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ABSTRACT 
The present paper introduces a new destructive algorithm for 

rule extraction based on a trained neural network. The degree 

of complexity of neural network increases exponentially as a 

factor of the numbers of input and hidden nodes. Therefore, 

the dimensionality of the trained neural network is reduced by 

using a proposed destructive algorithm to extract only the 

most effective values of the input attributes which have higher 

impact on the output result for each class. Thus, the searching 

efficiency is highly increased and the computation is 

dramatically reduced for extracting rules. The generated rules 

from the proposed model are fired through two levels for each 

class. As for the first level, it deals with each individual 

effective input value, and the second level is concerned with 

each possible conjunction of the effective input values. 

Moreover, the proposed model extracts the strongest rules 

which represent a large number of instances from the database 

by adjusting the similarity measure threshold value. Finally, 

the proposed model is evaluated on different public-domain 

datasets and compared with standard learning models from 

WEKA, then the results assert that the set of rules extraction 

from the proposed method is more accurate and concise 

compared with those obtained by the other models. 

General Terms 

Knowledge extraction, Neural network, Decompositional 

techniques.  

Keywords 
Rule extraction, Supervised learning, Neural network, 

Destructive technique, Performance measures.  

1. INTRODUCTION 
Knowledge Discovery (KD) is a rapidly expanding field in 

computer science. It has become very important because of an 

increased demand for methodologies and tools that can help 

the analysis and understanding of huge amounts of data 

generated on a daily basis by institutions. Knowledge 

discovery has been successfully used in various application 

areas: engineering [1], education [2], business and finance [3], 

insurance [4], telecommunication [5], chemistry [6], and 

medicine [7]. There are many techniques which are used for 

knowledge extraction from databases such as neural networks 

[8-9], genetic algorithms [10-11], decision tree [12-13], 

instance-based learning [14-15], rule induction [16-17], and 

support vector machine [18-19]. However, the ANN is still 

one of the most widely used techniques for knowledge 

extraction due to their advantages compared with the other 

techniques. It has advantages of nonlinear mapping, high 

tolerance to errors and robustness to noise. These properties 

are very promising in rule extraction and worthy of studying 

in depth. Therefore, research work in the area of extracting 

rules from trained neural networks has witnessed much 

activity recently. Rule extraction techniques from neural  

network are grouped into three approaches named as 

decompositional, pedagogical and eclectic. The 

decompositional algorithms analyze the hidden unit 

activations and connection weights for better understanding of 

network configurations. The pedagogical approach treats the 

ANN as a black-box and generates a knowledge 

representation that has the same (or similar) input-output 

mapping, disregarding the specific architecture of the 

network. Input-output pairs are generated using the trained 

network, and rules are extracted from this new database. 

Finally, eclectic approaches incorporate elements of both 

pedagogical and decompositional techniques [20]. The earliest 

decompositional rule extraction method is the KT algorithm 

developed by LiMin. Fu [21]. The KT algorithm generates 

rules for each concept corresponding to a hidden or output 

unit whose summed weights exceed the threshold of the unit. 

The same idea is incorporated in the Subset algorithm 

developed by Towell and Shavlik [22]. This algorithm checks 

each subset and tries to find out if any of these links exceed 

the bias. If exceeded, then these weights are rewritten as rules. 

The REFANN algorithm extracts rules from trained ANN for 

non-linear function approximation or regression was 

developed by Setiono [23]. An optimization minimizes the 

search space by sorting the weights which have been proposed 

by Krishnan [24]. Towell et al. described a very interesting 

method nicknamed KBANN which is used to refine existing 

rules [25]. Its main idea is to encode the existing domain 

knowledge inside the network structure, then train such a 

specially initialized network, and finally extract new and 

better rules. Representatives of the pedagogical techniques 

category include Validity Interval Analysis (VIA) [26], 

TREPAN [27], Decision Tree Extractor (Dectext) [28], etc. 

VIA was designed as a general purpose rule extraction 

procedure, extracting symbolic knowledge from network. 

TREPAN, developed by Craven, it treats the network as an 

oracle used to statistically verify the correctness and 

significance of the generated rules. Dectext trained network 

and extract a classical decision tree from the network. Zhou et 

al. [29] developed an algorithm REFNE, by using an 

ensemble neural network to generate new data instances, and 

then extract symbolic rules from these instances. Garcez et al. 

[30] developed a method to extract rules from a neural net by 

first defining a partial ordering on the set of input vectors. 

Then, eclectic techniques combine the elements of the 

decompositional and the pedagogical approaches. They 

analyze an ANN at the individual unit level but also extract 

rules at the global level. One example of this approach is the 

DEDEC algorithm [31], which extracts if-then rules from 

MLP networks trained with the back-propagation algorithm. 

DEDEC extracts symbolic rules efficiently from a set of 

individual cases. It ranks the cases to be examined in order of 

importance. This is achieved by using the magnitude of the 

weight vectors in the trained ANN to rank the input units 

according to the relative share of their contribution to the 
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output units. The focus is on extracting rules from those cases 

that involve what are deemed to be the most important input 

units.  

The present paper introduces a new decompositional approach 

for rule extraction via trained neural network. A destructive 

technique is used to reduce the dimensionality of the neural 

network by eliminating the hidden nodes or weights between 

layers if they are no longer actively used. Therefore, the most 

effective input values are used to extract the strongest rules 

from a given database.        

This paper is organized as follows. The knowledge 

representation is performed in section 2. The proposed 

algorithm is described in section 3. The performance 

evaluation measures are introduced in section 4. The 

application and results are reported in section 5. Finally, the 

conclusion is presented in section 6.  

2. KNOWLEDGE REPRESENTATION 
A neural network is a powerful data modeling tool that is able 

to capture and represent complex input/output relationships. 

The true power and advantage of neural networks lie in their 

ability to represent both linear and non-linear relationships 

and in their ability to learn these relationships directly from 

the data being modeled. The most common neural network 

model is the multilayer perceptron (MLP). This type of neural 

network is known as a supervised network because it requires 

a desired output in order to learn. The goal of this type of 

network is to create a model that correctly maps the input to 

the output using historical data so that the model can then be 

used to produce the output when the desired output is 

unknown. Generally, a model of neural network consisting of 

layers of highly interconnected processing units can be trained 

to perform classification tasks. Patterns of input and output 

are first presented to the model for training. The sub-symbolic 

knowledge of a trained model is implicitly stored in the 

weights of the connections. Various methods exist to train a 

neural network; the most frequently used is back-propagation 

with the generalized delta rule [32]. With back-propagation, 

the user defines the number of hidden layers and nodes in 

each layer. Then, the model generates a first output, based on 

random weights of the connections. This output is compared 

with the desired output, and the difference between model 

prediction and desired output is calculated. The total squared 

sum of the calculated differences is then returned into the 

model, and the weights of the connections are changed to 

minimize the error. This procedure is repeated many times for 

all combinations of input and output. The ultimate goal for the 

model is to find a single set of weights that satisfies all the 

pairs of input and output presented to it, which is generalized 

to classify new data correctly. There are many techniques that 

have been developed to extract a low-level internal 

representation of ANN and convert it into a higher-level 

representation of the knowledge that can be interpreted more 

easily by humans [33-34]. Such a representation should be 

reasonably understood by humans, and to be formally treated 

by expert systems or inference engines. One of the most 

frequently used forms of representing knowledge extracted 

from neural networks are if-then rules, which are also a 

common representation mechanism for expert systems. A rule 

generally represents knowledge in the form of IF-THEN rules 

as follows: IF „„condition(s)” THEN „„class”. The antecedent 

(conditions) part of the rule contains a logical combination of 

predictor attributes and the consequent (class) part of the rule 

contains the class predicted for cases whose predictor 

attributes satisfy the antecedent part of the rule. The 

advantages of rules are the natural interpretation by humans 

and modularity during construction. In addition, it is relevant 

that production rules are also a formal way of presenting 

knowledge and in this way a good starting point for practical 

realization of the decision support system. Thus, the main 

goal of rule extraction is to discover the hidden knowledge 

and explain it understandably, to extract previously unknown 

relations and to ensure reasoning and defining capability. 

3. THE PROPOSED ALGORITHM  
A classification of the rule extraction algorithms from neural 

network may characterize different methods using five 

dimensions [35]: (a) the „expressive power‟ of the extracted 

rules (types of rules extracted); (b) the „quality‟ of the 

extracted rules (accuracy, fidelity comparing to the underlying 

network, comprehensibility and consistency of the extracted 

rules); (c) the „translucency‟ of the method, based on local-

global use of the neural network (analysis of individual nodes 

versus analysis of the total network function); (d) the 

algorithmic complexity of the method; (e) specialized network 

training schemes. One should add one more dimension to this 

scheme, (f) the treatment of linguistic variables: some 

methods work only with binary variables, other with 

discretized inputs, and yet other with continuous variables that 

are converted to linguistic variables automatically. Most of 

the rule extraction algorithms from neural network have 

basically two motivations. On the one hand, some authors 

noticed the need for simplification of neural networks to 

facilitate the rule extraction process. On the other hand, some 

papers have proposed algorithms mainly intended to clarify 

the knowledge encoded in previously trained ANNs [36]. One 

of the most problematic issues that arises in rule extraction 

algorithms which are cast as a search problem, is that the size 

of the hypothesis space for searching rules can be very large, 

which generally results in computationally expensive 

methods. For a problem domain with "n" binary features 

(values in {positive, negative, absent}) there are 3n possible 

conjunctive rules that can represent the underlying problem. 

In other words, the search space grows exponentially with the 

number of input features and the values that they contain in 

addition to the number of hidden nodes.  

The present paper introduces a proposed algorithm based on a 

primary neural network for the simplification of neural 

networks to facilitate the rule extraction process. There is no 

need to enumerate the overall space of solutions for the 

method to extract rule, therefore the searching efficiency is 

highly increased and the computation is dramatically reduced. 

The proposed algorithm uses a three-layer artificial neural 

network namely; input layer, hidden layer and output layer. 

The architecture of the proposed neural network is set as 

follows; number of input nodes is equal to the number of 

input values of all attributes, number of hidden nodes is 

chosen randomly, number of output nodes is equal to number 

of output classes, the learning and momentum coefficients are 

determined randomly. Each node in a layer is connected to all 

nodes in the adjacent layer and each connection between 

nodes has a weight. In order to activate the neural network, a 

set of training inputs and corresponding outputs are required. 

If the nodes in the input layer are represented by X1, X2,  

X3, ….. ,Xm, the nodes in the hidden layer are H1, H2, 

H3, ..... , Hn, and Wij is the weight on the connection between 

Ii and Hj, and the output value of jth node in the hidden layer 

can be represented as follows:  

) . ( 
1





m

i
iijj

XWTFH                                        1 
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The proposed algorithm uses a standard sigmoid function as a 

non-linear transfer function TF(x) and it can be represented 

as: 

xe
xTF




1

1
)(                                                   2 

When calculating the value of an output node, the same 

transfer function is applied after summing up the results from 

the previous layer. Therefore, the final value of the kth output 

node, OK, is given by: 

) . ( 
1





n

i
jjkk

HWTFO
                                        3 

Where Wjk is the weight of the connection between Hj and OK. 

The weights, Wij and Wjk, are set randomly at the beginning of 

the training and are iteratively modified to obtain a structure 

of a network which minimizes the error between the neural 

network outputs and the desired outputs. 

The proposed algorithm makes use of a destructive approach 

as pruning procedures to reach the optimal architecture of the 

trained neural network. This approach removes the hidden 

nodes or connections between layers which are no longer 

actively used. We assume that the most important connection 

has higher weights and its connected nodes have a higher 

impact on the output result and contain valuable information 

about the input data. Therefore, for each output node (class) 

the effective input values which have the more important 

connections (positives weights only) between the input–

hidden layers and hidden-output layers can be extracted. Thus, 

the most effective values for each class are determined. So, 

the rule extraction belonging to a specific class can be 

generated through two levels, the first level checks each 

individual effective input value with the corresponding class, 

if any individual effective input value belongs completely to a 

specific class then generates a rule which contains the input 

value and belongs to this class. In the second level, the 

effective input values are combined alternatively in order to 

create different conjunctions. So, for each pattern in the 

database, we compute the similarity measure of each possible 

conjunction with each class. The similarity measure equals 

one if all values of conjunction are similar (exist) and equal 

zero otherwise. The rule is generated for a specific class if and 

only if the total similarity measure (TSM) of any conjunction 

belonging to this class is equal or greater than a threshold 

value, and the total similarity measure of the same 

conjunction with other classes must equal zero. The threshold 

value must be at least one, and it is used to control the number 

of extracted rules. Therefore, the higher threshold value leads 

to reduce the number of generated rules and extract the 

strongest rules which represent a large number of instances 

from the database.   

4. PERFORMANCE EVALUATION  
The commonly measures used to evaluate the performance of 

the learning algorithm are Accuracy, Precision, Sensitivity 

and Specificity [37]. The Accuracy is the number of correctly 

classified instances compared to the total number of instances 

presented to the system. It is defined as follows: 

FNFPTNTP

TNTP
Accuracy




               4 

Precision is the percentage of true positives compared to the 

total number of instances classified as positive events, one can 

define the precision as: 

FPTP

TP
recisionP


                                               5                                        

The sensitivity measure (also called recall rate) is the 

percentage of positive labeled instances that were predicted as 

positive. It is defined by: 

FNTP

TP
ySensitivit




                                           6 
The specificity is the percentage of negative labeled instances 

that were predicted as negative and it can be defined as:  

FPTN

TN
ySpecificit


                                           7 

Where;  

TP (True Positives):   is the number of instances covered by 

the rule which have the same class label as the rule. 

FP (False Positives):   is the number of instances covered by 

the rule which have a different class label from the rule. 

FN (False Negatives): is the number of instances which are 

not covered by the rule but have the same class label as the 

rule. 

TN (True Negatives):  is the number of instances which are 

not covered by the rule and do not have the same class label 

as the rule. 

5. APPLICATION AND RESULTS 
The proposed model is tested on publicly available data sets in 

order to check its effectiveness. Three benchmark data sets are 

used namely; Play Tennis problem [38], Monk‟s problems 

[39], and Wisconsin breast cancer dataset [39]. The 

performance evaluation of the proposed model is compared 

with other learning models introduced by Waikato 

Environment for Knowledge Analysis (WEKA). WEKA [40] 

is an open source software which consists of a collection of 

machine learning algorithms for data mining tasks such as 

Decision Tree, Bayesian Networks, Radial Basis Function 

(RBF) Networks, and Single Conjunctive Rule Learner.    

5.1 Play Tennis Problem 
The Play Tennis problem has four attributes and one target 

class as shown in table 1. The four attributes of a given 

database are {Outlook, Temperature, Humidity, Wind}. The 

attribute Outlook has three possible values {Sunny, Overcast, 

Rain}, while the attribute Temperature has three possible 

values {Hot, Mild, Cool}, and the attribute Humidity has two 

possible values {High, Normal}, finally the attribute Wind has 

two possible values {Weak, Strong}. Indeed, the target class 

has two different values (Don't Play and Play). 

Table 1. Example of play tennis [38] 
Outlook Temperature Humidity Wind Target 

Sunny Hot High Weak No 
Sunny Hot High Strong No 

Overcast Hot High Weak Yes 
Rain Mild High Weak Yes 
Rain Cool Normal Weak Yes 
Rain Cool Normal Strong No 

Overcast Cool Normal Strong Yes 
Sunny Mild High Weak No 
Sunny Cool Normal Weak Yes 
Rain Mild Normal Weak Yes 

Sunny Mild Normal Strong Yes 
Overcast Mild High Strong Yes 
Overcast Hot Normal Weak Yes 

Rain Mild High Strong No 
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The linguistic values of the given database are encoded as a 

binary form. The method of data representation is that if the 

position of input node matches with linguistic term, it will be 

represented by one otherwise it will be represented by zero. 

For example, if the input attribute Outlook has three linguistic 

values which are Sunny, Overcast, and Rain, we will represent 

the input attribute by 3 nodes which are [X1, X2, X3] and 

represent the positions by [Sunny, Overcast, Rain]. Thus, the 

representation of Sunny value will be represented by [1, 0, 0]. 

The representation of Overcast value will be represented by 

[0, 1, 0], and the representation of Rain value will be 

represented by [0, 0, 1]. In representing the value of the target 

attribute, we use the same method which means that if we 

have two different classes of the target attribute, Don't Play 

and Play, then we will represent the target attribute by 2 nodes 

which are [O1, O2]. Then, the representation of Don't Play 

value will be represented by [1, 0] and the representation of 

Play value will be represented by [0, 1].  

The multiplayer neural network using the back-propagation 

algorithm is trained on the encoded database. The final 

parameters of ANN are described as  follows; number of input 

nodes are 10, number of hidden nodes are set to 4, number of 

output nodes are 2, the learning rate is set to 0.24, the 

momentum is set to 0.62, the allowable error is set to 

0.000001 and the number of iteration is set to 30000. After the 

training is stopped, the weighs between input and hidden 

layer, and the weighs between hidden and output layer are 

extracted. Now, we are pruning the ANN by removing the 

hidden nodes or connections between layers which are no 

longer actively used. We assume that a more important 

connection has positive weights and its connected nodes have 

a higher impact on the output result. Therefore, for each 

output node (class) the effective input values which have the 

more important connections between the input–hidden layers 

and hidden-output layers can be extracted. Figure 1 shows the 

most effective input values which have the highest impact on 

the output class Don't Play (O1). 

Sunny

Rain

Hot

High

Strong

3.741

1.115

0.296

4.006

2.284

9.0127
O

1
H

2

X
1

X
3

X
4

X
7

X
10

 

Fig 1: The most effective values for Don't Play class (O1) 

Therefore, the most effective input values for Don't Play class 

(O1) are (Outlook {Sunny, Rain}, while Temperature 

{Hot}, and Humidity {High}, finally Wind 

{Strong}). The rule extraction can be generated in two 

levels, the first level for individual effective input value and 

the second level for each possible effective input values 

conjunction as shown on table 3. The rules extracted at the 

total similarity measure threshold   1.  

Table 3. The extracted rules for Don't Play class (O1) 

Conjunction  
1

)(
Class

TSM  
2

)(
Class

TSM  
Rules 

There is no individual input value belongs 
completely to this class   ----------------------- 

Outlook   

{Sunny, Rain} 

0 0 ----------------------- 

 

Outlook{Sunny}  &  

Temperature{Hot} 

 

2 

 

0 

If Outlook is Sunny 

and Temperature is 
Hot Then  Class is  

not play 

 

Outlook{Sunny} & 

Humidity{High} 

 

3 

 

0 

If Outlook is Sunny 
and Humidity is High 

Then Class is not play 

Outlook{Sunny}  &  

Wind {Strong} 
1 1 --------------------- 

Outlook{ Rain} 

& 

Temperature{Hot} 

 

0 

 

0 

 

--------------------- 

Outlook{Rain} 

&  

 Humidity{High} 

 

1 

 

1 

 

--------------------- 

Outlook{ Rain}  

& 

 Wind {Strong} 

2 0 
If Outlook is Rain and 

Wind is Strong Then 

Class is not play 

Temperature{Hot}  

&  

Humidity {High} 

2 2 --------------------- 

Temperature{Hot} 

&  

 Wind {Strong} 

1 0 
If Temperature is Hot 
and Wind is Strong 

Then Class is not play 

Humidity {High} & 

 Wind   {Strong} 
2 1 ----------------------- 

For extracting rules that belong to the output class Play, (O2), 

the previous technique is applied and the most effective input 

values which have the highest impact on it are shown in 

figure 2. 

Overcast

Rain

Normal

Weak

6.155
0.349

1.109

0.154

5.287
0.235

0.617

3.
06

1 1.1068

0.568

9.227

0.7739

1.218

O
2

H
1

H
3

H
4

X
2

X
3

X
8

X
9  

Fig 2: The most effective values for Play class (O2) 

Therefore, the most effective input values for the Play class 

(O2) are (Outlook{Overcast, Rain}, Humidity 

{Normal}, and Wind {Weak}). Table 4 shows the 

extracted rules that belong to the Play class (O2) according to 

the two levels at the total similarity measure threshold   2. 
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Table 4. The extracted rules for Play class (O2) 

Conjunction 
2

)(
Class

TSM  
1

)(
Class

TSM  Rules 

The input value "Outlook{Overcast}" belongs 

completely to this class   

If Outlook is Overcast 
Then Class is play 

Outlook{Rain}  

&  

Humidity {Normal} 

 

2 

 

1 

 

----------------------- 

Outlook{Rain}  

&  

Wind {Weak} 

 

3 

 

0 
If Outlook is Rain and 

Wind is Weak Then 
Class is play 

Humidity {Normal} 

&  

Wind {Weak} 

 
4 

 
0 

If Humidity is Normal 
and Wind is Weak 

Then  Class is play 

The comparison of the performance measures for the 

proposed model and other learning models from WEKA is 

shown on table 5. The results show that the proposed model 

achieved the highest performance compared with the other 

models.    

Table 5. The performance measures of various models for 

Play Tennis Problem 

Models Acc (%) Pre (%) Sen (%) Spec (%) 

Decision Tree 65.26 100 65.25 100 

Bayesian Networks 92.68 100 90.18 100 

RBF Networks 100 100 100 100 

Single Conjunctive 
 Rule Learner 96.5 100 98.47 100 

The proposed model 100 100 100 100 

5.2 Monk’s Problems 

Monk‟s problems are a classical set of benchmarks which are 

widely used in classification task. The Monk's problems are a 

collection of three binary classification problems Monk-1, 

Monk-2 and Monk-3 which are described by the following six 

attributes: head-shape {round, square, octagon}, body-

shape {round, square, octagon}, is-smiling {yes, no}, 

holding {sword, baloon, flag}, jacket-color {red, 

yellow, green, blue}, and has-tie {yes, no}. The proposed 

model is performed on Monk-1 problem which has 124 

instances and the linguistic values of the given database are 

encoded as a binary form. The ANN is trained on the encoded 

database and the final parameters of ANN are adjusted as; 

number of input nodes are 17, number of hidden nodes are set 

to 5, number of output nodes are 2, the learning rate is set to 

0.37, the momentum is set to 0.81, the allowable error is set to 

0.0000001 and the number of iteration is set to 32870. The 

ANN performs pruning by removing the hidden nodes or 

connections between layers which are no longer actively used. 

Therefore, the most effective input values which have the 

highest impact on each output class are extracted. 

Consequently, the most effective input values for target class 

(O1) are (head-shape {round, square, octagon} & body-

shape {round, square, octagon} & jacket-color {red}& 

holding {sword} & has-tie   {yes}) and the most 

effective input values for don‟t target class (O2) are (head-

shape {round, square, octagon} & body-shape {round, 

square, octagon} & jacket-color { yellow, green, blue}& 

is-smiling {no}). Finally, the proposed model generates 

rules for each class in two levels, the first level for individual 

effective input value and the second level for each possible 

effective input values conjunction as shown on table 6 and 

table 7. The total similarity measure threshold adjusted at   

3 for the first class (O1) and   7 for the second class (O2). 

Table 6. The extracted rules for Target class (O1) 

Conjunction  
1

)(
Class

TSM  
2

)(
Class

TSM  Rules 

The input value "jacket-color { red}" 

belongs completely to Class =Yes 

If jacket-color is red 

then Class = Yes 

head-hape{octagon} 

&  

body-hape{octagon} 

 

17 

 

0 
If head-shape is 

octagon and body-
shape is octagon 

Then Class = Yes 

head-shape{square} 

& 

body-shape{square} 

 

15 

 

0 

If head-shape is 

square and body-
shape is square  

Then Class = Yes 

head-shape{round}  

& 

body-shape{round} 

 
9 

 
0 

If head-shape is 
round and body-

shape is round 

Then Class = Yes 

head-hape{octagon} 

& 

holding {sword} 

& 

has-tie { yes} 

 

8 

 

0 

If head-shape is 
octagon and holding 

is sword and has-tie 

is yes Then 
Class = Yes 

head-hape{octagon} 

& 

body-shape{round} 

& 

has-tie   { yes} 

 

3 

 

0 

If head-shape is 

octagon and body-

shape is round and 
has-tie is yes  Then 

Class = Yes 

The comparison between the proposed model and the other 

models of WEKA for Accuracy, Precision, Sensitivity and 

Specificity measures is shown on table 8. The results 

illustrated that the proposed model is more superior to the 

compared models. 

Table 7. The extracted rules for Don't Play class (O2) 

Conjunction  
2

)(
Class

TSM  
1

)(
Class

TSM
 

Rules 

There is no individual input value belongs 
completely to this class 

------------------------------ 

head-shape{round}& 

body-shape{square or  

octagon} & jacket-color 

{yellow or green or 

blue} 

 

38 

 

0 

If head-shape is round and body-

shape is square or octagon and 
jacket-color is yellow or green or 

blue Then Class = No 

head-shape{round or 

square}& body-shape 

{octagon} & jacket-

color {yellow or 

green or blue} 

 

 

22 

 

 

0 

If head-shape is round or square 

and body-shape is  octagon and 

jacket-color is  yellow or green 
or  blue Then Class = No      

head-shape{square}& 

body-shape{ round or  

octagon} & jacket-color 

{yellow or green or 

blue} 

 

 

20 

 

 

0 

If head-shape is square and 
body-shape is round or octagon 

and jacket-color is  yellow or 

green or  blue Then Class = No    

head-shape{round }& 

body-shape{square} 

& is-smiling {no} 

 

7 

 

0 

If head-shape = round and 

body-shape = square and 
is-smiling = no Then  

Class = No 
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Table 8: The performance measures of various models for 

Monk-1 problem 

Models Acc (%) Pre (%) Sen (%) Spec (%) 

Decision Tree 95.68 94.79 96.13 95.16 

Bayesian Networks 78.85 68.94 88.64 75.64 

RBF Networks 84.21 77.34 87.49 79.83 

Single Conjunctive 
 Rule Learner 

98.16 97.16 98.89 96.85 

The proposed model 100 100 100 100 

5.3 Wisconsin Breast Cancer  

The Wisconsin breast cancer dataset is one of the favorite 

benchmark datasets. It contains 699 cases, with 458 benign 

(65.5%) and 241 (34.5%) malignant cases of cancer and it is 

described by the following nine attributes: Clump Thickness 

{1-10 integer values}, Uniformity of Cell Size {1-10 

integer values}, Uniformity of Cell Shape {1-10 integer 

values}, Marginal Adhesion {1-10 integer values}, Single 

Epithelial Cell Size {1-10 integer values}, Bare Nuclei 

{1-10 integer values}, Bland Chromatin {1-10 integer 

values}, Normal Nucleoli {1-10 integer values}, and 

Mitoses {1-10 integer values}.  The ANN is trained on 

encoded database and the training parameters of ANN are set 

as; number of input nodes are 90, number of hidden nodes are 

set to 8, number of output nodes are 2, the learning rate is set 

to 0.28, the momentum is set to 0.62, the allowable error is set 

to 0.0000001 and the number of iteration is set to 42358. The 

ANN is pruning by removing the hidden nodes or connections 

between layers which are no longer actively used. 

Consequently, the most effective input values for benign class 

(O1) are (Uniformity of Cell Size {1-2}) and the most 

effective input values for malignant class (O2) are (Clump 

Thickness {1-5}& Uniformity of Cell Shape {1-3}& 

Marginal Adhesion {1-3}& Bare Nuclei {1} & Bland 

Chromatin {1-4}). The performance measures of the 

proposed model are compared with the other learning models 

from WEKA as shown on table 9. The results show that the 

proposed model achieved the best performance compared 

with the other models.  

Table 9. The performance measures of various models for 

Breast Cancer dataset 

Models Acc (%) Pre (%) Sen (%) Spec (%) 

Decision Tree 76.45 96.12 78.65 78.27 

Bayesian Networks 75.49 84.12 83.36 59.33 

RBF Networks 80.04 91.25 80.98 71.24 

Single Conjunctive 
 Rule Learner 83.58 95.47 86.76 84.59 

The proposed model 97.85 96.23 100 91.89 

6. CONCLUSION  
Research work in the area of extracting rules from trained 

neural networks has witnessed much activity recently. 

However, the degree of complexity of ANN increases 

exponentially as a factor of the numbers of input and hidden 

nodes. The complexity problem can be alleviated by adopting 

heuristics to constrain the search space. The present paper 

introduces a new methodology for the simplification of the 

ANN by pruning the weights among neurons to obtain simple 

but substantial expressions of ANN and facilitate the rule 

extraction process. Therefore, the most effective values of 

inputs attributes are only extracted to generate the rules for 

each class. Consequently, there is no need to enumerate the 

overall space of solutions and generate a small number of 

linguistic rules that is easy for users to understand. The true 

positive rules of a specific class are extracted when the total 

similarity measure of the tested conjunction of each rule has a 

value greater than the threshold value and equal zero with 

other classes. The higher threshold value leads to reduce the 

number of generated rules and extract the strongest rules 

which represent a large number of instances from the 

database. Extensive experiments have been carried out in this 

study to evaluate how well the proposed model performed on 

three benchmark classification problems in comparison with 

the other models. Finally, the results indicate that the 

proposed model is the superior compared with other model. 
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