
 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

17

Comparative Study on Object Persistence Methods

Clarence J M

Tauro
 Christ University
Bangalore, India

N Ganesan
Director (MCA)

RICM, Bangalore

Ritesh Kumar

Sahai
Christ University
Bangalore, India

Sandhya Rani A
Christ University
Bangalore, India

ABSTRACT

In last few decades there was rapid shift observed while

writing software solutions. Object oriented model is now

globally adapted and preferred by most of the application

developers. Object persistence plays a key role in designing

data model, business objects working with other business

objects. Object persistence could be very efficient if designed

correctly. A typical design leads extra overheads in terms of

cost, resource utilization, and time. Considering the

importance of object persistence, it is very essential to

concentrate more on this area. Gateway-based, Object-

relational database and Object-oriented Database are the three

major groups of solutions available to implement object

persistence.

In this paper, we discuss about the features available in Object

Persistence methodologies, how and where we should use

them efficiently based on the application requirements. Our

discussion continues further on positive and negative sides of

object persistence methodologies by considering limitations

and different application requirements.

General Terms

Object Oriented Programming, Object Persistent, Persistent

Programming Language.

Keywords

Object persistence; gateway based object persistence; object-

oriented database; object-relational database, data model, data

access, data sharing.

1. INTRODUCTION
When an object is being created by an application, the scope

of object is limited to the application life cycle. With the end

of application, object life line also ends. The reason is, object

is being stored temporarily in main memory. To keep object

alive, application need to store the object in persistence

storage.

Object persistence refers to the concept of saving the state of

an object so that it can be restored and used at a later time. An

object that does not persist basically dies when it goes out of

scope [2]. Maintaining the state of an object is called

persistence. There are many ways to implement persistence in

applications. A simple example is to use text file as storage.

All required information can be stored on file by using file

write operation. This information can be retrieved when

restore is required by performing file read operation. This

solution is not efficient and might be good for small

applications, where limited information saving is required and

information is not changing frequently. Representing

information on simple text file becomes very complicated,

where information to be stored is very complex in nature. Lot

of development efforts will be wasted to maintain this.

However text files are very flexible, easy to implement, can

be accessed by more than one program, but they are not object

friendly [4]. Object oriented programs offer variety of

relationship with other objects, for example inheritance and

references with other objects. The challenge here is how we

can represent and maintain the different kind of relationships

on text file.

Another solution is to use relational database as storage, but

due to limitations of databases, it is not a best solution. This

can be a good choice when application need database related

functionalities like, transaction with rollback, record locking

and indexing. Databases are generally expensive; managing

them is even more difficult. Object oriented instances are

basically structured in hierarchical and relational database

structured in tabular format. These are two different structures

and a difference in two approaches is known as “impedance

mismatch” problem [5].

Solution towards achieving persistence in object-oriented

applications categories in three classes: the gateway-based

method adds object-oriented programming access to persistent

data stored using traditional non object-oriented data stores,

the object-relational DBMS method enhanced the extremely

popular relational data model by including object-oriented

modeling features, and the object-oriented DBMS method

adds persistence support to objects in an object-oriented

programming language [3].

2. PERSISTENCE OF OBJECT
Object-oriented programming languages are based on objects.

Object type, object identity, and object creation is defined by

object oriented system. The objects being created by object

oriented application is transient and ends when program

terminates [8].

Persistence independence, also called transparency, requires

that it is indistinguishable whether code is operating on

persistent or transient data [10]. Transparency is achieved by

combining reachability-based identification with an object-

faulting mechanism. The notion of object fault [11] is similar

to the notion of page fault in the context of demand-paging

virtual memory.

There are four mechanisms namely persistence by class,

persistence by creation, persistence by marking and

persistence by reference to achieve object persistence.

mailto:ritesh.sahai@%20cs.christuniversity.in

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

18

2.1 Persistence by Class
In this mechanism, we declare class to be persistent. All

objects of the class are then persistent objects. Simple, but not

much flexible, it is often useful to have both transient and

persistent objects in a single class [8]. In many OODB

systems, declaring a class to be persistent is interpreted as

``persistable''; objects in the class potentially can be made

persistent.

2.2 Persistence by Creation
This category for object persistent introduces new syntax to

create persistent objects, by extending the syntax for creating

transient objects.

2.3 Persistence by Marking
In this object persistent mechanism we mark an object

persistent after it is created (and before the program

terminates). All objects are created as transient objects, but, if

an object is to persist beyond the execution of program, it

must be marked explicitly as persistent before program

terminates.

2.4 Persistence by Reference
In this approach we explicitly declared the persistent object

(sometimes referred as root object also). Objects can be one or

more based on the requirements. Objects who referred the root

persistent object either directly or indirectly also becomes the

persistent objects. It is easy to make the entire data structure

persistent by just declaring the root of the structure as

persistent, but it becomes expensive when we try to trace the

chains in detection for a database system.

An object is basically defined by its state and behavior. The

system state cannot be defined completely without

considering the relationship between other objects. In object

oriented environment reference pointers are used to express

the relationship between objects. To keep the relations

between persistent objects after a program termination alive

the special pointer class PersistentPtr is introduced [12].

3. OBJECT PERSISTAECE

APPROACHES
Object-oriented models are globally adopted and preferred by

most application developers for writing advance applications.

Majority of today’s applications have to deal with the

persistent data, therefore object persistence is becoming a

critical need and its use in applications is increasing day by

day. So, it is essential to focus more on object persistence in

order to make Object Oriented applications more efficient and

useful [3].

Persistence deals with more than just the lifetime of data. In

object-oriented databases, not only does the state of an object

persist, but its class must also transcend any individual

program, so that every program interprets this saved state in

the same way [1]. This clearly makes it challenging to

maintain the integrity of a database as it grows, particularly if

we must change the class of an object.

Three classes, Gateway-Based, Object-Relational DBMS and

Object-Oriented DBMS object persistence approaches enable

us to achieve persistence in certain classes of object-oriented

applications, and each approach has been therefore affected by

the requirements of the class of applications it supports.

3.1 Gateway-Based Object Persistence

(GOP)
The gateway-based object persistence (GOP) approach is a

middleware solution that attempts to bridge the gap between

the object-oriented paradigm data model and the non-object-

oriented data model used to store the objects [6]. These

systems provide a sort of runtime mapping or translation

between the two models in a fashion that is transparent to the

programmer. The only attention required by the application

developer in process; when non-trivial mappings between

types in the models need to be explicitly stated.

This approach is featured by being both application and data-

independent. It is used to support an object-oriented

programming model for applications which are using

traditional non-object-oriented data stores to store data for an

object.

Table 1. Gateway-Based Object Persistence

Advantages Limitations

 Integrating enterprise
information systems and
providing a common
framework for building
object-oriented
applications.

 Managing shared,
distributed,
heterogeneous, and
language-neutral
persistent business
objects.

 Building a GOP
application that legacy
applications continue to
work on data that are
also being accessed by
the new application.

 Providing object-
oriented access to
legacy non-object-
oriented data.

 Building applications
that have an
overwhelming need to
access legacy data and
heterogeneous data
access, while allowing
legacy applications to
continue to work on the
legacy data.

 Randomly/arbitrarily
complex objects in a
legacy database
system.

 Blindly mapping
object-oriented models
to non-object-oriented
databases because it
gives bad performance
and complex
application logic.

This approach commonly supports when programmers intend

to use existing non-object-oriented data stores but write

applications using object-oriented programming models[3].

The data store schema that is used to store the persistent state

of the objects in the data store is different from the objects

having a different model (object-oriented) for an application.

So, the system which is adopting GOP method performs a

mapping between both object-oriented schema and non-

object-oriented data store schema [9]. While application is

executing, the GOP system translates objects from the

representation used in the data store to the representation used

in the application and vice versa. Table 1 explains the

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

19

capacity and limitations of Gateway-Based Object

Persistence.

The standards activity relevant to GOP is being developed by

the Object Management Group (OMG). Object Management

Group, Inc. (OMG) is an open membership, not-for-profit

computer industry standards consortium that produces and

maintains computer industry specifications for interoperable,

portable and reusable enterprise applications in distributed,

heterogeneous environments [7]. The most important

specification OMG has adopted is CORBA (Common Object

Request Broker Architecture). Aside from CORBA, the

following adopted specifications are directly related to object

persistence: Persistent Object Service, Object Query Service,

Object Relationships Service, Object Transaction Service, and

Object Security Service.

Gateway-Based Object Persistence Applications: There are

several systems that are using GOP e.g. VisualAge C++ Data

Access Builder, SMRC, ObjectStore Gateway, Persistence,

UniSQL/M, Gemstone/Gateway and Subtleware/SQL.

GOP applications can access other OODBMSs and can store

complex objects natively in them while continuing to access

and update data in legacy databases but this feature is still

facing some problems and challenges and experts are working

on them. Some problems are related to integration of object

persistence with object query, object transaction and

workflow, and object security. The OMG group is

continuously specifying standards in this area for greater use

of objects.

3.2 Object-Relational DBMSs (ORDBMSs)
The object-relational DBMS persistence (ORDBMS) solution

is a bottom-up solution that attempts to build on, or extend,

the existing relational data model to work with objects. The

premise here is that the RDBMS has been extremely

successful in business applications, implemented by

successful vendors, and already has a standard query language

to expand [6]. RDBMS persistence depends on a persistence

delegate, code that hides or abstracts the details of object and

table while maintaining table concurrency [18].

This method is a bottom-up approach which is featured by

being data (or database) oriented. In today’s database

applications, the relational model is very much successful in

practice and already SQL is accepted as an universal standard.

ORDBMSs is used to add support for object oriented data

modeling by extending both the relational data model and the

query language along with retaining the already successful

technology like SQL of a relational DBMS relatively intact.

Table 2. Object-Relational DBMSs

Advantages Limitations

 Extending the usefulness of
existing, legacy data stored in
relational databases.

 Addressing the mismatch and
performance issues while
accessing relational data from an
object-oriented programming
language.

 Applications that need extremely
good query support, excellent
security, integrity, concurrency
and robustness, and high
transaction rates.

 Focuses only on data
stored in relational
databases or whatever in
the future can be stored in
extended relational

databases.

The standards activity on this area is based on an extension of

the SOL standard. X3H2 (the American committee

responsible for the specification of the SQL standard) has

been working on object extensions to SQL. These extensions

have become part of the new draft of the SQL standard named

SQL3. The SQL3 standard is an ongoing attempt to

standardize extensions to the relational model and query

language.

ORDBMS Applications: There are two classes of object-

relational DBMSs in the market; those that have been built

from scratch (e.g., Illustra, UniSQL), and those that are built

by extending existing relational DBMSs (e.g.: DB2, Informix,

Oracle, and Sybase). Following table (Table 2) listed the

advantages and limitations of Object-Relational DBMSs.

3.3 Object-Oriented DBMSs (OODBMSs)
This approach is a top-down approach which is featured by

being application or programming language centric. The main

usage of OODBMS is to provide an effective method to add

persistence to objects so that they can be used in an object-

oriented programming language (OOPL) like C++ or

Smalltalk.

There are two approaches to creating an object-oriented

database, “Extended database” and “Persistent programming

language” [8]. Extended database add the concepts of object

orientation to existing object-oriented language, and Persistent

programming languages extend existing object-oriented

languages to deal with databases by adding concepts such as

persistence and collections.

The OODBMSs are normally referred to as persistent

programming language systems since they have their base

platform in object-oriented programming languages.

Table 3. Object-Oriented DBMSs

Advantages Limitations

 Storing application
objects, e.g., presentation
or view objects.

 Providing seamless
persistence from a
programming language
point of view.

 Avoiding mismatch
issues by providing
extensive support for the
data modeling features of
one or more object-
oriented programming
languages.

 The applications that
need excellent
navigational performance.

 Object-oriented database
models allow better
support for managing
complex objects and
encapsulation, real-time
systems that need to
handle large and complex
applications would
require an object oriented
approach [20].

 OODBMSs do not
provide as good a
query facility as
ORDBMSs.

 The transaction rates
supported by the
OODBMSs do not yet
approach the high rates
achieved by relational
DBMSs on standard
transaction processing
benchmarks.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

20

The standards activities for OODBMSs have been specified

by the Object Database Management Group (ODMG).

ODMG is a consortium that consists mainly of OODBMS

vendors. ODMG has specified the ODMG-93 standard.

ODMG-93 defines an Object Definition Language (ODL), an

Object Query Language (OQL), C++ and Smalltalk language

mappings to ODL and OQL.

OODBMS Applications: Object-oriented DBMSs support for

persistent objects from more than one programming language,

distribution of data, advanced transaction models, versions,

schema evolution, and dynamic generation of new types. Even

though many of these features have little to do with object

orientation, object-oriented DBMSs emphasize them in their

systems and applications. There are several object-oriented

DBMSs in the market (e.g., Gemstone, Objectivity/DB,

ObjectStore, Ontos, O2, Itasca and Matisse). Table 3

describes the advantage and limitations of Object-Oriented

DBMSs.

4. GATEWAY-BASED, OBJECT-

RELATIONAL DBMS AND OBJECT-

ORIENTED DBMS VS OBJECT

ORIENTED APPLICATION

CHARACTERISTICS AND

REQUIREMENTS
This section will discuss about the different object-oriented

applications requirement, their need, behavior and

characteristics. The focus will be on how and which approach

will be useful and why?

4.1 Data Modeling
A data model is a collection of conceptual tools for describing

data, data relationships, data semantics, and consistency

constraints. The object-oriented data model extends the

representation of entities by adding notions of encapsulation,

methods (functions), and object identity. The object-relational

data model combines features of the object-oriented data

model and the relational data model.

The object-relational data model extends the relational data

model by providing a richer type system including collection

types, and object orientation. Object orientation provides

inheritance with subtypes and sub-tables, as well as object

(tuple) references.

4.1.1 Object Identity
Object identity is a major concern for object persistence. In a

programming environment an object can be created, assigned

or copied, and can be deleted or accessed by program.

Generally virtual address memory of a transient object is

considered as object identifier.

4.1.2 Complex Object
An object can have any number of attributes, arguments,

and/or elements. A complex object mechanism allows an

object to contain attributes that can themselves be objects.

4.1.3 Composite Object
Object-oriented applications utilize a composite object as a

group of objects that are part of a parent object that is

typically a collection. Composite objects are individual

objects that are related and form part of a group.

4.1.4 Relationships
Instead of “building in” a few fixed relationships, systems

must be capable of supporting user-defined relationships, for

two reasons: first, these few proposed relationships are not

sufficient for all applications; second, their required semantics

vary from one installation to another, from one application to

another, or even from one use of the relationship to another

[16].

4.1.5 Encapsulation
Encapsulation is a technique for minimizing

interdependencies between separately-written and separately-

compiled modules by defining a strict external interface:

objects are accessible only through their external operations

[13].

4.1.6 Inheritance
The objective of organizing objects in a hierarchy of classes is

to share properties of the objects in useful, economical and

meaningful ways through inheritance [10].

Table 4. Data Modeling [3]

Feature

Object Persistence Approaches

Gateway-

Based

Object

Persistence

(GOP)

Object-

Relational

Database

Management

System (OR

DBMS)

Object-

Oriented

Database

Manageme

nt System

(OODBMS)

Object Identity

(OID)

Support

limited by

underlying

database

Starting to

provide

support

through row

identification

Supported

Complex

Objects

(objects

containing

non-first-

normal form

data)

Can be

supported

using

schema

mapping

Supported by

extensions to

the relational

data model

Supported

Composite

Objects

(grouping of

objects for

copying,

deleting, etc.)

Can be

supported

using

schema

mapping(ho

wever, there

can be

limitations)

Starting to

provide

support

through a

combination

of triggers,

abstract data

types, and

collection

types

Supported

using class

libraries

Relationships Can be

supported

using

schema

mapping

and code

generation

Strong

support

available

including

referential

integrity

Supported

using class

libraries

Encapsulation Supported at

application

but not at

database

To be

supported

using abstract

data types

(row objects

will remain

un-

encapsulated)

Supported

(but broken

for queries)

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

21

Feature

Object Persistence Approaches

Gateway-

Based

Object

Persistence

(GOP)

Object-

Relational

Database

Management

System (OR

DBMS)

Object-

Oriented

Database

Manageme

nt System

(OODBMS)

Inheritance Can be

supported

using

schema

mapping

(however,

there can be

technical

limitations)

To be

supported

(separate

inheritance

hierarchies for

tables and

abstract data

types)

Supported

as in an

object

oriented

programmin

g language

(OOPL)

Method

overriding,

overloading,

and

dynamic

dispatching

Supported

as in an

OOPL

Supported

(method

dispatching is

based on the

generic

function

model not the

classical

object model)

Supported

as in an

OOPL

4.1.7 Method Overriding, Overloading and

Dynamic Dispatching
Virtual operations represent a powerful mechanism for

implementing software reuse, late binding and polymorphism.

A virtual operation is the specification of a routine that can be

redefined in descendant classes [14].

Collection types include nested relations, sets, multisets, and

arrays, and the object-relational model permits attributes of a

table to be collections. Table 4 compares the three approaches

under various data modeling parameters.

There are various modeling features given by existing object-

oriented programming languages like C++ and Smalltalk. The

applications that are written in these programming languages

use a number of object-oriented modeling features like

encapsulation, inheritance, and dynamic binding. There are

several complex issues arise in providing support for an

object-oriented data model and the table below discuss those

issues in detail.

4.2 Data Access
In this section, we discuss about how application objects can

be created and stored, how support is provided for

navigational and ad hoc query types of access to persistent

data and the interaction between client and server, specifically

the method by which objects are communicated between

client and server. Also we discuss some important application

support items including schema evolution, integrity

constraints etc. Table 5 provides data access comparisons

among GOP, ORDBMS and OODBMS approaches.

The brief detail of above features is written below:-

4.2.1 Creating and accessing persistent data
The best way to support persistence is to do it in a way that it

is possible to create persistent and transient objects of the

same type in an application. There are two main methods of

adding persistence to objects of an instance, one is by

overloading the new operator and other is by requiring that

every class having persistent instances inherit from a common

class and definition and implementation of this common class

is provided by the database system. The reading of persistent

data in all three approaches can be made virtually transparent

to the application. However, updating data in a GOP system is

typically not transparent and an application will need to

inform the system explicitly of objects that have been

changed. Updating data in GOP can be done by having some

(little) encapsulation. For example, update of relationships,

but changing an atomic field like an integer is impossible to

encapsulate.

In an ORDBMS, updates are non-transparent as these are

done using a separate UPDATE statement. The OODBMSs

vary in their degree of transparency, ranging from ObjectStore

where updates can be made completely transparent, to other

systems such as Versant where an object has to be explicitly

marked "dirty" by an application.

4.2.2 Navigation
OODBMS development was driven by the applications that

needed fast navigational access (e.g., verification and routing

an integrated circuit might be an extremely CPU-intensive

operation that requires fast access to component objects).

OODBMSs (e.g.,ObjectStore) provide extremely fast

navigational access to data by making use of operating system

support for page faulting. In GOP system, navigation can be

supported by mapping object accesses to the databases that

store the data. Naive algorithms for navigation using a

relational database could cause very poor performance

because of generating one SQL query for every object access.

Table 5. Data Access [3]

Feature

Object Persistence Approaches

Gateway-

Based Object

Persistence

(GOP)

Object-

Relational

Database

Manageme

nt System

(OR

DBMS)

Object-

Oriented

Database

Management

System

(OODBMS)

Creating and

accessing

persistent

data

Supported

(might not be

entirely

transparent to

the

application)

Supported

(not

transparent

since

application

always has

to take

explicit

action)

Supported

(degree of

transparency

depends on

individual

product)

Navigation Can be

supported by

transparently

mapping

object

accesses to

underlying

database

operations

(pre-

fetching/cachi

ng needed for

good

performance)

Currently

supported

by joins (to

be

supported

efficiently

using row

identificatio

n)

Supported

efficiently by

most products

Ad hoc

query facility

Supported

using data

store specific

query

Excellent

support

(impedance

mismatch

Supported but

with

limitations

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

22

Feature

Object Persistence Approaches

Gateway-

Based Object

Persistence

(GOP)

Object-

Relational

Database

Manageme

nt System

(OR

DBMS)

Object-

Oriented

Database

Management

System

(OODBMS)

language (not

integrated

well with

object

representation

)

remains an

issue)

Object server

vs. page

server

Object server Object

server

Can be page

server or

object server

Schema

evolution

Limited

support

(complete

support might

be difficult to

provide)

Supported Supported

Integrity

constraints

and triggers

No support Strongly

supported

No support

GOP systems handle this performance problem by

maintaining a large cache of application objects in main

memory, and by providing facilities for fetching objects

before they are needed.

4.2.3 Ad hoc query facility
A system which uses GOP method normally does not

implement a new query language on the representation of the

object. The query under GOP method works on the base data

model which is not object-oriented and this does not proceed

well with the object model of the application and hence it

creates the problems of impedance mismatching. In the areas

related to optimization and index management, an ORDBMS

supports queries in an efficient manner. In OODBMS, the

support of query language is an extension of the object-

oriented programming language [3]. Encapsulation is not

supported in OODBMS query languages but they are allowed

to access the structure of the data. This can not be avoided

after the time when ad-hoc queries needed arbitrary

computations on the data.

4.2.4 Object server Vs page server
In client/server architecture, the workload and tasks are

divided both for client and server. So the database

management systems need to make use of the resources

available at the client and the server in efficient way. An

object server can either receive requests for a single object

(which is using for instance, an object identifier) or a set of

objects using a query. ORDBMSs and GOP systems can be

considered as object servers, but OODBMSs can be both

object and page servers. Examples of page server architectures

include ObjectStore and O2.

4.2.5 Schema evolution
Two separate parts are involved in Schema evolution. The

first involves changing the schema, and the second involves

changing and developing existing Data (that is in the form of

the old schema) to their new representation based on the

modified schema.

In a GOP system, schema evolution support might be

extremely limited. However, schema without change in the

underlying data might be easy to achieve and we can call it

mapping evolution. ORDBMSs can provide strong support for

schema evolution of table definitions. In OODBMSs, the data

model is complex so schema evolution in an OODBMS

cannot be completely automated as in a relational DBMS.

4.2.6 Integrity constraints and triggers
There is no GOP system available in these days that provide

support for integrity constraints and triggers. ORDBMSs

provide excellent support for integrity constraints and triggers.

OODBMSs provide virtually no support for integrity

constraints and triggers.

4.3 Data Sharing
In this, we discuss about how support is provided for

applications by the various DBMSs for sharing data between

concurrent users, crash recovery, advanced transaction models

(long transactions, versioning, nested transactions), and

distributed access to data.

4.3.1 ACID transactions
OODBMSs support the conventional type of short

transactions termed ACID transactions. OODBMSs do

support various types of locking. The standard lock types are

page locks and object locks (also known as record locks in

RDBMSs). GOP System provide limited support for ACID

(atomicity, consistency, isolation, and durability) transactions

since the object cache maintained at the application is loosely

coupled to the DBMS. ORDBMSs support all the traditional

lock types available in relational DBMS (tuple, page, and

table locks).

Table 6. Data Sharing [3]

Feature

Object Persistence Approaches

Gateway-

Based Object

Persistence

(GOP)

Object-

Relational

Database

Management

System (OR

DBMS)

Object-

Oriented

Database

Manageme

nt System

(OODBMS

)

ACID

transaction

s

Support

limited by the

underlying

data store

(cache

management

might cause

complications

)

Supported

Supported

Crash

recovery

Recovery

handled by the

backend data

store

(cache is not

recovered)

Strongly

supported

Supported

(degree of

support

varies with

individual

product)

Advanced

transaction

model

No support

No support Supported

in some

products

Security,

views, and

integrity

Support

determined by

the

underlying

Strongly

supported

Limited

support

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

23

Feature

Object Persistence Approaches

Gateway-

Based Object

Persistence

(GOP)

Object-

Relational

Database

Management

System (OR

DBMS)

Object-

Oriented

Database

Manageme

nt System

(OODBMS

)

data store

4.3.2 Crash recovery
GOP systems provide whatever support is available in the

underlying data store. ORDBMSs are strong in this area

because of relation DBMS extension. OODBMSs provide

recovery support and this support is not robust as it is in

commercial relational DBMSs which provide more advanced

features such as media recovery.

4.3.3 Advanced transaction models
OODBMSs provide better support for advanced transaction

model that is not supported very well by existing relational

DBMSs and GOP or ORDBMSs.

4.3.4 Security, views, and integrity
ORDBMSs support robust security mechanisms using the

view mechanism, and by ensuring that the entire application

executes in its own address space. In contrast, OODBMSs by

using the page server concept, allow clients to cache data for

acceptable performance.

Data sharing characteristics compared among GOP,

ORDBMS and OODBMS in Table 6. ACID transactions,

crash recovery, advanced transaction models and security,

views and integrity are the parameters used for

comparison.PERSISTENT SYSTEMS: USING C++, JAVA,
.NET

The Object Database Management Group (ODMG) standards

define classes and other constructs for creating and accessing

persistent objects from C++ and from Java [8].

4.4 Persistent C++ Systems
C++ is a powerful language and very much preferred for

system programming. C++ language is based on object

oriented concepts, so its object oriented features provides

extended support for persistent even without changing the

language itself [8]. Inheritance is a great feature of OOPs that

help us extending the persistent feature in sub-classes. For

example we can declare a class called PersistentObject with

number of attributes and corresponding methods to support

persistence; any other classes that should be persistent can be

made a subclass of this class, and thereby inherit the support

for persistence.

In C++ class libraries are very much used for writing the

components, and same can be used for providing the support

for object persistent. There are both positive and negative

aspects of class libraries if using for persistent support. Class

libraries require minimal changes to C++ and relatively easy

to implement. However, it comes with some drawbacks also.

The programmer needs a deep analysis and much more time is

required to write a program that handles persistent objects.

The complexity for the programmer is to specify integrity

constraints on the schema or to provide support for declarative

querying. Some persistent C++ implementations support

extensions to the C++ syntax to make these tasks easier.

EC++ objects use C++ transparently to distribution and

persistence [15].

ODMG has been working on standardizing language

extensions to C++ and Smalltalk to support persistence and on

defining the class libraries to support persistence. The OMDG

standard provides all functionality via class libraries, without

any extension to language.

4.5 Persistent Java Systems
Java is the most preferred language for writing databases

based applications. Due to rapid growth in usage, Java was

also improved with market trends. There was requirement and

demand to additional support for persistent encourages many

programmers and organizations to add frameworks and define

standards. Compare to C++, Java is differentiating in use of

persistent by reachability.

We should make class persistence capable if the object of this

class is reachable from persistent root. This can be achieved

by running a post processor on the class code generated by

compiling the Java program. Manually making a class

persistent capable is possible. By inserting the appropriate

declaration we can make class persistence capable, however it

is a complex process.

The serialization and RMI features of Java, make basic object

persistence a possibility without excessive effort required

from the programmer [17]. However some knowledge of data

movement and the underlying storage mechanism is still

required.

Enterprise Java Beans (EJB) is an interface layer implemented

on top of a JDBC/RDBMS which provides a consistent

method of presenting persistent data application components

that can be shared across many simultaneous remote and local

client connections [18]. Frameworks such as JDO and

Hibernate allow a Java programmer to program completely in

the object-oriented paradigm while persisting data in a

relational database [19]. The framework handles the mapping

of objects to relational tables.

The ODMG model for object persistence in Java programs

differs from the model for persistence support in C++

programs. The biggest difference is the use of persistence by

reachability in Java [8]. Objects are not explicitly created in a

database. Instead, names are given to objects in the database

that serve as roots for persistence. These objects, and any

objects reachable from these objects, are persistent.

The ODMG standards for Java define collection type such as

DSet, DBag, and DList that extend the standard Java

collection types [8]. Java already defines an iterator type to

iterate over collections.

4.6 Persistent .NET Systems
Microsoft .NET is similar to Java in nature. .NET provides

services to components at runtime via interception. At

component creation, .NET creates an interceptor that wraps

the component’s interface and contains the .NET “property”

logic to provide services at runtime [21]. There are many

customized frameworks are available which supports object-

relational mapping for .NET. Microsoft .NET provides two

methods to serialize the objects. First method is using the

XmlSerializer class defined in the System.Xml.Serialization

namespace [9]. The second method is to use .Net formatters

which are similar to the serialization process in Java. The

XmlSerializer is the easier method but is not as efficient as the

.NET formatters.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

24

5. CONCLUSION
In this paper we have discussed the various features used in

object-oriented applications; how well these features are

supported in the GOP, ORDBMS and OODBMS object

persistence methods; also the advantages and limitations of

each of these methods.

The GOP method is simplest approach and referred as

middleware approach. GOP method stores persistent objects

using relational databases, hierarchical databases, or flat files.

GOP is having many benefits but comes with drawbacks as

well. This approach is good for integrating diversified

enterprise information systems and providing a common

framework for building object-oriented applications. GOP is

recommended for managing shared, distributed,

heterogeneous, and language neutral persistent business

objects. Looking into the negative aspects, there are some

disadvantages to blindly mapping object-oriented models to

non-object-oriented databases. Applications that have an

extreme need to access legacy data and heterogeneous data,

while allowing legacy applications to continue to work on the

legacy data are best suitable for using GOP method.

The ORDBMS is featured with handling complex data type,

powerful query languages and high protection. ORDBMS

method is considered as a bottom-up method, which

combined the features of both relational and object oriented

model. ORDBMS enhances the relational data model by

applying object-oriented modeling features to it. This method

is best suitable for extending the usefulness of existing, legacy

data stored in relational databases. It has the good base for

fixing the issues of impedance mismatch and performance

penalty. Also, when all three object persistence methods are

compared, ORDBMS method has the best robustness,

concurrency, and crash recovery features. But, on the negative

side, this approach concentrates only on data stored in

relational databases or whatever data that can be stored in

future extended relational databases. The best suitable

applications to follow this approach are the one which strive

for extremely good query support, high quality security,

integrity, concurrency, robustness and high transaction rates.

The OODBMS method is considered as a top-down method,

which involves adding persistence support to objects in an

object-oriented programming language. It is an efficient

method for saving application objects, e.g., view objects or

presentation objects. This method is considered to be one of

the best future methods for providing an efficient persistence

mechanism, from a programming language perspective.

Impedance mismatch is avoided by OODBMSs approach by

providing wider support for the data modeling characteristics.

But on the negative side, OODBMSs do not provide as good a

query feature as ORDBMSs. In addition to this, the

transaction rates which are supported by the OODBMSs have

not yet reach the high rates supported by relational DBMSs.

Applications which does not have complex query, that require

an efficient navigational performance and that are ready to

compromise with the security and integrity for attaining good

performance are perfectly matched for using OODBMSs.

Even though every object persistence method has its own

positive and negative impact on object data, in the coming

days, it is more obvious that we will see the continued

presence of OODBMSs that satisfy the needs of specialized

markets, the continued existence of ORDBMSs that satisfy

the needs of traditional commercial markets, and the

increasing importance and existence of the Gateways

combined with object query, object transaction and workflow,

and object security. So selection of a best persistence method

is an important factor for an object-oriented application

developer for storing objects depending on the type of object-

oriented application.

6. REFERENCES
[1] C. Booch, Object-Oriented Analysis and Design with

Applications,

second edition, The Benjamin/Cummings Publishing

Company, Redwood City, CA (1994).

[2] Matt Weisfeld, The Object-Oriented Thought Process,

Third Edition 3ed.Sep.2008

[3] V. Srinivasan and D. T Chang, "Object persistence in

object-oriented applications, " IBM Systems Journal, vol.

36, pp. 66–87, 1997

[4] Jim Coker, Object Persistence and Distribution,

http://java.sun.com/developer/technicalArticles/RMI/Obj

ectPersist/

[5] Scott W. Ambler, Impedance Mismatch,

http://www.agiledata.org/essays/impedanceMismatch.ht

ml

[6] Raffi Khatchadourian, Object Databases: an Analytical

Approach, http://www.cse.ohio-

state.edu/~khatchad/reports/khatchad-objdb.pdf

[7] Common Object Request Broker Architecture (CORBA)

Specification, Version 3.2,

http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF

[8] Silberschatz−Korth−Sudarshan: Database System

Concepts, Fourth Edition

[9] Patrik Hildenborg, Muhammad Irfan Tahir, Object

Persistence: Persistence approaches in object oriented

environment,

http://www.idt.mdh.se/kurser/cd5130/msl/2005lp4/downl

oads/reports/object_persistence.pdf

[10] Ashrafuzzaman, M.; Kusalik, A.J., An implementation

architecture for orthogonally persistent deductive object-

oriented database systems, Database Engineering and

Applications, 1999. IDEAS '99. International

Symposium Proceedings

[11] S. J. White and D. J. DeWitt. A performance study of

alternative object faulting and pointer swizzling

strategies. In L.-Y. Yuan, editor, International

Conference on Very Large Databases, number 18, pages

419–431, Vancouver, Canada, August 23-27, 1992.

[12] Vogelsang, H.; Brinkschulte, U.; Stormanolakis,

M.;,Archiving system states by persistent objects,

Engineering of Computer-Based Systems,1996.

[13] Systems,1996. Proceedings., IEEE Symposium and

Workshop on Engineering of Computer-Based

SystemsA. Snyder, “Encapsulation and Inheritance in

Object-Oriented Programming Languages,” OOPSLA

’86 Proceedings, ACM Sigplan Notices, Vol 21 N. 11,

pp. 38-45, 1986.

[14] B. Strousrtrup, The C++ Programming Language,

Addison-Wesley Series in Computer Science, 1986.

[15] Sequeira, M.; Marques, J.A.;, Can C++ be used for

programming distributed and persistent objects?, Object

Orientation in Operating Systems, 1991.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.7, March 2012

25

[16] Heiler, S.; Dayal, U.; Orenstein, J.; Radke-Sproull, S.;,

An Object-Oriented Approach to Data Management:

Why Design Databases Need It, 24th Conference on

Design Automation, 1987.

[17] Tom Lunney and Aidan McCaughey, Proceedings of the

2nd international conference on "Principles and practice

of programming in Java" June 2003, Publisher:

Computer Science Press, Inc.

[18] Richard T. Baldwin,"Views, Objects, and Persistence for

Accessing a High Volume Global Data Set", Proceedings

20th IEEE/11th NASA Goddard Conference on Mass

Storage Systems and Technologies, 2003 , Page(s): 77 -

81

[19] James H. Paterson and John Haddow, "Approaches to

object persistence in java projects" Proceedings of the

9th annual SIGCSE conference on Innovation and

technology in computer science education ACM New

York, NY, USA ©2004 , Volume 36

[20] Juhnyoung Lee, Sang H. Son, Myung-Joon Lee, Issues in

Developing Object-Oriented Database Systems for Real-

Time Applications, Proceedings of the IEEE Workshop

on Real-Time Applications, 1994. On page(s): 136 - 140

[21] Roger Barga, David Lomet, Stelios Paparizos, Haifeng

Yu, Sirish Chandrasekaran, Persistent Applications via

Automatic Recovery, Proceedings of the Seventh

International Database Engineering and Applications

Symposium (IDEAS’03)

