MPSDT3)

 Return Money= Amt-Total Money

 Print (TSi, Current State, Final State)

state← SoftDrinkDispenser

if (Amt< Total Money)

Print(“Return Money”)

state← Idle_Machine

 End if

If(RSDT1 >0)

Print (“Return Money”)

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

31

state← Change_Dispenser

End if

If(RSDT2>0)

Print (“Return Money”)

state← Change_Dispenser

End if

If(RSDT3>0)

Print (“Return Money”)

state← Change_Dispenser

End if

End if

If (RSDT1=null AND RSDT2=null AND RSDT3=null)

 Print ((Should Be ASDT1, ASDT2, ASDT3) > null)

state← Exit

 End if

If (state=SoftDrinkDispenser AND selection=true) then

 Print (TSi, Current State, Final State)

Print (“Dispense Soft Drink”)

 state←Change_Dispenser

End if

If (state=ChangeDispenser AND selection=true) then

 Print (TSi, Current State, Final State)

 Print (“Dispense Return Money”)

state← Exit

End if

If (state=Order_Controller AND selection=false) then

 Print (TSi, Current State, Final State)

state← Exit

End if

End if

If (state=Exit) then

 Print (TSi, Current State, Final State)

state← Idle_Machine

End if

End

5 . WORKING OF THE AGeTeSC

ALGORITHM

In this section, we explain the working of our AGeTeSC

algorithm using an SoftDrink Vending Machine (SVM)

example as described below.

The SVM (SoftDrink Vending Machine) dipenses softdrinks

to the customer on receiving money from them. The state

chart diagram of a SVM object for various events of intrest

are shown in Figure 4. The object enters into Idle_Machine

state, when the power is switched on and the different items

available on the vending machine are displayed. We have

mentioned 3 different categories of drinks. Once the user

selects soft drink type in the menu, the object enters into

Display_For_Customer state and displays pricelist , where

the prices of different types of soft drink are displayed. The

user can select the type of soft drink needed, as well as the

number of softdrinks (N) required. The condition N <= 10 is

inserted for the event softdrink selected, as the vending

machine is not expected to deliver more than 10 softdrinks of

each type in one transaction. Once the type and number of soft

drink required are selected, the object enters into

Selection_Panel state. In this state, the object displays the

amount of money (Amt) the user has to insert into the

vending machine. Note that

TotalMoney = (N1*P1 +N2*P2 + N3*P3) where N1: No of

SoftDrink of Type 1, N2: No of SoftDrink of Type 2, N3: No

of SoftDrink of Type 3, P1: Price of SoftDrink Type 1, P2:

Price of SoftDrink Type 2, P3: Price of SoftDrink Type 3

As the user enters money (a) the object changes its state to

Order_Controller. In the Order_Controller state where , it

calculates how much balance (ReturnMoney) is to be returned

to the user if any, where ReturnMoney =Amt-TotalMoney.

If the balance is less than zero, the SVM object changes its

state from Order_Controller to Change_Dispenser, as the

money inserted is insufficient. If the balance is more than or

equal to zero, the object goes to SoftDrinkDispenser state

and delivers the requested number of soft drink. If the balance

is zero, then once the soft drink is delivered the machine

changes its state from SoftDrinkDispenser to idle. If the

balance is more than zero, it enters the Change_Dispenser

state, where the balance money is returned. Once the money is

returned, the SVM object transits to Idle_Machine state.

From the state chart diagram, we perform a DFS to select the

associated predicates. After selecting the predicates, we guess

an initial dataset.

Idle_Mochine

Money_Collector

Selection_Panel

Order_Controller

SoftDrinkDispenser ChangeDispenser

Display_For_Customer

Exit

Power Switch On

Selection_Display

InsertMoney [Amt]

Amount Count

Verify Amount

AvailableDrinkAfterSell

ShowToSelectionPanel

Vending Machine Busy [ReturnMoney >= 0]

Dispense SoftDrink [ReturnMoney > 0]

[ReturnMoney < 0]

Show Available softDrink

Select SoftDrink [No of SoftDrink <=10]

Change Dispense

Power Switch On

Selection_Display

InsertMoney [Amt]

Amount Count

Verify Amount

AvailableDrinkAfterSell

ShowToSelectionPanel

Vending Machine Busy [ReturnMoney >= 0]

Dispense SoftDrink [ReturnMoney > 0]

[ReturnMoney < 0]

Show Available softDrink

Select SoftDrink [No of SoftDrink <=10]

Change Dispense

ReturnMoney=Amt- TotalMoney

TotalMoney= (N1*P1 +N2*P2 + N3*P3)

N: No of SoftDrink P: Price of SoftDrink

Fig 4 : State Chart Diagram of Soft Drink Vending

Machine(SVM)

Consider the boundary is associated with predicate (

ReturnMoney ≥ 0) in the dispenser transition. Let B0 be the

initial data: B0 = [(5, 5, 5), 300], where (N1 = N2=N3=5 and

Amt = 300). Here, it is assumed that the Price for each

softdrink type is Rs 15/-. Hence, TotalMoney = 5 × 15 + 5 ×

15 + 5 × 15 =225 and ReturnMoney = 300 − 225 = 75.

The condition (N ≤ 10) is true for B0, (as 5 < 10). The

function F will be represented by the expression F:

ReturnMoney = Amt – totalMoney i.e ReturnMoney = 75. So,

F(B0) = 75. Now, we should minimise F, in order to alter the

boolean outcome of the predicate (ReturnMoney ≥ 0), which

is true initially. First, we increase the value of N in different

steps.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

32

1: In the first step, (N1 = N2=N3=4 and Amt = 500), Total

Money= 4 × 15 + 4 × 15 + 4 × 15 =180 and Return Money =

500 − 180 = 320. So, for [N, Amt] = [4, 500], the function F =

320. In the next step, (N1 = N2=N3=5 and Amt = 500),

Total Money= 5 × 15 + 5 × 15 + 5 × 15 =225 and Return

Money = 500 − 225 =275. So, for [N, Amt] = [5, 500], the

function F = 275. Hence, we observed that F decreases with

increasing N.

2: In the next step, the step size is doubled, i.e the value of N

is increased by 2. Now, [N, Amt] = [7, 500]. So, F further

reduces to Retunr Money = 500 −3× (7 × 15) = 185.

3: As we double the step size in the next iteration, n becomes

N = N + 4 = 7 + 4 = 11, which results in violation of the

constraint (N ≤ 10) in the softdrink type selected event and

number of softdrink in one transaction.

Hence, we reduce the size of the step halved to 2. Now instead

of N = 11 it becomes N = N + 2 and we find N = 9, Now, [N,

Amt] = [9, 500]. So, F further reduces to Return_Money = 500

−3× (9 × 15) = 95. Now, we reduce the size of the step

halved to 1. Hence, N=10 and F=50. But, here as F ̸= 0, the

function is not minimized [23].

4: Then, we select the next variable Amt and again decrement

/ increment operation is carried out to reduce F. Here N

remains constant with 10 and money entered (Amt) is reduced

in steps.

Fig 5. Figure showing the corresponding State Graph from

State Chart Diagram

So with [N, Amt] = [10, 499], F becomes F = (499 −3× (10 ×

15)) = 49. Then, we repeatedly reduce Amt as [10, 497], [10,

493], [10, 485], [10, 469], [10, 437], by doubling the step size

in each iteration. At last F = 437 − 3× (10 × 15) = −13,

which is negative for [10, 437].

5: Since F has turned negative with step size of 32, we take

two initial test data points as Bin: [10, 469], and Bout: [10,

437].

6: Next, we reduce the step size to half i.e from 32 to 16. So,

Amt = 469 − 16= 453. Now, with [10, 453], F becomes 3

which is positive. And we replace Bin as [10, 453] in place of

[10, 469]. Again we reduce step size to half i.e from 16 to 8

and with [N, Amt] = [10, (453 − 8)], we get F = 445 −3 × (10

× 15) = −5. As F has turned negative, we replace Bout with

[10, 445] instead of [10, 437].

7: We replace Bin and Bout appropriately for reduced values of

step size. we get F = 0, for the data [10, 450], i.e. F = 450 −

3× (10 × 15) = 0. Finally in this case we obtain the test data

as Bin: [10, 453] , Bout: [10, 445] and Bout: [10, 450].

8:The test cases we generate from the predicate (ReturnMoney

≥ 0) are :

TC1 = [Order_Controller, (10, 453), dispenser softdrink,

Return money],

TC2 = [Order_Controller, (10, 450), dispenser softdrink]

TC3 = [Order_Controller, (10, 445), Return money]

where the different fields of the test cases have the format:

[input state, test data and expected output state] i.e. [I, D, O].

We require only two test data points Bin and Bout which are

the minimal test points to test the predicate (Return Money ≥

0). Similarly all these generated test values also satisfy all

predicates along the transition path from Idle_Machine state

to dispenser_softdrink state during the traversal in the state

chart diagram. Hence, these data points correspond to

different Boolean outcomes satisfying the initial path

condition, which helps us to achieve transition path coverage.

We repeat the above procedure to generate test data for each

predicate on all transitions in state chart diagram.

6. AN IMPLEMENTATION OF OUR

APPROACH
In this section we discuss the results obtained by

implementing the proposed approach. The complete approach

is implemented using JAVA and Net Beans IDE version 6.0.1.

Implementation is done by taking Softdrink Vending Machine

as the case study. We have implemented our method for

generating test cases automatically from UML state charts in a

prototype tool, named Model JUnit. We used Rational Rose to

produce the UML design artefact. The architecture of the

ModelJunit is shown in Figure 6.

Fig 6. Figure showing architecture of ModelJunit

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

33

ModelJUnit is an open source tool, released under the GNU

GPL license [34]. ModelJUnit allows us to write simple finite

state chart (FSM) models or extended finite state chart

(EFSM) models as Java classes, then generate tests from those

models and measure various model coverage metrics. Model-

based testing allows us to automatically generate test suites

from a model of a system under test. ModelJUnit is a Java

library that extends JUnit to support model-based testing.

ModelJUnit allows us to create simple FSM or EFSM models

as Java classes, then generate tests from those models and

measure various model coverage metrics. Here, the models

are extended finite state charts that are written in a familiar

and expressive language: JAVA.

 Fig 7 : Screenshot of source code

The source and destination states as well as the prefix path

conditions are displayed along with the test data. In our

prototype implementation, we have restricted the conditional

expressions in state diagrams to have only integer and

Boolean variables as these occur commonly. But, other

numeric data types can easily be considered. Further, for the

prototype implementation we have assumed that the necessary

constraints are available in notes. The GUI provides a friendly

and efficient user interface to user to generate testing code and

connect user defined model with ModelJUnit.

 Fig 8 : Screenshot of generated EFSM from source code

Fig 9 : Screenshot of generated test data with test coverage

TABLE I

TABLE SHOWING TEST COVERAGE ACHIEVED (N:No of

softdrink, NS:NO.OF STATES, NT: NO.OF TRANSITIONS,

SCP:% OF STATE COVERAGE , TCP:% OF TRANSITION

COVERAGE, TPCP: % OF TRANSITION PAIR COVERAGE,

AC: % OF ACTION COVERAGE)

The GUI gives the flexibility to view the state diagram.

Figure 7 shows the UTG display of the JAVA source file of

example mentioned. Figure 8 shows the generated EFSM

from the source code. And the set of test cases generated

corresponding to our AGeTeSC algorithm with the test

coverage achieved are shown in Figure 9 . In Figure 9, the

initial state, the final state and the test data corresponding to

each predicate are also shown. The transition path that is

considered while generating the test data in each case is also

displayed along with the test data as shown in Figure 9. The

percentage of test coverage which are achieved by

implementing the case study of SVM object is shown in the

Table I.

7. RELATED WORK
In this section, we present some related research work in the

area of UML state chart based testing. Generally it is difficult

to detect state based faults from the software code. Among all

UML diagrams, most probably state chart diagrams have

received most attention from researchers to generate test cases

[10], [12], [13], [19], [20], [25], [27].

 A technique is developed by Offutt and Abdurazik [19], [20]

for generating test cases from UML state diagrams. They

generated test cases automatically from change events for

boolean class attributes. They have highlighted several useful

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

34

test coverage criteria for UML state machines such as: (1) full

predicate coverage, (2) transition coverage etc. They have

derived test cases from state charts focusing on enabled

transitions. It appears in [19], [20] that all transitions are

assumed to be triggered by change events. Also their [19],

[20] approach does not handle guards. In comparison, our

approach is not limited to any particular type of event or

transition. Our approach can handle change events, time

events and transitions with guards.

A method is introduced by Kansomkeat and Rivepiboon [12]

for generating test sequences using UML state chart diagrams.

They transformed the state chart diagram into a flattened

structure of states called testing flow graph (TFG). From the

TFG, they listed the possible event sequences which they

considered as test sequences. The testing criterion they used to

guide the generation of test sequences is the coverage of the

states and transitions of TFG.

A method is proposed by Kim et al. [13] for generating test

cases for class testing using UML state chart diagrams. They

transformed state charts to extended FSMs (EFSMs) to derive

test cases. In the resulting EFSMs, the hierarchical and

concurrent structure of states are flattened and broadcast

communications are eliminated. Then, data flow is identified

by transforming the EFSMs into flow graphs, to which

conventional data flow analysis techniques are applied.

Also Abdurazik and Offutt [2] proposed test criteria based on

collaboration diagrams for static checking and dynamic

testing. They adapted traditional data flow coverage criteria in

the context of UML collaboration diagrams. It does not

generate several test data that achieve transition path

coverage, but our approach tests the border determined by a

simple predicate, which reduces the number of test cases

significantly. Also, our approach achieves transition path

coverage. Again our work achieves full predicate coverage as

we generate test data for each conditional clause. Again a

method is introduced by Korel [14] by using function

minimization method in the context of unit testing of

procedural programs. He generated test data based on actual

execution of the program under test using the function

minimization method and dynamic data flow analysis. Test

data are developed for the program using actual values of

input variables. If during a program execution an undesirable

execution flow is observed (e.g. the „actual‟ path does not

correspond to the selected control path), then the function

minimisation search algorithm is used to automatically locate

the values of input variables for which the selected path is

traversed. In addition, dynamic data flow analysis is used to

determine those input variables responsible for undesirable

program behaviour, leading to significant speedup of the

search process.

Hajnal and Forgacs [9] reported the use of boundary testing

that requires the testing of one border (either inside boundary

or outside boundary) only along a selected path. They

generated two test data points (both inside and outside

boundary) of each border of each path. Their testing strategy

could also handle compound predicates appearing in a

program path. Belli and Holman [3] introduced a coverage-

oriented and specification-oriented test approach based on

“basic” state charts. They presented a novel representation of

statecharts which subsumes common features of different

statechart variants. Based on this model and well-defined test

criteria, efficient algorithms have been introduced for

generating test case sets. Based on this view, test criteria for

covering sequences of transitions (k-transition coverage) and

faulty transitions (faulty transition pair coverage) were

introduced. The test process aims to minimize the total length

of test case sets fulfilling these two criteria. Sharma and Mall

[25] presented a technique for coverage of elementary

transition paths which would also ensure coverage of all states

and transitions of the system.

Systa et al. [27] introduced information preserving statechart

diagram optimization algorithms for transforming a simple

flat statechart diagram into a more compact UML statechart

diagram. Their algorithms detected similar responses to

certain events and used that information to restructure the

diagram. The statechart diagram optimization includes

generation of entry actions, exit actions, and actions fired by

internal transitions for states. Some actions are also attached

to transitions. The conditions under which these actions can

be generated for a statechart diagram are characterized.

 An elementary set of coverage criteria in software testing is

defined by Weiglhofer et al. [28]. Here, test purposes have

been presented as a solution to avoid the state space explosion

when selecting test cases from formal models. Although such

techniques work very well with regard to the speed of the test

derivation, they leave the tester with one important task that

influences the quality of the overall testing process. Then,

they showed how existing tools can be used to efficiently

derive test cases and suggest how to use the coverage

information to minimize test suites while generating them. It

would be straightforward to define further coverage criteria

based on logical expressions, such as, multiple condition

coverage, or other modified condition/decision coverage

variants.

A novel testing technique for object-oriented programs is

proposed by Swain et al. [26], which is based on the state and

activity models of a system. They have constructed an

intermediate representation, named state-activity diagram

(SAD) which was used to generate test cases to achieve state-

activity coverage of SADs. Their technique could detect

seeded integration testing faults.

 A methodology is provided by Kosmatov et al. [16] to

generate test cases automatically from a given set of test

conditions and the input domain. Their approach mainly

performs a boundary value analysis on discrete neighborhood

of input values and then uses a cost minimization function in

the domain to generate test cases automatically.

Also, Gnesi et al. [8] defined a mathematical approach to

conformance testing and automatic test case generation from

UML state charts. They proposed a formal conformance

testing relation for input-enabled transition systems with

transitions labeled by input/output-pairs (IOLTSs).

Conformance testing is defined as testing the software in

order to establish the fulfilment of the specified requirements.

A conformance relation defines the correctness criterion of the

implementation with respect to the formal specification.

IOLTSs provide a suitable semantic model for a behavior

represented by a subset of statecharts. They also provided an

algorithm which generates a test suite for a given state chart

model.

 Strategies are made by Offutt and Abdurazik for generating

system test cases from state-based formal specifications which

have been investigated in [19], [20]. The approach described

in [19] is based on designing test cases by transforming

statechart diagrams into transition tables, enumerating

transition predicates, and then deducing test cases satisfying

various coverage levels. In [20], a method to support system

level test generation at different coverage levels from state-

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

35

based formal specifications has been proposed. The coverage

levels include transition coverage, full predicate coverage,

transition pair coverage and complete sequence coverage.

Their approach assumes that a softwares functionality is

described in terms of states and transitions. The approach first

derives the transition condition. That is, the condition under

which the transition is triggered are determined from the

functional specification. These are then represented using

algebraic predicates. A specification graph (SG) based on the

state-based specification is constructed, where each node

represents a state and edges represent possible transitions

among states. The SG is then used to derive test specifications

for different coverage levels in terms of algebraic predicates.

The authors point out that this technique can benefit software

developers who construct formal specifications during

development [20]. However, construction of formal system

level state specifications during development for a practical

system is still not very common. Consequently, the

applicability of the work reported in their paper is limited.

8. CONCLUSION AND FUTURE WORK

We have defined a methodology to generate test cases from

UML state chart diagrams. First, we have constructed the state

chart diagram for a given object. Then the state chart diagram

is traversed, conditional predicates are selected and these

conditional predicates are transformed to source code. Then,

the test cases are generated and stored by using function

minimization technique.

 From the state chart diagram, we perform a DFS to select

the associated predicates. After selecting the predicates, we

guess an initial dataset. We have generated test predicate

conditions from UML state chart diagram, which are used to

generate test cases.

 Our technique achieves many important coverage like state

coverage, transition coverage, transition pair coverage, action

coverage. It also achieves full predicate coverage as we

generate test data for each conditional clause. It can handle

transitions with guards and achieves transition path coverage.

Here the number of test cases is minimized and they achieve

transition path coverage by testing the boundaries determined

by simple predicates. Moreover, our planning to include

other diagrams of UML to generate test cases. In future, we

will look into how the test cases can be optimized and how

other UML diagrams can be combined and used to generate

test cases and achieve higher coverage.

9. REFERENCES

[1] OMG. Unified Modelling Language Specification, version

2.0, Object Management Group, www.omg.org, August

2005.

[2] Abdurazik, A. and Offutt, J. 2000. Using UML

collaboration diagrams for static checking and test

generation, Proceedings of 3rd Int. Conf. UML, Lecture

Notes in Computer Science, 2000, pp.383 – 395.

[3] Belli, F. and Hollmann, A. 2008. Test generation and

minimization with basic statecharts. In SAC’08, March

16-20, 2008.

[4] Binder, R. V. Testing object-oriented software: a

survey‟. Software Testing Verification Reliability, 6(3/4):

1996, pp.125 – 252.

[5] Michel, R. Blaha and James R. Rumbaugh. 2005. Object-

Oriented Modeling and Design with UML. Pearson, 2nd

edition, 2005.

[6] Booch, G., Rumbaugh J., and Jacobson, I. 2001. The

Unified Modeling Language Reference Manual.

Addison-Wesley, 2001.

[7] Dssouli, A., Saleh R., Aboulhamid, K., Ennouaary E.,

and Bourhfir A. 1999. Test development for

communication protocols: Towards automation.

Computer Networks, 31: 1999, pp. 1835–1872.

[8] Gnesi Stefania, Latella, Diego, and Massink Mieke.

2004. Formal test-case generation for UML statecharts,

Proceedings of the Ninth IEEE International Conference

on Engineering Complex Computer Systems Navigating

Complexity in the e-Engineering Age, 2004, pp.75 –

84.

[9] Hajnal, A. and Forgacs, I. 1998. An applicable test data

generation algorithm for domain errors. In ACM

SIGSOFT Software Engineering Notes, Proc. ACM

SIGSOFT Int. Symp. Software Testing and Analysis,

1998.

[10] Hartmann, J., Imobedorf C., and Meisinger M. 2000.

UMLbased Integration Testing, Proceedings of the 2000

ACM SIGSOFT international symposium on Software

testing and analysis, 2000.

[11] Jeng, B. and Weyuker, E. J. 1994. A simplified domain-

testing strategy. ACMTrans. Software. Eng.

Methodology, 3(3), 1994, pp.254 – 270.

[12] Kansomkeat, S. and Rivepiboon, W. 2003.

Automated-generating test case using UML statechart

diagrams. In Proc. SAICSIT 2003, ACM, 2003, pp.296 –

300.

[13] Kim, Y. G., Hong, H. S., Bae D. H., and Cha S. D. et al.

1999. Test cases generation from UML state diagram,

Software Testing Verification and Reliability, 1999,

pp.187 – 192.

[14] Korel, B. 1990. Automated software test data

generation. IEEE Trans. Software Engineering,, 16(8),

1990, pp. 870 – 879.

[15] Kosindrdecha, N. and Daengdeg, J. 2005. A test

generation method based on state diagram. Journal of

Theoritical and Applied Information Technology, 2005,

pp. 28 – 44.

[16] Kosmatov, Nikolai , Legeard, Bruno, Peureux, Fabien

and Mark, Utting. 2004. Boundary coverage criteria for

test generation from formal models. In Proceedings of

the 15th IEEE International Symposium on Software

Reliability Engineering, , Washington, DC, USA, 2004,

pp. 139 – 150.

[17] Li, H. and Peng, L. C. 2005. Software test data

generation using ant colony optimization. In Proceedings

of World Academy of Science, Engineeing and

Technology, January 2005.

[18] Mall, R. 2009. Fundamentals of Software Engineering.

Prentice Hall, 3rd edition, 2009.

[19] Offutt, J. and Abdurazik, A. 1999. Generating tests from

UML specifications. In Proceedings of 2nd International

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

36

Conference. UML, Lecture Notes in Computer Science,

1999, pp. 416 – 429.

[20] Offutt, J., Liu, S., Abdurazik, A. and Ammann, P.

et al. 2003. Generating test data from state-based

specifications. Software Testing Verification Reliability,

13, 2003, pp. 25 – 53.

[21] Pilone, D. and Pitman, N.. UML 2.0 in a Nutshell. NY.

O‟Reilly, USA, 2005.

[22] Priestley, Mark. 2005. Practical Object-Oriented

Design with UML. Tata McGraw-Hill, 2nd edition, 2005.

[23] Samuel, P., Mall, R., and Bothra, A. K. 2008.

Automatic test case generation using Unified Modeling

Language(UML) state diagrams. IET Software, 2(2),

2008, pp.79 – 93.

[24] Savage, P. B., Waiters S. and Stephenson M. 1997.

Automated test methodology for operational flight

programs. In Proceedings of IEEE Aerospace

Conference, 1997, pp. 293–305.

[25] Sharma, M. and Mall, R. 2009. Automatic generation of

test specifications for coverage of system state

transitions. Information and Software Technology, (51),

2009, pp.418 – 432.

[26] Swain, S. K., Mohapatra, D. P. and Mall, R. 2010. Test

case generation based on state and activity models.

Journal of Object Technology, 9(5), 2010, pp.1 – 27.

 [27] Systa, T., Koskimiesa, K. and Makine, E. 2002.

Automated compression of state machines using UML

statechart diagram. Information and Software

Technology, (4), 2002, pp.565 – 578.

[28] Weighhofer, M., Fraser, G. and Wotawa, F. 2009. Using

coverage to automate and improve test purpose based

testing. Information and Software Technology, 51,

2009, pp .1601-1617.

 [29] UML unified modling language : infrastructure, version

2.0 final adopted specification, September 2003.

[30] IEEE (1998). IEEE standard for software test

documentation. New York: IEEE. ISBN 0-7381-1443-X.

[31] Koster, K. and Kao, D. C. 2007. State coverage: A

structural test adequacy criterion for behavior checking.

In ESEC/FSE, 2007.

[32] Offutt, J., Liu, S., A. Abdurazik and P. Ammann.

2003.Generating test data from state-based

specifications. SOFTWARE TESTING,

VERIFICATION AND RELIABILITY Softw. Test.

Verif. Reliab. 2003; 13:25–53.

[33] Blanco, R., Fanjul, J. G. and Tuya, J. 2010. Test case

generation for transition-pair coverage using Scatter

Search. International Journal of Software Engineering

and Its Applications Vol. 4, No. 4, October 2010.

[34] http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit.

http://en.wikipedia.org/wiki/IEEE_829
http://en.wikipedia.org/wiki/IEEE_829
http://en.wikipedia.org/wiki/IEEE_829
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-7381-1443-X

