
 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.5, March 2012

40

Continuous Assimilation Policy for Service Component

Architecture

 Deepali Virkar
Computer Engineering Department,

Pune Institute of Computer Technology
Pune, Maharashtra, India

Pravin Game
Computer Engineering Department,

Pune Institute of Computer Technology
Pune, Maharashtra, India

ABSTRACT

Service Component Architecture (SCA) provides a

programming model to support Service Oriented Architecture

(SOA). SCA based application has long product development

life-cycle. Slight change in one service component may affect

functionality of other component. This leads to requirement of

continuous checking for stability of integrated systems. If

defects are identified in earlier stage and total time required

for product development get reduced then it would certainly

improve performance. In this paper, we introduce continuous

assimilation policy for service component architecture, which

gives continuous and rapid development of service

components. It focuses on implementation strategies for SOA

application.

Keywords

Integrated Environment, Service Component, Distributed

Applications.

1. INTRODUCTION
Every day, agile software development delivers dozens of

components with some dependency on other components.

This integration of components must get complete at the end

of the day. As CI principle states [1], programmer should

never leave anything unintegrated at the end of the day. Built

components must go to testing phase as early as possible to

identify issues. As early they are identified, they can be fixed

easily. While following Service Component Architecture

(SCA), intermediate files are generated which has integration

role in product life cycle. If these files-which can be jar, war,

tar or archive files-are generated as a part of integration

process then it will boost the software development process.

Our Continuous Assimilation Policy adds this value to agile

software development process for SCA.

In SCA approach of SOA application development, in

assembly model, developer defines how components are

combined, linked and packaged together. In this stage, some

issues may stay undisclosed until developed work gets

deployed. To identify such issues in advanced, Continuous

Assimilation Policy can help to identify it in earlier stage.

While developing code using SCA, developed components are

checked in to source control system. CIP policy takes data

from source control system, and runs the integration process

to create intermediate files. If these files are created then they

are deployed on server for further testing. By following this

policy, major issues can be identified while generating

intermediate files and while deployment.

Unified test framework for continuous integration testing of

SOA solutions is proposed by H. Liu , et. al. This [4]

framework uses surrogate engine and test case execution

engine for continuous integration. Surrogate is proposed by

H.Y. Huang, et. al [5] added value to continuous integration

testing as it creates surrogate components to test SCA

component when they are partially implemented.

Backtracking incremental continuous integration [6] is useful

when current build fails. Backtracking makes sure to have

working version of any application.

Most of the work in continuous integration approach gives a

generic framework to carry out integration testing. There are

various open source integration servers available such as

Cruise Control, Jenkins. One can use such servers to perform

integration testing. There is need to customize this continuous

integration testing cycle to improve the development of

components. Continuous Assimilation policy gives this

customization for SCA artifacts.

The rest of the paper is organized as following: the next

section gives brief idea about SCA architecture. Then it gives

an introduction to prior arts in the field of continuous

integration. After that it explains Continuous Assimilation

Policy. The last section concludes this paper and points out

some future research directions.

2. SERVICE COMPONENT

ARCHITECTURE
Service Component Architecture provides a way to create

components and a mechanism for describing how service

components work together [2]. The SCA specifications define

how to create components and how to combine those

components into complete applications. The components in

SCA are a building block, which provides one or more

services to requestor. It possesses configuration properties and

references, which provides dependencies between different

components within composite or between two composites.

One or more components are combined together to form a

Composite.

Composite logically contains components, services,

references, the wires that interconnect them and properties

that are used to configure the components. Wire is a

theoretical illustration of relationship between reference and

service. These wires are published to outside world by

promotion.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.5, March 2012

41

SCA can be broken down into four major parts or models [3]:

A. The Assembly Model, which defines how components are

combined, linked and packaged as service independent of the

programming language.

B. The implementation model, which defines how services are

packages and accessed for specific programming languages.

C. The policy model, which defines the service policies

independent of programming code.

D. The bindings model, which defines how components are

accessed independent of the programming code.

3. SYSTEM ARCHITECTURE
As discussed in 2nd section of our paper, SCA can be divided

in four parts.

Assembly model promises management of services. This

includes application configuration by setting properties,

logging configuration, and substitution variables. Also, one

can add binding to services; promote services and references

to the environment, and wire services and references to

services and references in other application environments.

Implementation part deals with service composition. In this

model, composites are created depending on nature of

application. An application may have one or more composites.

The output of this stage can be a deployable war, jar, ear or

archive file which consists of set of related configuration files:

nested composites, resource templates, WSDL files, and

substitution variable files.

Policy model and binding model focuses on runtime

monitoring and service selection. The main concern of this

part is distribution of application to runtime infrastructure that

focuses on application execution. One can explicitly distribute

application fragments-components and bindings- to one or

more node.

As requirement changes or issue arises, SCA artifacts should

update to accommodate changes. Application may be

composed of dozens of components with rigid dependency

with each other where one component change affects other

component behavior. When application accumulates all

changes, it is needed to test entire application. This is time

consuming activity. This may lead to frequent and small

releases.

Figure 1 explains system architecture. Continuous

Assimilation policy considers that system consists of nodes,

service groups, builds, state and integration of builds. In

system environment, nodes can have one or more nodes that

essentially run services.

4. CONTINUOUS ASSIMILATION

POLICY
Continuous Assimilation Policy is based on checking the

build health on every check-in command. Source code

commit should not create unsteady environment.

System is defined as Sys={C, Pp, Pr, S, Q, IT, BT, J, A, N |

parse(composite), assimilate() }

Figure 1. System Architecture

To build a composite, one or more components are required.

So composite is defined as,

Composite C = {Q1, Q2, …QN, Pp, Pr} (1)

Where Q is component = <Pp, Pr, S>

Pp is provided port of a composite which is promoted service

while Pr is required port of composite which is promoted

reference.

In component definition, Pp is provided port, Pr is required

port, S is service implemented by that component [9].

Composite is detailed explained as,

C  Q X IT X BT (2)

IT is Implementation Type of a component. Component can

be implemented using any programming language construct.

There is one-to-many mapping between component Q and IT.

BT is Binding Type which also has one-to-many mapping

with component Q.

f1 : Q→ IT (3)

And f2 : Q → BT (4)

where IT={IT1, IT2, …..., ITN}

BT = {BT1, BT2, … , BTN}

Figure 2 shows one-to-many mapping between component

and IT.

In Continuous Assimilation Policy, we are building jobs

which runs build tool to create archive file.

Job J = {j1, j2, j3, … jN} (5)

These jobs may be running on different environment

{env1, env2 , … envn}. Job depends on environment setup.

Build tool continuously look for update of any composite or

new check in. Once check is perform, job is triggered which

creates archive file and deploys it on predefined node. From

this the health of application is identified. At no point in time,

any unstable application may be running on any node.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.5, March 2012

42

Figure 2. One-to-one mapping between component and IT

For building an archive identifying its implementation type,

binding type and WSDL configuration must be checked.

Parse (C) =  Q  q  [IT]+  [BT]+ (6)

Since we are going to take in one more components,

assimilation of these components is defined as,

Assimilate() = {ΠC | c  IT X BT X S} (7)

Output of Assimilate() function is {q X q} (8)

Job is partitioned into two subsets {Success, Failure}. Success

and failure can be determined from its execution. If executed

job gives a stable environment then we say job is executed

successfully. Stability of job is defined as when archive is

deployed on node N, it does not lead to unsteady Env t .

Job= {  Archive | <<Pp,Pr,S>, BT, IT>  Success} (9)

The set Env t , belongs to number of available nodes in given

environment at time t. Nodes have running application.

Env t = { N1,N2,…NN } (10)

where Nx = number of nodes available in given environment

at time t.

For current Env t ,

NodeN={A1,A2,…AN}  {S1, S2,…SN}, 1<n<M (11)

where { A1,A2,…AN} is a finite set of applications in given

environment at time t and {S1, S2,…SN} is set of services

which is operation or group of operations.

Env t gives idea about service provided by each node. For

Continuous Assimilation Policy, it is assumed that

dependency is a part of component sources; a change in

dependency causes change in component [6]. It is also

assumed that every build of a component has implicit

dependency on implementation type and binding type.

5. DISSCUSSION
Implemented Continuous Assimilation Policy is capable of

creating and deploying archive file to server along with

support for version control system. Also it is capable for

checking the extent to which changes made to policy affects

implementation of services. Experiments are carried out to

test the performance of implementation time for SOA

application. The procedure followed is:

Table 1. Currently followed procedure Vs. Steps followed

for Continuous Assimilation Policy

Step

No.

Steps followed in

traditional approach

Steps followed in

Continuous Assimilation

Policy

1 Identify SOA project

and composite to build

deployable archive file

Identify SOA project and

composite to build

deployable archive file

2 Read feature file and

identify dependent

projects

Set path for technologies

used to execute scripts(eg.

Set path for Ant and

Maven) Perform this step

for first time only.

3 Check-out SOA

project, dependent

projects to local

machine from source

code repository

Create new job and enter

source code repository

URL

4 Create script having

tasks

a. to build SOA and

dependent projects and

b. to create deployable

archive file

Enter details required to

create deployable archive

a. SOA project name

b. composite name

Now save configuration

and execute job to create

and upload deployable

archive file

5 Create deployable

archive file

6 Check-in deployable

archive file to source

code repository

7 On requisition for

service, check out

deployable archive file

from source code

repository to local

machine

8 Create script to upload

deployable archive file

to server

9 Upload deployable

archive file to server

In table 1, steps 2,3,4,6,7,8 in traditional approach requires

user activity. Like checking in and checking out data from

source code repository. Time required to execute these steps

varies with level of expertise. Total time required to perform

these steps is (considered as user Activity time)150 sec. In

addition as number of dependable projects varies, time

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.5, March 2012

43

required creating scripts-for archive file and for uploading it

to server- varies.

Our performance measurement test considers three projects

with different complexity. Project complexity Project

complication is decided upon number of components.

Table 2. Project Details

Project # # of Components # of ITs # of BTs

1 1 1 1

2 10 10 15

3 100 100 1

Table 3. Measurement values for two approaches

Project

Time required using traditional

approach (in sec)

Time

required

using

Continuous

Assimilation

Policy

approach (in

sec)

a. Create

deployable

archive file

b.

Upload

archive

file

Total Time

(a+b+

userActivity

)

1 83 18 251 126

2 168 37 355 250

3 173 30 353 226

 Graph 1. Performance Graph

From graph it is very clear that time required by Continuous

Assimilation Policy for-building SOA project, creating

deployable archive file and uploading it to server-is less than

time required to perform same tasks using traditional

approach.

6. CASE STUDIES
We came across many real time scenarios, which motivated

implementing Continuous Assimilation Policy. We are

considering three scenarios in this paper.

Issue 1: Building a deployable archive in later stage makes it

difficult to isolate the problem.

 Consider the first scenario of an application wherein multiple

composites, say 10, exists having multiple components in it.

Take example of online payment example, which has two of

its components as Invoice and Payment. Ideally,

Invoice=<Pp-invoice, Pp-question, Pp-update, Pr-invoice, Pr-paymentMode, S>

Payment=<Pp-invoice, Pp-paymentMode, Pr-paycheck, Pr-delivered, S>

A distributed team implements different component. A

developer implementing Invoice component does not care

about whether the implemented service is going to be used by

other component or not. If developed component is going to

be used by other component then how it will be used is not

considered. Consider, while implementing a component,

Payment component is implemented as

Payment = <Pp-invoice, Pr-paycheck, Pr-delivered, S>

While Invoice component is implemented as

Invoice= <Pp-invoice, Pp-question, Pp-update, Pr-invoice, Pr-paymentMode, S>

From its implementation, it is very clear that Invoice

component is using payment-mode service of Payment

component but it is not implemented in Payment component.

Now if deployable archive file of an application is created

after implementing all 10 composites then it will throw an

error and will not create archive file. As number of

implementation type and components increases, locating a

culprit component becomes time consuming job.

Solution: To avoid such situations, once component is

implemented, intermediate archive file should be created to

check whether it is implemented as per requirement or not and

its dependencies are resolved or not. There should be some

policy that will take care of it.

Issue 2: Building a deployable archive from latest executable

version is tedious job as lot of change in configuration is

required.

Executable is used to create deployable archive file of an

application. Let us consider EXE1 is used for creating first

application archive. This executable file is updated to support

new runtime environment. When executable is updated,

ideally, new version should be use to create deployable

archive file. If developer, responsible for creating archive

file uses old executable then such case causes issues in

production stage such as class not found exception.

Solution: To avoid such situations, it is needed to create

archive file using updated executable. Also for backward

compatibility testing, archive file creation must be checked

with old version as well. For this, some hook up should be

there to select which executable version to use without

changing other configurations like creating new job for new

configuration.

 International Journal of Computer Applications (0975 – 8887)

Volume 42– No.5, March 2012

44

Issue 3: Small change or modification in project cause large

change in job configuration.

 While implementing Proof-Of-Concept projects, not all

situations are taken into consideration. Some real world

scenarios may be overlooked like promoting paycheck mode

service in our online payment application example. When

POCs are deployed on customer end, modifications or

updating is required to be done to improve quality of a

product as well as to integrate new functionality. Now once

these modifications to component and/or composite

definitions are done, it is needed to create new archive file.

For this, one need to identify which implementation type,

binding type is used, which executable should be used, which

job to trigger?

Solution: If there is some pre-configured job, which creates

archive file by considering all the aspects of archive file

generation then with one check-in command pre-configured

job will create required archive file.

We have implemented a Continuous Assimilation Policy that

takes care of all such above discussed scenarios and many

more.

7. CONCLUSION AND FUTURE WORK
Our Continuous Assimilation Policy makes finding and fixing

problems in SOA application easier. Traditional approach,

which does not follow Continuous Assimilation Policy, takes

longer time to create deployable archive file and upload it to

server than approach using Continuous Assimilation Policy.

This increases application implementation performance. Our

future work includes policy customization.

8. ACKNOWLEDGMENTS
We thank to Dr. Sarang Joshi, Santosh Kumar, Wojciech

Zurek and Sunil Pawar for their guidance and support.

9. REFERENCES
[1] http://martinfowler.com/articles/continuousIntegration.ht

ml accessed on Aug2011 accessed on Aug 2011

[2] David Chapell, Introducing SCA, DavidChappell &
Associates, July 2007.

[3] http://www.osoa.org/display/Main/Service+Component+
Architecture+Home accessed on Aug2011

[4] Hehui Liu, Zhongjie Li, Jun Zhu, Huafang Tan, Heyuan
Huang, “A Unified Test Framework for Continuous
Integration Testing of SOA solutions”, ICWS 2009,
IEEE International Conference on Web Services, pp.
880-887, Jul 2009

[5] He Yuan Huang, He Hui Liu, Zhong Jie Li, Jun Zhu,
“Surrogate: A Simulation Apparatus for Continuous
Integration Testing in Service Oriented Architecture”,
SCC’08, IEEE International Conference on Service
Computing 2008, pp. 223-230, Jul 2008

[6] Tijs van der Storm, “Backtracking Incremental
Continuous Integration”, CSMR 2008, 12th European
Conference on Software Maintenance and
Reengineering, pp. 233-242, Apr2008

[7] Francisco Curbera, “Component Contracts in Service-
Oriented Architecture”, IEEE Computer, pp. 74-80, Nov
2007

[8] Aliaksei Yanchuk, Alexander Ivanyukovich, Maurizio
Marchese, “Towards a Mathematical Foundation for
Service-Oriented Applications Design”, ICSOC 2005,
pp. 545-551, 2005

[9] Dehui Du, Jing Liu, Honghua Cao, “A Rigorous Model
of Contract-based Service Component Architecture”,
2008 International Conference on Computer Science and
Software Engineering, pp. 409-412, Dec2008.

http://martinfowler.com/articles/continuousIntegration.html%20accessed%20on%20Aug2011
http://martinfowler.com/articles/continuousIntegration.html%20accessed%20on%20Aug2011
http://www.osoa.org/display/Main/Service+Component+Architecture+Home
http://www.osoa.org/display/Main/Service+Component+Architecture+Home

