
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

8

Destructive Algorithm for Rule Extraction

based on a Trained Neural Network

M.E. ElAlami

Department of Computer Science

Mansoura University

Mansoura Egypt, 35516

ABSTRACT
The present paper introduces a new destructive algorithm for

rule extraction based on a trained neural network. The degree

of complexity of neural network increases exponentially as a

factor of the numbers of input and hidden nodes. Therefore,

the dimensionality of the trained neural network is reduced by

using a proposed destructive algorithm to extract only the

most effective values of the input attributes which have higher

impact on the output result for each class. Thus, the searching

efficiency is highly increased and the computation is

dramatically reduced for extracting rules. The generated rules

from the proposed model are fired through two levels for each

class. As for the first level, it deals with each individual

effective input value, and the second level is concerned with

each possible conjunction of the effective input values.

Moreover, the proposed model extracts the strongest rules

which represent a large number of instances from the database

by adjusting the similarity measure threshold value. Finally,

the proposed model is evaluated on different public-domain

datasets and compared with standard learning models from

WEKA, then the results assert that the set of rules extraction

from the proposed method is more accurate and concise

compared with those obtained by the other models.

General Terms

Knowledge extraction, Neural network, Decompositional

techniques.

Keywords
Rule extraction, Supervised learning, Neural network,

Destructive technique, Performance measures.

1. INTRODUCTION
Knowledge Discovery (KD) is a rapidly expanding field in

computer science. It has become very important because of an

increased demand for methodologies and tools that can help

the analysis and understanding of huge amounts of data

generated on a daily basis by institutions. Knowledge

discovery has been successfully used in various application

areas: engineering [1], education [2], business and finance [3],

insurance [4], telecommunication [5], chemistry [6], and

medicine [7]. There are many techniques which are used for

knowledge extraction from databases such as neural networks

[8-9], genetic algorithms [10-11], decision tree [12-13],

instance-based learning [14-15], rule induction [16-17], and

support vector machine [18-19]. However, the ANN is still

one of the most widely used techniques for knowledge

extraction due to their advantages compared with the other

techniques. It has advantages of nonlinear mapping, high

tolerance to errors and robustness to noise. These properties

are very promising in rule extraction and worthy of studying

in depth. Therefore, research work in the area of extracting

rules from trained neural networks has witnessed much

activity recently. Rule extraction techniques from neural

network are grouped into three approaches named as

decompositional, pedagogical and eclectic. The

decompositional algorithms analyze the hidden unit

activations and connection weights for better understanding of

network configurations. The pedagogical approach treats the

ANN as a black-box and generates a knowledge

representation that has the same (or similar) input-output

mapping, disregarding the specific architecture of the

network. Input-output pairs are generated using the trained

network, and rules are extracted from this new database.

Finally, eclectic approaches incorporate elements of both

pedagogical and decompositional techniques [20]. The earliest

decompositional rule extraction method is the KT algorithm

developed by LiMin. Fu [21]. The KT algorithm generates

rules for each concept corresponding to a hidden or output

unit whose summed weights exceed the threshold of the unit.

The same idea is incorporated in the Subset algorithm

developed by Towell and Shavlik [22]. This algorithm checks

each subset and tries to find out if any of these links exceed

the bias. If exceeded, then these weights are rewritten as rules.

The REFANN algorithm extracts rules from trained ANN for

non-linear function approximation or regression was

developed by Setiono [23]. An optimization minimizes the

search space by sorting the weights which have been proposed

by Krishnan [24]. Towell et al. described a very interesting

method nicknamed KBANN which is used to refine existing

rules [25]. Its main idea is to encode the existing domain

knowledge inside the network structure, then train such a

specially initialized network, and finally extract new and

better rules. Representatives of the pedagogical techniques

category include Validity Interval Analysis (VIA) [26],

TREPAN [27], Decision Tree Extractor (Dectext) [28], etc.

VIA was designed as a general purpose rule extraction

procedure, extracting symbolic knowledge from network.

TREPAN, developed by Craven, it treats the network as an

oracle used to statistically verify the correctness and

significance of the generated rules. Dectext trained network

and extract a classical decision tree from the network. Zhou et

al. [29] developed an algorithm REFNE, by using an

ensemble neural network to generate new data instances, and

then extract symbolic rules from these instances. Garcez et al.

[30] developed a method to extract rules from a neural net by

first defining a partial ordering on the set of input vectors.

Then, eclectic techniques combine the elements of the

decompositional and the pedagogical approaches. They

analyze an ANN at the individual unit level but also extract

rules at the global level. One example of this approach is the

DEDEC algorithm [31], which extracts if-then rules from

MLP networks trained with the back-propagation algorithm.

DEDEC extracts symbolic rules efficiently from a set of

individual cases. It ranks the cases to be examined in order of

importance. This is achieved by using the magnitude of the

weight vectors in the trained ANN to rank the input units

according to the relative share of their contribution to the

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

9

output units. The focus is on extracting rules from those cases

that involve what are deemed to be the most important input

units.

The present paper introduces a new decompositional approach

for rule extraction via trained neural network. A destructive

technique is used to reduce the dimensionality of the neural

network by eliminating the hidden nodes or weights between

layers if they are no longer actively used. Therefore, the most

effective input values are used to extract the strongest rules

from a given database.

This paper is organized as follows. The knowledge

representation is performed in section 2. The proposed

algorithm is described in section 3. The performance

evaluation measures are introduced in section 4. The

application and results are reported in section 5. Finally, the

conclusion is presented in section 6.

2. KNOWLEDGE REPRESENTATION
A neural network is a powerful data modeling tool that is able

to capture and represent complex input/output relationships.

The true power and advantage of neural networks lie in their

ability to represent both linear and non-linear relationships

and in their ability to learn these relationships directly from

the data being modeled. The most common neural network

model is the multilayer perceptron (MLP). This type of neural

network is known as a supervised network because it requires

a desired output in order to learn. The goal of this type of

network is to create a model that correctly maps the input to

the output using historical data so that the model can then be

used to produce the output when the desired output is

unknown. Generally, a model of neural network consisting of

layers of highly interconnected processing units can be trained

to perform classification tasks. Patterns of input and output

are first presented to the model for training. The sub-symbolic

knowledge of a trained model is implicitly stored in the

weights of the connections. Various methods exist to train a

neural network; the most frequently used is back-propagation

with the generalized delta rule [32]. With back-propagation,

the user defines the number of hidden layers and nodes in

each layer. Then, the model generates a first output, based on

random weights of the connections. This output is compared

with the desired output, and the difference between model

prediction and desired output is calculated. The total squared

sum of the calculated differences is then returned into the

model, and the weights of the connections are changed to

minimize the error. This procedure is repeated many times for

all combinations of input and output. The ultimate goal for the

model is to find a single set of weights that satisfies all the

pairs of input and output presented to it, which is generalized

to classify new data correctly. There are many techniques that

have been developed to extract a low-level internal

representation of ANN and convert it into a higher-level

representation of the knowledge that can be interpreted more

easily by humans [33-34]. Such a representation should be

reasonably understood by humans, and to be formally treated

by expert systems or inference engines. One of the most

frequently used forms of representing knowledge extracted

from neural networks are if-then rules, which are also a

common representation mechanism for expert systems. A rule

generally represents knowledge in the form of IF-THEN rules

as follows: IF „„condition(s)” THEN „„class”. The antecedent

(conditions) part of the rule contains a logical combination of

predictor attributes and the consequent (class) part of the rule

contains the class predicted for cases whose predictor

attributes satisfy the antecedent part of the rule. The

advantages of rules are the natural interpretation by humans

and modularity during construction. In addition, it is relevant

that production rules are also a formal way of presenting

knowledge and in this way a good starting point for practical

realization of the decision support system. Thus, the main

goal of rule extraction is to discover the hidden knowledge

and explain it understandably, to extract previously unknown

relations and to ensure reasoning and defining capability.

3. THE PROPOSED ALGORITHM
A classification of the rule extraction algorithms from neural

network may characterize different methods using five

dimensions [35]: (a) the „expressive power‟ of the extracted

rules (types of rules extracted); (b) the „quality‟ of the

extracted rules (accuracy, fidelity comparing to the underlying

network, comprehensibility and consistency of the extracted

rules); (c) the „translucency‟ of the method, based on local-

global use of the neural network (analysis of individual nodes

versus analysis of the total network function); (d) the

algorithmic complexity of the method; (e) specialized network

training schemes. One should add one more dimension to this

scheme, (f) the treatment of linguistic variables: some

methods work only with binary variables, other with

discretized inputs, and yet other with continuous variables that

are converted to linguistic variables automatically. Most of

the rule extraction algorithms from neural network have

basically two motivations. On the one hand, some authors

noticed the need for simplification of neural networks to

facilitate the rule extraction process. On the other hand, some

papers have proposed algorithms mainly intended to clarify

the knowledge encoded in previously trained ANNs [36]. One

of the most problematic issues that arises in rule extraction

algorithms which are cast as a search problem, is that the size

of the hypothesis space for searching rules can be very large,

which generally results in computationally expensive

methods. For a problem domain with "n" binary features

(values in {positive, negative, absent}) there are 3n possible

conjunctive rules that can represent the underlying problem.

In other words, the search space grows exponentially with the

number of input features and the values that they contain in

addition to the number of hidden nodes.

The present paper introduces a proposed algorithm based on a

primary neural network for the simplification of neural

networks to facilitate the rule extraction process. There is no

need to enumerate the overall space of solutions for the

method to extract rule, therefore the searching efficiency is

highly increased and the computation is dramatically reduced.

The proposed algorithm uses a three-layer artificial neural

network namely; input layer, hidden layer and output layer.

The architecture of the proposed neural network is set as

follows; number of input nodes is equal to the number of

input values of all attributes, number of hidden nodes is

chosen randomly, number of output nodes is equal to number

of output classes, the learning and momentum coefficients are

determined randomly. Each node in a layer is connected to all

nodes in the adjacent layer and each connection between

nodes has a weight. In order to activate the neural network, a

set of training inputs and corresponding outputs are required.

If the nodes in the input layer are represented by X1, X2,

X3, ….. ,Xm, the nodes in the hidden layer are H1, H2,

H3, , Hn, and Wij is the weight on the connection between

Ii and Hj, and the output value of jth node in the hidden layer

can be represented as follows:

) . (
1





m

i
iijj

XWTFH 1

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

10

The proposed algorithm uses a standard sigmoid function as a

non-linear transfer function TF(x) and it can be represented

as:

xe
xTF




1

1
)(2

When calculating the value of an output node, the same

transfer function is applied after summing up the results from

the previous layer. Therefore, the final value of the kth output

node, OK, is given by:

) . (
1





n

i
jjkk

HWTFO
 3

Where Wjk is the weight of the connection between Hj and OK.

The weights, Wij and Wjk, are set randomly at the beginning of

the training and are iteratively modified to obtain a structure

of a network which minimizes the error between the neural

network outputs and the desired outputs.

The proposed algorithm makes use of a destructive approach

as pruning procedures to reach the optimal architecture of the

trained neural network. This approach removes the hidden

nodes or connections between layers which are no longer

actively used. We assume that the most important connection

has higher weights and its connected nodes have a higher

impact on the output result and contain valuable information

about the input data. Therefore, for each output node (class)

the effective input values which have the more important

connections (positives weights only) between the input–

hidden layers and hidden-output layers can be extracted. Thus,

the most effective values for each class are determined. So,

the rule extraction belonging to a specific class can be

generated through two levels, the first level checks each

individual effective input value with the corresponding class,

if any individual effective input value belongs completely to a

specific class then generates a rule which contains the input

value and belongs to this class. In the second level, the

effective input values are combined alternatively in order to

create different conjunctions. So, for each pattern in the

database, we compute the similarity measure of each possible

conjunction with each class. The similarity measure equals

one if all values of conjunction are similar (exist) and equal

zero otherwise. The rule is generated for a specific class if and

only if the total similarity measure (TSM) of any conjunction

belonging to this class is equal or greater than a threshold

value, and the total similarity measure of the same

conjunction with other classes must equal zero. The threshold

value must be at least one, and it is used to control the number

of extracted rules. Therefore, the higher threshold value leads

to reduce the number of generated rules and extract the

strongest rules which represent a large number of instances

from the database.

4. PERFORMANCE EVALUATION
The commonly measures used to evaluate the performance of

the learning algorithm are Accuracy, Precision, Sensitivity

and Specificity [37]. The Accuracy is the number of correctly

classified instances compared to the total number of instances

presented to the system. It is defined as follows:

FNFPTNTP

TNTP
Accuracy




 4

Precision is the percentage of true positives compared to the

total number of instances classified as positive events, one can

define the precision as:

FPTP

TP
recisionP


 5

The sensitivity measure (also called recall rate) is the

percentage of positive labeled instances that were predicted as

positive. It is defined by:

FNTP

TP
ySensitivit




 6
The specificity is the percentage of negative labeled instances

that were predicted as negative and it can be defined as:

FPTN

TN
ySpecificit


 7

Where;

TP (True Positives): is the number of instances covered by

the rule which have the same class label as the rule.

FP (False Positives): is the number of instances covered by

the rule which have a different class label from the rule.

FN (False Negatives): is the number of instances which are

not covered by the rule but have the same class label as the

rule.

TN (True Negatives): is the number of instances which are

not covered by the rule and do not have the same class label

as the rule.

5. APPLICATION AND RESULTS
The proposed model is tested on publicly available data sets in

order to check its effectiveness. Three benchmark data sets are

used namely; Play Tennis problem [38], Monk‟s problems

[39], and Wisconsin breast cancer dataset [39]. The

performance evaluation of the proposed model is compared

with other learning models introduced by Waikato

Environment for Knowledge Analysis (WEKA). WEKA [40]

is an open source software which consists of a collection of

machine learning algorithms for data mining tasks such as

Decision Tree, Bayesian Networks, Radial Basis Function

(RBF) Networks, and Single Conjunctive Rule Learner.

5.1 Play Tennis Problem
The Play Tennis problem has four attributes and one target

class as shown in table 1. The four attributes of a given

database are {Outlook, Temperature, Humidity, Wind}. The

attribute Outlook has three possible values {Sunny, Overcast,

Rain}, while the attribute Temperature has three possible

values {Hot, Mild, Cool}, and the attribute Humidity has two

possible values {High, Normal}, finally the attribute Wind has

two possible values {Weak, Strong}. Indeed, the target class

has two different values (Don't Play and Play).

Table 1. Example of play tennis [38]
Outlook Temperature Humidity Wind Target

Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes

Rain Mild High Strong No

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

11

The linguistic values of the given database are encoded as a

binary form. The method of data representation is that if the

position of input node matches with linguistic term, it will be

represented by one otherwise it will be represented by zero.

For example, if the input attribute Outlook has three linguistic

values which are Sunny, Overcast, and Rain, we will represent

the input attribute by 3 nodes which are [X1, X2, X3] and

represent the positions by [Sunny, Overcast, Rain]. Thus, the

representation of Sunny value will be represented by [1, 0, 0].

The representation of Overcast value will be represented by

[0, 1, 0], and the representation of Rain value will be

represented by [0, 0, 1]. In representing the value of the target

attribute, we use the same method which means that if we

have two different classes of the target attribute, Don't Play

and Play, then we will represent the target attribute by 2 nodes

which are [O1, O2]. Then, the representation of Don't Play

value will be represented by [1, 0] and the representation of

Play value will be represented by [0, 1].

The multiplayer neural network using the back-propagation

algorithm is trained on the encoded database. The final

parameters of ANN are described as follows; number of input

nodes are 10, number of hidden nodes are set to 4, number of

output nodes are 2, the learning rate is set to 0.24, the

momentum is set to 0.62, the allowable error is set to

0.000001 and the number of iteration is set to 30000. After the

training is stopped, the weighs between input and hidden

layer, and the weighs between hidden and output layer are

extracted. Now, we are pruning the ANN by removing the

hidden nodes or connections between layers which are no

longer actively used. We assume that a more important

connection has positive weights and its connected nodes have

a higher impact on the output result. Therefore, for each

output node (class) the effective input values which have the

more important connections between the input–hidden layers

and hidden-output layers can be extracted. Figure 1 shows the

most effective input values which have the highest impact on

the output class Don't Play (O1).

Sunny

Rain

Hot

High

Strong

3.741

1.115

0.296

4.006

2.284

9.0127
O

1
H

2

X
1

X
3

X
4

X
7

X
10

Fig 1: The most effective values for Don't Play class (O1)

Therefore, the most effective input values for Don't Play class

(O1) are (Outlook {Sunny, Rain}, while Temperature

{Hot}, and Humidity {High}, finally Wind

{Strong}). The rule extraction can be generated in two

levels, the first level for individual effective input value and

the second level for each possible effective input values

conjunction as shown on table 3. The rules extracted at the

total similarity measure threshold  1.

Table 3. The extracted rules for Don't Play class (O1)

Conjunction
1

)(
Class

TSM
2

)(
Class

TSM
Rules

There is no individual input value belongs
completely to this class -----------------------

Outlook 

{Sunny, Rain}

0 0 -----------------------

Outlook{Sunny} &

Temperature{Hot}

2

0

If Outlook is Sunny

and Temperature is
Hot Then Class is

not play

Outlook{Sunny} &

Humidity{High}

3

0

If Outlook is Sunny
and Humidity is High

Then Class is not play

Outlook{Sunny} &

Wind {Strong}
1 1 ---------------------

Outlook{ Rain}

&

Temperature{Hot}

0

0

Outlook{Rain}

&

 Humidity{High}

1

1

Outlook{ Rain}

&

 Wind {Strong}

2 0
If Outlook is Rain and

Wind is Strong Then

Class is not play

Temperature{Hot}

&

Humidity {High}

2 2 ---------------------

Temperature{Hot}

&

 Wind {Strong}

1 0
If Temperature is Hot
and Wind is Strong

Then Class is not play

Humidity {High} &

 Wind  {Strong}
2 1 -----------------------

For extracting rules that belong to the output class Play, (O2),

the previous technique is applied and the most effective input

values which have the highest impact on it are shown in

figure 2.

Overcast

Rain

Normal

Weak

6.155
0.349

1.109

0.154

5.287
0.235

0.617

3.
06

1 1.1068

0.568

9.227

0.7739

1.218

O
2

H
1

H
3

H
4

X
2

X
3

X
8

X
9

Fig 2: The most effective values for Play class (O2)

Therefore, the most effective input values for the Play class

(O2) are (Outlook{Overcast, Rain}, Humidity

{Normal}, and Wind {Weak}). Table 4 shows the

extracted rules that belong to the Play class (O2) according to

the two levels at the total similarity measure threshold  2.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

12

Table 4. The extracted rules for Play class (O2)

Conjunction
2

)(
Class

TSM
1

)(
Class

TSM Rules

The input value "Outlook{Overcast}" belongs

completely to this class

If Outlook is Overcast
Then Class is play

Outlook{Rain}

&

Humidity {Normal}

2

1

Outlook{Rain}

&

Wind {Weak}

3

0
If Outlook is Rain and

Wind is Weak Then
Class is play

Humidity {Normal}

&

Wind {Weak}

4

0

If Humidity is Normal
and Wind is Weak

Then Class is play

The comparison of the performance measures for the

proposed model and other learning models from WEKA is

shown on table 5. The results show that the proposed model

achieved the highest performance compared with the other

models.

Table 5. The performance measures of various models for

Play Tennis Problem

Models Acc (%) Pre (%) Sen (%) Spec (%)

Decision Tree 65.26 100 65.25 100

Bayesian Networks 92.68 100 90.18 100

RBF Networks 100 100 100 100

Single Conjunctive
 Rule Learner 96.5 100 98.47 100

The proposed model 100 100 100 100

5.2 Monk’s Problems

Monk‟s problems are a classical set of benchmarks which are

widely used in classification task. The Monk's problems are a

collection of three binary classification problems Monk-1,

Monk-2 and Monk-3 which are described by the following six

attributes: head-shape {round, square, octagon}, body-

shape {round, square, octagon}, is-smiling {yes, no},

holding {sword, baloon, flag}, jacket-color {red,

yellow, green, blue}, and has-tie {yes, no}. The proposed

model is performed on Monk-1 problem which has 124

instances and the linguistic values of the given database are

encoded as a binary form. The ANN is trained on the encoded

database and the final parameters of ANN are adjusted as;

number of input nodes are 17, number of hidden nodes are set

to 5, number of output nodes are 2, the learning rate is set to

0.37, the momentum is set to 0.81, the allowable error is set to

0.0000001 and the number of iteration is set to 32870. The

ANN performs pruning by removing the hidden nodes or

connections between layers which are no longer actively used.

Therefore, the most effective input values which have the

highest impact on each output class are extracted.

Consequently, the most effective input values for target class

(O1) are (head-shape {round, square, octagon} & body-

shape {round, square, octagon} & jacket-color {red}&

holding {sword} & has-tie  {yes}) and the most

effective input values for don‟t target class (O2) are (head-

shape {round, square, octagon} & body-shape {round,

square, octagon} & jacket-color { yellow, green, blue}&

is-smiling {no}). Finally, the proposed model generates

rules for each class in two levels, the first level for individual

effective input value and the second level for each possible

effective input values conjunction as shown on table 6 and

table 7. The total similarity measure threshold adjusted at 

3 for the first class (O1) and  7 for the second class (O2).

Table 6. The extracted rules for Target class (O1)

Conjunction
1

)(
Class

TSM
2

)(
Class

TSM Rules

The input value "jacket-color { red}"

belongs completely to Class =Yes

If jacket-color is red

then Class = Yes

head-hape{octagon}

&

body-hape{octagon}

17

0
If head-shape is

octagon and body-
shape is octagon

Then Class = Yes

head-shape{square}

&

body-shape{square}

15

0

If head-shape is

square and body-
shape is square

Then Class = Yes

head-shape{round}

&

body-shape{round}

9

0

If head-shape is
round and body-

shape is round

Then Class = Yes

head-hape{octagon}

&

holding {sword}

&

has-tie { yes}

8

0

If head-shape is
octagon and holding

is sword and has-tie

is yes Then
Class = Yes

head-hape{octagon}

&

body-shape{round}

&

has-tie  { yes}

3

0

If head-shape is

octagon and body-

shape is round and
has-tie is yes Then

Class = Yes

The comparison between the proposed model and the other

models of WEKA for Accuracy, Precision, Sensitivity and

Specificity measures is shown on table 8. The results

illustrated that the proposed model is more superior to the

compared models.

Table 7. The extracted rules for Don't Play class (O2)

Conjunction
2

)(
Class

TSM
1

)(
Class

TSM

Rules

There is no individual input value belongs
completely to this class

head-shape{round}&

body-shape{square or

octagon} & jacket-color

{yellow or green or

blue}

38

0

If head-shape is round and body-

shape is square or octagon and
jacket-color is yellow or green or

blue Then Class = No

head-shape{round or

square}& body-shape

{octagon} & jacket-

color {yellow or

green or blue}

22

0

If head-shape is round or square

and body-shape is octagon and

jacket-color is yellow or green
or blue Then Class = No

head-shape{square}&

body-shape{ round or

octagon} & jacket-color

{yellow or green or

blue}

20

0

If head-shape is square and
body-shape is round or octagon

and jacket-color is yellow or

green or blue Then Class = No

head-shape{round }&

body-shape{square}

& is-smiling {no}

7

0

If head-shape = round and

body-shape = square and
is-smiling = no Then

Class = No

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

13

Table 8: The performance measures of various models for

Monk-1 problem

Models Acc (%) Pre (%) Sen (%) Spec (%)

Decision Tree 95.68 94.79 96.13 95.16

Bayesian Networks 78.85 68.94 88.64 75.64

RBF Networks 84.21 77.34 87.49 79.83

Single Conjunctive
 Rule Learner

98.16 97.16 98.89 96.85

The proposed model 100 100 100 100

5.3 Wisconsin Breast Cancer

The Wisconsin breast cancer dataset is one of the favorite

benchmark datasets. It contains 699 cases, with 458 benign

(65.5%) and 241 (34.5%) malignant cases of cancer and it is

described by the following nine attributes: Clump Thickness

{1-10 integer values}, Uniformity of Cell Size {1-10

integer values}, Uniformity of Cell Shape {1-10 integer

values}, Marginal Adhesion {1-10 integer values}, Single

Epithelial Cell Size {1-10 integer values}, Bare Nuclei

{1-10 integer values}, Bland Chromatin {1-10 integer

values}, Normal Nucleoli {1-10 integer values}, and

Mitoses {1-10 integer values}. The ANN is trained on

encoded database and the training parameters of ANN are set

as; number of input nodes are 90, number of hidden nodes are

set to 8, number of output nodes are 2, the learning rate is set

to 0.28, the momentum is set to 0.62, the allowable error is set

to 0.0000001 and the number of iteration is set to 42358. The

ANN is pruning by removing the hidden nodes or connections

between layers which are no longer actively used.

Consequently, the most effective input values for benign class

(O1) are (Uniformity of Cell Size {1-2}) and the most

effective input values for malignant class (O2) are (Clump

Thickness {1-5}& Uniformity of Cell Shape {1-3}&

Marginal Adhesion {1-3}& Bare Nuclei {1} & Bland

Chromatin {1-4}). The performance measures of the

proposed model are compared with the other learning models

from WEKA as shown on table 9. The results show that the

proposed model achieved the best performance compared

with the other models.

Table 9. The performance measures of various models for

Breast Cancer dataset

Models Acc (%) Pre (%) Sen (%) Spec (%)

Decision Tree 76.45 96.12 78.65 78.27

Bayesian Networks 75.49 84.12 83.36 59.33

RBF Networks 80.04 91.25 80.98 71.24

Single Conjunctive
 Rule Learner 83.58 95.47 86.76 84.59

The proposed model 97.85 96.23 100 91.89

6. CONCLUSION
Research work in the area of extracting rules from trained

neural networks has witnessed much activity recently.

However, the degree of complexity of ANN increases

exponentially as a factor of the numbers of input and hidden

nodes. The complexity problem can be alleviated by adopting

heuristics to constrain the search space. The present paper

introduces a new methodology for the simplification of the

ANN by pruning the weights among neurons to obtain simple

but substantial expressions of ANN and facilitate the rule

extraction process. Therefore, the most effective values of

inputs attributes are only extracted to generate the rules for

each class. Consequently, there is no need to enumerate the

overall space of solutions and generate a small number of

linguistic rules that is easy for users to understand. The true

positive rules of a specific class are extracted when the total

similarity measure of the tested conjunction of each rule has a

value greater than the threshold value and equal zero with

other classes. The higher threshold value leads to reduce the

number of generated rules and extract the strongest rules

which represent a large number of instances from the

database. Extensive experiments have been carried out in this

study to evaluate how well the proposed model performed on

three benchmark classification problems in comparison with

the other models. Finally, the results indicate that the

proposed model is the superior compared with other model.

REFERENCES
[1] Oscar Marbán, Javier Segovia, Ernestina Menasalvas,

Covadonga Fernández-Baizán, "Toward data mining

engineering: A software engineering approach",

Information Systems, Volume 34, Issue 1, March 2009,
Pages 87-107.

[2] Ali Buldu, Kerem Üçgün, "Data mining application on

students‟ data", Procedia- Social and Behavioral

Sciences, Volume 2, Issue 2, 2010, Pages 5251-5259.

[3] Flora S. Tsai, Agus T. Kwee, "Database optimization for

novelty mining of business blogs", Expert Systems with

Applications, Volume 38, Issue 9, September 2011,
Pages 11040-11047.

[4] Chien-Hsing Wu, Shu-Chen Kao, Yann-Yean Su,

Chuan-Chun Wu, "Targeting customers via discovery

knowledge for the insurance industry", Expert Systems

with Applications, Volume 29, Issue 2, August 2005,
Pages 291-299.

[5] Tong-Yan Li, Xing-Ming Li, "Preprocessing expert

system for mining association rules in

telecommunication networks ", Expert Systems with

Applications, Volume 38, Issue 3, March 2011, Pages

1709-1715

[6] Uko Maran, Sulev Sild, Iiris Kahn, Kalev Takkis,

"Mining of the chemical information in GRID

environment", Future Generation Computer Systems,

Volume 23, Issue 1, 1 January 2007, Pages 76-83.

[7] Xuezhong Zhou, Shibo Chen, et el "Development of

traditional Chinese medicine clinical data warehouse for

medical knowledge discovery and decision support ",

Artificial Intelligence in Medicine, Volume 48, Issues 2-

3, February-March 2010, Pages 139-152.

[8] Eyal Kolman, Michael Margaliot, "Extracting symbolic

knowledge from recurrent neural networks-A fuzzy logic

approach", Fuzzy Sets and Systems, Volume 160, Issue
2, 16 January 2009, Pages 145-161.

[9] Jun Wang, Yunpeng Wu, Xuening Liu, Xiaoying Gao,

"Knowledge acquisition method from domain text based

on theme logic model and artificial neural network",

Expert Systems with Applications, Volume 37, Issue 1,
January 2010, Pages 267-275.

[10] C.K. Kwong, K.Y. Chan, Y.C. Tsim, "A genetic

algorithm based knowledge discovery system for the

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

14

design of fluid dispensing processes for electronic

packaging", Expert Systems with Applications, Volume
36, Issue 2, Part 2, March 2009, Pages 3829-3838.

[11] Muzaffer Kapanoglu, Mete Alikalfa, "Learning IF–

THEN priority rules for dynamic job shops using genetic

algorithms", Robotics and Computer-Integrated

Manufacturing, Volume 27, Issue 1, February 2011,
Pages 47-55.

[12] Leyli Mohammad Khanli, Farnaz Mahan, Ayaz Isazadeh,

"Active rule learning using decision tree for resource

management in Grid computing", Future Generation

Computer Systems, Volume 27, Issue 6, June 2011,
Pages 703-710.

[13] Mouloud Boumahdi, Jean-Paul Dron, Saïd Rechak,

Olivier Cousinard, "On the extraction of rules in the

identification of bearing defects in rotating machinery

using decision tree", Expert Systems with Applications,
Volume 37, Issue 8, August 2010, Pages 5887-5894.

[14] Francesco Gagliardi, "Instance-based classifiers applied

to medical databases: Diagnosis and knowledge

extraction", Artificial Intelligence in Medicine, Volume
52, Issue 3, July 2011, Pages 123-139.

[15] Amelia Zafra, Cristóbal Romero, Sebastián Ventura,

"Multiple instance learning for classifying students in

learning management systems", Expert Systems with

Applications, Volume 38, Issue 12, November-December

2011, Pages 15020-15031.

[16] Wouter Verbeke, David Martens, Christophe Mues, Bart

Baesens, "Building comprehensible customer churn

prediction models with advanced rule induction

techniques", Expert Systems with Applications, Volume

38, Issue 3, March 2011, Pages 2354-2364.

[17] Jerzy Błaszczyński, Roman Słowiński, Marcin Szeląg,

"Sequential covering rule induction algorithm for

variable consistency rough set approaches", Information

Sciences, Volume 181, Issue 5, 1 March 2011, Pages
987-1002.

[18] Nahla Barakat, Andrew P. Bradley, "Rule extraction

from support vector machines: A review",

Neurocomputing, Volume 74, Issues 1-3, December
2010, Pages 178-190.

[19] M.A.H. Farquad, V. Ravi, S. Bapi Raju, "Support vector

regression based hybrid rule extraction methods for

forecasting", Expert Systems with Applications, Volume

37, Issue 8, August 2010, Pages 5577-5589.

[20] Humar Kahramanli, Novruz Allahverdi, "Rule extraction

from trained adaptive neural networks using artificial

immune systems", Expert Systems with Applications 36
(2009) 1513–1522.

[21] LiMin. Fu, “Rule generation from neural networks”,

IEEE Transactions on Systems, Man and Cybernetics,

Vol. 24 No.8, 1994, pp.1114-1124.

[22] G. Towell and J. Shavlik, “The extraction of refined rules

from knowledge based neural networks”, Machine
Learning, Vol. 131, 1993, pp. 71-101.

[23] R. Setiono, K. H. Wee, and M. J. Zurada, “Extraction of

Rules from artificial neural network for nonlinear

regression”, IEEE Transaction Neural Networks, Vol. 23

No. 23, 2002, pp. 564-577.

[24] R. Krishnan, G. Sivakumar, and P. Bhattacharya, “A

search technique for rule extraction from trained neural

networks,” Pattern Recognit. Lett., vol. 20, no. 3, pp.
273–280, Mar. 1999.

[25] G. G. Towell, J. W. Shavlik, and M. O. Noordewier,

“Refinement of approximate domain theories by

knowledge-based neural networks,” in Proc. 8th Nat.

Conf. Artif. Intell., Boston, MA, 1990, pp. 861–866.

[26] S. B. Thrun, “Extracting provably correct rules from

neural networks”, in Technical Report IAI-TR-93-5,
Institut fur Informatik III Universitat Bonn, 1994.

[27] M. W. Craven, “Extracting comprehensible models from

trained neural networks”, Ph.D. Thesis, University of

Wisconsin, Madison, 1996.

[28] Olcay Boz, “Extracting decision tree from trained neural

networks”, ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2002, pp. 456-
461.

[29] Z. H. Zhou, Y. Jiang, Y. B. Yang, and S.F. Chen,

“Extracting neural networks from trained neural network

Ensembles”, AI Communications, Vol. 16 No.1, pp. 3-
15, 2003.

[30] A. Garcez, S d‟Avila, K. Broda, D.M. Gabbay,

“Symbolic knowledge extraction from trained neural

networks: A sound approach”, Artificial Intelligence,
Vol. 125, 2001, pp. 155-207.

[31] Tickle, A.B., Orlowski, M., and Diederich, J.,

“DEDEC: A Methodology for Extracting Rules from

Trained Artificial Neural Networks”, Proceedings of The

Rule Extraction From Trained Artificial Neural
Networks Workshop, 1996.

[32] Rumelhart, D. E.. G. E. Hinton. and R. J. Williams 1986.

"Learning internal representations by error propagation",

Page 318 in Parallel Distributed Processing: Explorations

in the Micro-Structure of Cognition. Vol. 1. D. E.

Rumelhart and J. L. McClelland, ed.MIT Press,
Cambridge, MA.

[33] C. McMillan, M.C. Mozer, and P. Smolensky, “The

connectionist science game: Rule extraction and

refinement in a neural network”, in Proceedings of the

13th Annual Conference of the Cognitive Science
Society, 1991.

[34] R. Setiono and H. Liu, “Understanding neural networks

via rule extraction”, edited by Chris S. Mellish, in

Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence, San Mateo, August
20–25, 1995, Morgan Kaufmann, pp. 480–487.

[35] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich,

“The Truth Will Come to Light: Directions and

Challenges in Extracting the Knowledge Embedded

Within Trained Artificial Neural Networks”, IEEE Trans.
Neural Networks, vol 9, pp. 1057–1068, 1998.

[36] Humar Kahramanli, Novruz Allahverdi, "Rule extraction

from trained adaptive neural networks using artificial

immune systems", Expert Systems with Applications,

Volume 36, Issue 2, Part 1, March 2009, Pages 1513-
1522.

[37] K. C. TAN, Q. YU and J. H. ANG, "A co-evolutionary

algorithm for rules discovery in data mining",

International Journal of Systems Science Vol. 37, No. 12,

10 October 2006, 835–864.

[38] Tom M. Mitchell, “Machine Learning”, McGraw-Hill

Book Co, Copyright 1997.

[39] S. B. Thrun, "The MONK's problem: A performance

comparison of different learning algorithms", Carnegie-
Mellon University, Technical Report, 1991.

[40] WEKA at http://www.cs.waikato.ac.nz/~ml/wek

http://www.cs.waikato.ac.nz/~ml/wek

