
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

42

Development of a Flexible Real-Time Monitor for an

Enterprise Network

Mumtaz M. AL-Mukhtar

Information Eng. College
AL-Nahrain University

Baghdad-Iraq

ABSTRACT

This paper presents the design and implementation of a

technique that can be used in a real-time network monitoring.

It provides a Real-Time Network Monitoring System

(RTNMS) that allows a host to capture any packets in a

network by putting the host’s Network Interface Card (NIC)

into the promiscuous mode. Modular design has been devised.

RTNMS consists of five modules that are integrated to give

the required features. These features automatically give

system administrators a helping hand in management and fault

detection on a network. RTNMS is user-friendly because it

has been augmented by a user interface to assist in navigating

the capture and analysis of packets. It can be tapped into an

enterprise network with high flexibility. It can significantly

increase the efficiency of data capture and network

monitoring through the association of various modules.

General Terms

Information Technology - Network Monitoring.

Keywords

Passive Monitoring, Network Packet Capture, Promiscuous

Mode, Real-Time, Network Analysis.

1. INTRODUCTION
With the gradual expansion of network bandwidth, the traffic

is also increasing in multiples with more and more

complicated contents. As a result, network monitoring turns

out to be a critical task in any serious network management

solution.

Most of the current network monitoring tools are developed

for showing specific aspects of network traffic. The way in

which network information should be presented can although

be different for each purpose. Generally, most of the tools

attend specific requirements on how and which network

information is presented [1, 2].

Network monitoring can be broadly classified into active

monitoring and passive monitoring [3, 4]. Active or

“intrusive” monitoring uses equipment that divides the circuit

into two segments and allows the flow of traffic to be

monitored, and actively transmitted from one side of the

monitor point to another. Passive or “non-intrusive”

monitoring uses equipment that taps into a network and does

not interfere with the flow of network traffic. This could be

accomplished by one or more sniffers placed at certain

location(s) in the network to capture the traffic that they can

hear. This method has the advantage of not needing to change

the software running at hosts and hence easily deployable [5].

On a complementary plane, network monitoring can be

classified into Offline analysis and Real-time analysis [6]. The

former involves collecting the traffic trace in real networks

and then analyzing the network semantics offline. On the

other hand, Real-time monitoring and analysis help in

significantly reducing the troubleshooting delays where time

is critical. Though there are some tools [7, 8, 9] available for

providing real-time network statistics, they are either for

commercial use or provide insufficient information to the

users regarding the local network.

In this paper, we propose a real-time monitoring approach that

could find a way to run the analysis more quickly with smaller

demands on system resources. We can obtain the quantitative

and measured data of the network through network traffic

capturing and analysis. It is aimed to help the network

administrators to visualize and analyze the network’s

performance by providing statistics and graphs for the entire

network in general – and each node in specific in real-time.

This is critical for the efficient deployment and reliable

performance of the network.

2. REAL-TIME NETWORK

MONITORING SYSTEM

DEVELOPMENT
The Real-Time Network Monitoring System (RTNMS)

architecture relies on tapping a RTNMS host into the

monitored network. The Network Interface Card (NIC) of the

host monitor is set into the promiscuous mode in order to

capture all packets going through the network in real-time.

The main steps in the development of the RTNM are:

1. Creating a socket stream.

2. Setting the NIC into a promiscuous mode.

3. Reading data from the open socket stream.

4. Real-Time analysis by interpreting the headers,

formatting the data, and redirecting the data to the

output stream.

5. The graphical visualize subsystem obtains the data

from the data gathering subsystem and converts it to

a form that can be displayed graphically.

6. Storing packets or relevant parts of packets in the

secondary storage for later tracking or inspection by

a network manager.

2.1 RTNMS Model and Sockets
In socket-based network programming, we do not directly

access the network interface device to send or receive packets.

Instead, an intermediary file descriptor is created to handle the

programming interface to the network. The special file

descriptors used to reference network connections are called

sockets [10]. The socket defines the following:

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

43

 A specific communication domain, such as a

network connection.

 A specific communication type, such as a stream or

datagram.

 A special protocol, such as TCP or UDP.

After the socket is created, it must be bounded to either a

specific network address or port on the system, or to a remote

network address or port. Once the socket is bounded, it can be

used to send or receive data from the network.

RTNMS Model is basically based on Windows Socket Model

that consists of four main layers: Application layer, Protocol

Stack TCP/IP layer, Network Driver layer and Network

Interface layer. Windows Socket API works as an

intermediate layer between WinSock Application and

Network Layers. Figure 1 illustrates the Real-Time Network

Monitoring System Model. Winsock library version 2.2 has

been used for the development of the RTNMS which is a part

of the current Windows operating systems releases.

Windows

Socket

API

Network

System

Network Interface

Windows

 Sockets

 Application

Protocol Stack

TCP/IP

Network Driver

2.2 Promiscuous Mode
In a network, promiscuous mode allows a network device to

intercept and read each network packet that arrives in its

entirety [10]. In an Ethernet technology, promiscuous mode is

a mode of operation in which every data packet transmitted

can be received and read by an NIC even when they are not

intended for it. The developed RTNMS sets the NIC of the

RTNMS host machine into this mode. To do so, all we have to

do is issue a particular ioctl () call to an open socket on that

card and the packets are passed to the kernel for further

treatment.

3. FUNCTIONS OF REAL-TIME

NETWORK MONITORING SYSTEM
The RTNMS has diverse functions; these functions are

depicted in figure 2.

Functions of

RTNMS

Filtering Packets by

Protocol

Real-Time Packet

Capture

Real-Time

Visualization of

Filtered Packets

Displaying Packets

Statistics

Displaying Packets

Contents

Viulaization of

Packets_in &

Packets_out Graphics

Packets Saving and

Retrieval

Visualization of

Bandwidth Graphic

Displaying Number of

Packets for a Specific

Host

Fig 1: RTNMS Model Based on Windows Sockets

Fig 2: Functions of RTNMS

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212080,00.html
http://searchdatamanagement.techtarget.com/sDefinition/0,,sid91_gci211894,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212736,00.html

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

44

4. STRUCTURE OF RTNMS
The Structure of RTNMS consists of five modules as shown

in figure 3. Each module comprises procedures, functions and

events that are declared via Flow controls in the following

subsections.

Load_Form Module

Start_Packet_Capture Module

Stop_Packet_Capture Module

Unload_Form Module

ListView_ObjectEvent Module

4.1 Load_Form Module
It is the first module to be executed. It checks the

availability of Windows Socket and fetches NIC’s list

of IP addresses of the RTNMS host as shown in figure

4. In case of failure, one of the following error

messages will be displayed according to the type of

error detected:

 The underlying network is not ready for

network communication.

 The version of Windows Socket API support

requested is not provided by this Windows

Socket implementation.
 The Windows Sockets version specified by the

application is not supported by this Dynamic Link

Library (DLL).

Start

t

End

NO

Yes

Show Error

Message

Display_Adaptor_Info Function

(details are shown in figure 5)

Is

WinSock

Available

?

Figure 5 shows the actions implemented by

Display_Adaptor_Info function.

Open New Socket-Stream to Retrieve Interface

Information

Return back the Resource (Socket) to

the System

Start

Initialize New WinSock Service

Format IP Address List in Decimal

Representation

Get Information about RTNMS NIC

End

4.2 Start_Packet_Capture Module
 When the form has been loaded and list of IP Addresses

are displayed, the first thing that executed by this module is

checking the version of Windows Operating System

compatibility with Winsock version used (version 2.2). The

next step- Handling Window Message- uses a sub classing to

enable the system to intercept every message that is sent to a

window. Thereafter Winsock service is initialized to start

capturing network packets by setting the NIC into

promiscuous mode. This is illustrated in figure 6.

Is Windows Version

Higher than NT5?
No

Yes

Initializing New Winsock

Service

Handling Window

Message

ErrMsg “Windows Version

must be NT5 or Higher”

End

Receiving Entire Network Packets

by putting

RTNM’s NIC into Promiscuous

Mode

Start

Fig 3: RTNMS Structure

Fig 4: Flow Control of Load_Form Module

Fig 5: Flow Control of Display_Adaptor_Info Function

Fig 6: Flow Control of Start_Packet_Capture

Module

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

45

4.3 Stop_Packet_Capture Module
For stopping packet capturing process Stop Packet Capture

Module is activated as shown in figure 7. First function that

executes is requesting Windows message-based notification of

network events for a socket. The connections are closed and

the resources (socket and its functions) are returned to the

system in order to be used by another new connection. Then

ending Winsock session executes. Thereafter subclassing is

stopped. These functions terminate the use of the Winsocket

Dynamic Link Library (WS2_32.DLL).

Start

End

Receiving Notification for Both Read

and Writes States

Ending Winsock Session

Closing Current

Connection

Stopping Subclassing

4.4 Unload_Form Module
The main function of unload_form is closing the Winsock

connection, releasing the current used Windows Socket to the

system and exiting the Network Packet Capture form. The

Unload_ Form Module steps are the same as steps of Stop

Capturing Module, but exiting the capture form.

4.5 ListView_ObjectEvent
The function of this module is showing details of each

selected packet mainly Source IP Address, Destination IP

Address, Source Port, Destination Port, Protocol, and packet

Length. This module calls the Display_Packet function that

formats the display text box to display the packet details in

readable format (ASCII and Hexadecimal).

5. THE RTNM INTERFACE
The main system form contains a command button: Packet

Capture & Monitoring. This button would be clicked when a

system initialization is required. This would activate the

Network Packet Capture Form. This form can be used for

real-time packet capturing and packet analyzing. The

components of Network Packet Capture Form are:

 Network Packet Capture Form

Figure 8 depicts the display window of this form. Details of

captured packets appear in the Captured Packet List View

(Packet sequence, Time of capturing, Source IP address,

Source Port, Destination IP Address, Destination Port,

Protocols and Length of each packet). Moreover, some other

useful information are displayed like: number of captured

packets by each IP Address, filtered packets by protocols,

number of packets passing into the RTNMS host, number of

packets going out of RTNMS host, detailed statistics of each

packet, total number of captured packets and percentages of

filtered packets.

 Packet Selection

More details of captured Packets can be shown by clicking on

each packet in the Captured Packet List View. When a

specific packet is selected, its contents will appear in the text

box (in hexadecimal and ASCII text format). The packet’s

header details are showed in a group of text boxes (IP

Statistics frame) on the right hand side of the Network Packet

Capture Form as shown in figure 8.

 Packet Filter Chart

Captured packets that are filtered by protocols (TCP, UDP,

ICMP and IGMP) can be shown graphically by using Packet

Filter Chart tool as shown in figure 9.

Fig 8: Network Packet Capture Form

Fig: 9 Packet Filter Chart

Fig 7: Flow Control of Stop_Packet_Capture Module

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

46

 Packets (IN_OUT)

The number of packets that are sent to RTNM host and

number of packets that went out of RTNMS host can be

shown graphically by using Packets (In-Out) as shown in

figure 10.

 Filter By IP address

Number of packets that each IP Address generates inside the

network can be calculated using this tool.

 Bandwidth Tester

To get information about network bandwidth usage by hosts,

this tool gives a clear view about how bandwidth is used by

any host inside the network. Graphically the bandwidth used

by four IP addresses that work within the network is shown in

figure 11.

 Control Tool Bar

This is the main Toolbar that contains all required control

buttons (i.e. Start Capture, Stop Capture, Save Packet, Open

Packet file, Packet Filter Chart, Packet (In-Out), and

Bandwidth) as shown in figure 12.

6. CONCLUSION
RTNMS is a simple network monitoring tool that can be

efficiently used for network administration. It has the

capability of real-time analysis by analyzing the data as it

comes of the wire. It provides a user with access to packets on

a network through an easy-to-use graphical user interface.

RTNMS could be employed efficiently in networking

management and troubleshooting processes. It enables

network managers to evaluate and examine the data running

through their network by troubleshooting network

performance problems and identifying certain network faults

in real time.

Besides its usage in technical environment, it can be used for

educational and research purposes. It can be used to help

understand packets’ architecture and traffic patterns generated

by common network applications. Moreover, it can be used to

evaluate protocol performance and assist in protocol

development thus improving the network performance as well

as user experience.

 7. REFERENCES

[1] Ying L., Ming W., Sidong Z., and Hongke Z. 2010.

Research of the Network Information Monitoring

System Based on P2DR Model. In Second International

Conference on Computer Modeling and Simulation,

pages: 190-194.

[2] Hofstede R., and Fioreze, T. 2009 .SURFmap: A Network

Monitoring Tool based on the Google Maps API. In

IFIP/IEEE International Symposium on Integrated

Network Management (IM '09), pages: 676 – 690.

[3] Zangrilli M., and Lowekamp B. 2003. Comparing Passive

Network Monitoring of Grid Application Traffic with

Active Probes. In Proceedings of the Fourth International

Workshop on Grid Computing (GRID’03), pages: 84-91.

[4] Papadogiannakis A, Vasiliadis G., Antoniades D.,

Polychronakis M., and Markatos E. 2012. Improving the

Performance of Passive Network Monitoring

Applications with Memory Locality Enhancements.

Computer Communications Journal, Volume 35, Issue 1,

pages: 129-140.

[5] Ansari S., Rajeev S.G., and Chandrasekhar H.S. 2003.

Packet Sniffing: A Brief Introduction. IEEE Potentials,

Volume: 21, Issue: 5, pages: 17–19.

[6] Kiszka J., Wagner B., Zhang, Y., and Broenink, J. 2005.

RTnet – A Flexible Hard Real-Time Networking

Framework. In 10th IEEE Conference on Emerging

Technologies and Factory Automation (ETFA’05),

pages: 456-464.

Fig: 10 Packets (IN_OUT)

Fig 11: Used Bandwidth by Hosts

Fig: 12 Toolbar

http://ieeexplore.ieee.org.boss.lub.lu.se/xpl/mostRecentIssue.jsp?punumber=5174535
http://ieeexplore.ieee.org.boss.lub.lu.se/xpl/mostRecentIssue.jsp?punumber=5174535
http://ieeexplore.ieee.org.boss.lub.lu.se/xpl/mostRecentIssue.jsp?punumber=5174535
http://ieeexplore.ieee.org.boss.lub.lu.se/xpl/mostRecentIssue.jsp?punumber=10734
http://ieeexplore.ieee.org.boss.lub.lu.se/xpl/mostRecentIssue.jsp?punumber=10734
http://ieeexplore.ieee.org.boss.lub.lu.se/xpl/mostRecentIssue.jsp?punumber=10734
http://ieeexplore.ieee.org.boss.lub.lu.se/xpl/mostRecentIssue.jsp?punumber=10734

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.21, March 2012

47

[7] Pande B., Gupta D. and Sanghi D. 2005. The Network

Monitoring Tool-PickPacket. In Proceedings of the Third

International Conference on Information Technology and

Applications (ICITA’05), pages: 191-196.

[8] Dabir A., and Matrawy A. 2007. Bottleneck Analysis of

Traffic Monitoring Using Wireshark. In 4th International

Conference on Innovations in Information Technology

(IIT '07), pages: 158 – 162.

[9] Dashtbozorgi M. and Azgomi M. A. 2012. A High-

Performance and Scalable Multi-core Aware Software

Solution for Network Monitoring. The Journal of

Supercomputing, Volume: 59 Issue: 2, Pages: 720-743.

[10] Johnson M. H. 2010. Windows Sockets Programming.

Addison-Wesley Professional.

http://www.amazon.com/Johnson-M.-Hart/e/B000APCC8I/ref=sr_ntt_srch_lnk_1?qid=1290141066&sr=8-1

