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ABSTRACT 

In this paper, after reviewing the main points of image 

encryption and threshold function, we introduce the methods 

of chaotic image encryption based on pseudorandom bit 

padding that the bits be generated by the novel generalized 

threshold function (segmentation and self-similarity) methods. 

These methods decrease periodic effect of the ergodic 

dynamical systems in randomness of the chaotic image 

encryption. The essential idea of this paper is that given 

threshold functions of the ergodic dynamical systems. To 

evaluate the security of the cipher image of this scheme, the 

key space analysis, the correlation of two adjacent pixels and 

differential attack were performed. This scheme tries to 

improve the problem of failure of encryption such as small 

key space and level of security. 
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1. INTRODUCTION 
In recent years, the cryptographic schemes schemes have 

suggested some new and efficient ways to develop secure 

image encryption [4]. These schemes have typical structure 

which performed the permutation and the diffusion stages, 

alternatively. However, most of algorithms be faced with 

some problems such as the lack of robustness and security. 

The random number generators are intransitive in 

cryptography for generation of cryptographic keys, 

allegorically, secret keys utilized in symmetric cryptosystems 

[1,2] and large numbers is intransitive in asymmetric 

cryptosystems [3,5], because of unpredictable, should better 

be generated randomly. In addition, random number 

generators in many cryptographic protocols, such as to create 

challenges, blinding values, Monte Carlo methods are used 

[6,7,8]. Also, the random number generators are used more in 

the diffusion functions of the image encryption for diffused 

pixels of plain image.  

Random number generators can be classified into three classes 

which are pseudorandom number generators (PRNGs), true 

random number generators (TRNGs) and hybrid random 

number generators (HRNGs). PRNGs use deterministic 

processes to generate a series of outputs from an initial seed 

state [9,10,11]. TRNGs use of non-deterministic source (i.e., 

the entropy source), along with some processing function (i.e., 

the entropy distillation process) to generate the random bit 

sequence [1]. These sources consist of physical phenomena 

such as atmospheric noise, thermal noise, radioactive decay 

and even coin-tossing [12]. Many PRNGs using chaotic maps 

have been established. Most of them have very complex 

structures. In this paper, we propose a chaotic image 

encryption based on pseudorandom bit padding that the bits be 

generated by the novel generalized threshold function 

(segmentation and self-similarity) methods. The random bit 

sequences produced by this generator are evaluated using the 

15 statistical tests recommended by U.S. NIST [1]. 

Experimental results show that this PRNG possess good 

uniformity and randomness properties. 

This paper is arranged as follows. In section 2, the properties 

of the threshold functions of ergodic dynamical systems are 

discussed. In section 3, we introduce the proposed random 

number generators and then discuss the uniformity and 

randomness of the bit sequences generated by the Proposed 

PRNG. In section 4, we propose chaotic encryption scheme 

based on pseudorandom bit padding and finally, in Section 5, 

we conclude the paper. 

2. THRESHOLD FUNCTIONS OF 

ERGODIC DYNAMICAL SYSTEMS 
One of the easiest and most widely algorithms for generating 

chaotic encryption scheme, used of the threshold function 

[13,14]. Threshold function is a function that takes the value 0 

if a specified function of the arguments exceeds a given 

threshold and 1 otherwise. To consider a one-dimensional 

chaotic system which is defined as follows: 

,...2,1,0n)x(fx 1nn    

that ])1,0[I(II:f   is a nonlinear map. Threshold 

function of ergodic dynamical system is approximately the 

middle of the minimum and maximum of the 

0nn }x{   

values. In the other hand, threshold function of ergodic 

dynamical system can be defined as follows: 

)1(dx)x(f)x(fc
1

0
  

where the 


f   is density function of the  nonlinear map 

f [15] .  One of the methods of generating is as follows, to 

consider above one-dimensional chaotic system, the 

pseudorandom bit sequence 

0nn }z{   can be defined as 

follows (see Fig.1(a)): 
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that c is threshold function of the 

0nn }x{  values.  In other 

words, threshold function divides the interval of I=[0,1] into 2 

boxes. Widths of boxes are (c) and (1-c), respectively. 

3. THE PROPOSED PRNG AND 

RANDOMNESS ANALYSIS 
In this section, we introduce two proposed pseudorandom 

number generators based on the generalized threshold 

function and then their randomness is discussed. 

3.1 The proposed PRNG based on 

segmentation method 
To consider a one-dimensional chaotic system which is 

defined as follows: 

,...2,1,0n)x(fx 1nn    

that ])1,0[I(II:f   is a nonlinear map. In this 

method, we divided the interval of I=[0,1] into 
1k

2


 blocks 

and then divided each block into 2 boxes by threshold 

function (i.e., c). Consequently, we have 
k

2  boxes in the 

interval of I=[0,1]. Width of boxes are )
2

1
c(

1k
  and 

)
2

1
)c1((

1k
 , respectively. In this case, the 

pseudorandom bit sequence 

0nn }z{  is defined as follows 

(see Fig.1(b)): 

)3(
wiseother1

c]2x[0
z

1k
n

n




 




 

where symbol of [] is the fractional part. With this way, 

randomness of the PRNG is increased, because, this method 

decreased periodic effect of the chaotic maps in randomness 

of the PRNG. With regard to the above contents, we can be 

redefined this method in two-dimension. For this purpose, to 

consider a two-dimensional chaotic system which is defined 

as follows: 

,...2,1,0n)x(fx 1nn    

,...2,1,0n)y(gy 1nn    

that f and ])1,0[I(II:g   are nonlinear maps. 

Threshold functions of the 

0nn }x{  values and the 


0nn }y{  values are c and c  , respectively. Therefore, the 

pseudorandom bit sequence 

0nn }z{  is defined as follows 

(see Fig.1(c)): 

)4(
wiseother1

)BorA(0
zn





  

Where, 

)c]2y[andc]2x([B

)c]2y[andc]2x([A
1k

n
1k

n

1k
n

1k
n
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and symbol of [] is the fractional part.  As an example, we 

consider the chaotic logistic map 

)x1(xrx 1n1nxn    

 for the functions of  f  and g 

])4,99996.3(r,rand)1,0(y,x( yxnn   [16].  In 

this case, threshold functions are 
2

1  (i.e.
2

1cc  ) [17]. 

Thus, pseudorandom bit sequence 

0nn }z{  can be defined 

as follows Eq. 4, Where, 

)
2

1
]2y[and

2

1
]2x([B

)
2

1
]2y[and

2

1
]2x([A

1k
n

1k
n

1k
n

1k
n









 

and symbol of []  is  the fractional part. 

 

 

Fig 1: a) threshold function of a block, (b) the generalized 

threshold function of 
2

2 ,(k=3) blocks in one-dimension, 

(c) the generalized threshold function of 
2

2 ,(k=3) blocks 

in two-dimension, (d) the generalized threshold function of 
2

2 ,(k=3) blocks in two-dimension for logistic map (1), the 

boxes of 0  and 1 be showed black and white colors, 

respectively. 

3.2 The proposed PRNG based on self-

similarity method 
Self-similarity is the property that a substructure to be 

analogous or identical with an overall structure [18]. In the 

other words, a self-similar object behaves the same when 

viewed at different degrees of magnification, or different 

scales on a dimension (space or time) [18]. As we have 

mentioned, threshold function is a function that takes the 

value 0 if a specified function of the arguments exceeds a 

given threshold and 1 otherwise. In this method, first, to 

consider a one-dimensional chaotic system which is defined 

as follows:  

,...2,1,0n)x(fx 1nn    

that ])1,0[I(II:f   is a nonlinear map. Next, we 

consider this interval as a block and divide this block into 2 
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boxes by threshold function (i.e. ]1,c(],c,0[ 11 ) (see Fig. 

2(a)). Then, we consider again each of the boxes as a block 

and divide each of these blocks into 2 boxes by threshold 

function (i.e. 

]1,cc(],cc,c(],c,c(],c,0[ 221221112121  ) (see 

Fig. 2(b)). We iterate this divisions k times. In each iteration, 

threshold function showed with ijc  that index of i  indicant 

i th iteration and index of j  indicant j th block. 

Consequently, the interval of I=[0,1] divided into 
k

2  boxes 

by k times iteration of threshold function and the interval of 

I=[0,1]  converts as follows: 

.]1,c...c(...

]cc,c(]c,c(]c,0[I

1k2k1

2k1)1k(1)1k(1)1k(1k1k



 





In the other hand, this interval using threshold function has 

property of self-similarity. Self-similarity in an interval is the 

property that a subinterval to be analogous or identical with an 

overall interval (see Fig. 2(b)). In here, degree of Self-

similarity is dependent to the number of above iterations, i.e. 

if the interval divided into 
k

2  boxes, degree of Self-

similarity is k. In this case, the pseudorandom bit sequence 

0nn }z{  is defined as follows (see Fig.2(b)): 

)5(
wiseother1

A0
zn





  

Where,  

.c...cxc...cor...

orccxcorcxA

1k2k
2k1n2)1k(1

2k1)1k(n1)1k(1kn
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




 

With this method, randomness of this PRNG is higher than the 

previous PRNG, because, higher than the previous method, 

this method decreased periodic effect of the chaotic maps in 

randomness of the PRNG. With regard to the above contents, 

we can be redefined this method in two-dimension. For this 

purpose, to consider a two-dimensional chaotic system which 

is defined as follows: 

,...2,1,0n)x(fx 1nn    

,...2,1,0n)y(gy 1nn    

that f and ])1,0[I(II:g   are nonlinear maps. 

Threshold functions of  the 

0nn }x{ values and the 


0nn }y{  values are c and c , respectively. Therefore, the 

pseudorandom bit sequence 

0nn }z{  is defined as follows 

(see Fig.2(c)): 
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n2k1
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As an example, we consider one of the one-parameter families 

of chaotic maps  [19] 

2
1n

2
x1n1n

2
1n

2
x

n
)1x2()x1(x4

)1x2(
x








  

for the functions of  )75.0and)1,0(x(f n   and 

)5.1and)1,0(y(g n   [19].  In this case, according 

to the Eq. 1, threshold functions are c=0.436 for 

0nn }x{  

and 634.0c   for 

0nn }y{  [19]. Thus, pseudorandom bit 

sequence 

0nn }z{  can be defined as Eq. 6, that  c and c  

are 0.436 and 0.634, respectively. 

 

 

Fig 2: (a) threshold function of a block (k=1), (b) the 

generalized threshold function of 
1

2 ,(k=2) blocks in one-

dimension, (c) the generalized threshold function of 
2

2 ,(k=3) blocks in two-dimension, the boxes of 0  and 1 

be showed black and white colors, respectively. 

3.3 Analysis of randomness of number 

sequences  
We have survey the randomness and uniformity of the several 

bit sequences of large size, generated by the proposed PRNGs 

for different sets of control parameter and initial conditions of 

the chaotic maps. Here, we show the results for 
20

2  sized bit 
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sequences corresponding to the following parameter values of 

the four sets: 





















.)4,634.0,436.0,3.0,6.0(D

)3,634.0,436.0,8.0,4.0(C

)4,99996.3,99998.3,3.0,7.0(B

)3,99997.3,4,6.0,2.0(A

 

For convenience, these four sets are designated as: 









)k,,,y,x(D,C

)k,r,r,y,x(B,A

yx

yx
 

that A and B are related control parameter values of the 

PRNG based on  segmentation  and C and D are related 

control parameter values of the PRNG based on self-

similarity. We have used MATLAB 7.10.0 (R2010a) running 

program in a personal computer with a Core i3 3.1GHz intel, 

4GB memory and 500GB hard-disk capacity. The average 

time used for generating random bit sequences with size of 
20

2  bits is shorter than 0.3 s. 

We discuss in the following paragraph of this Section the 

result and conclusions of our study of the different statistical 

tests to observe the randomness and uniformity of the bit 

sequences generated by the proposed PRNG. The US NIST 

statistical test suite provides 15 statistical tests to detect 

deviations of a bit sequence from randomness. A statistical 

test is formulated to test a null hypothesis which states that the 

sequence being tested is random. There is also an alternative 

hypothesis which states that the sequence is not random. For 

each test, there is an associated reference distribution 

(typically normal distribution or 
2   distribution), based on 

which a P-value  is computed from the bit sequence. If the P-

value is greater than a predefined threshold   which is also 

called significance level, then the sequence would be 

considered to be random with a confidence of 1 , and the 

sequence passes the test successfully. Otherwise, the sequence 

fails this test. A P-value of zero indicates that the sequence 

appears to be completely non-random, and the larger the P-

value is, the closer a sequence to a perfect random sequence. 

In our experiment, we set   to its default value 0.01, which 

means a sequence passed the test is considered as random 

with  99% confidence. Before presenting the test results of our 

proposed three approaches, we would first introduce all 15 

statistical tests briefly as follows. A more detailed description 

for those tests could be found in [2]. 

The frequency test (FT), the runs test (RT) and the cumulative 

sum test (CST) are recommended that each sequence to be 

tested consist of a minimum of 
2

10  bits (i.e.,
2

10n  ). The 

frequency Test within a Block (FTB) is recommended that 

each sequence to be tested consist of a minimum of NM  

bits (i.e., MNn  ). The block size M  should be selected 

such that 20M  and 
2

10N  . The discrete fourier 

transform test (DFTT) is recommended that each sequence to 

be tested consist of a minimum of 
3

10 bits (i.e., 
3

10n  ). 

The approximate entropy test (AET) is recommended that 

each sequence to be tested consist of  a minimum of 
12

2  bits 

(i.e., 
12

2n  ). The test for the longest run of ones in a block 

(LROBT) is recommended that each sequence to be tested 

consist of a minimum of 6272 bits for M=128. The binary 

matrix rank test (BMRT) is recommended that each sequence 

to be tested consist of a minimum of 
5

10  bits (i.e., 

5
10n  ). The non-overlapping template matching test 

(NTMT), the overlapping template matching test (OTMT), the 

maurer’s universal statistical test (MUST), the linear 

complexity test (LCT), the serial test (ST), the random 

excursions test (RET) and the random excursions variant test 

(REVT) are recommended that each sequence to be tested 

consist of a minimum of 
20

2  bits (i.e.,  
20

2n  ).  

The NIST suite tests were performed on four bit sequences, 

each containing 
20

2  bits. The P-value as well as final results 

obtained from the NIST suite for four different sets are given 

in Table 1. The proposed PRNGs successfully pass all 

randomness tests of NIST suite. According to [1], we can 

conclude that the data generated by these PRNGs are random. 

Table 1. Shows the P-values obtained from NIST 

suite for fifteen different tests. The P-values are obtained 

for four different sets of parameters for each test. 

NIST Tests                    A                 B                C D 

FT 0.10128 0.95950 0.87737 0.50042 

FBT 0.84189 0.64194 0.38602 0.92200 

RT 0.97716 0.96884 0.85741 0.13400 

LROBT 0.80721 0.03414 0.74711 0.48042 

RBMRT 0.56967 0.77062 0.54269 0.52658 

DFTT 0.07511 0.44408 0.78391 0.05936 

ATMT PASS PASS PASS PASS 

PTMT 0.21344 0.78374 0.94976 0.68709 

MUST 0.13269 0.21346 0.40399 0.17531 

LCT 0.29186 0.69918 0.83787 0.93722 

ST      

(P1) 

(P2) 

 

0.07947 

0.48049 

 

0.41921 

0.44903 

 

0.17617 

0.40804 

 

0.05515 

0.01233 

AET 0.19412 0.33766 0.70768 0.58916 

CST   

(FORWARD) 

(REVERSE) 

 

0.19653 

0.06508 

 

0.79288 

0.83809 

 

0.97455 

0.88538 

 

0.68534 

0.57830 

RET PASS PASS PASS PASS 

REVT PASS PASS PASS PASS 

4. THE PROPOSED ENCRYPTION 

SCHEME AND SECURITY ANALYSIS 
In this section, we introduce the encryption scheme based on 

the proposed PRNGs and then their security is discussed. 

4.1 Encryption scheme based on 

pseudorandom bit padding 
In the proposed scheme, we create a method to encrypt the 

image using bits padding. To consider a gray scale image with 

the size of NM . The steps of the encryption are shown 

below: 

 Step 1:  Generate NM8    pseudo-random number 

sequence using one of the proposed PRNGs. 

 Step 2:  Transform the image into NM8   bit 

sequence (image sequence).  

 Step 3: Perform the XOR operation between the image 

sequence and the pseudo-random bit sequence to form 

the cipher sequence.  

 Step 4:  Transform the cipher sequence into image 

matrix  I (ciphered image).  
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 Step 5: Divide the matrix  I into four parts, uniformly. 

Move the odd columns with the even columns between 

the two parts in the main diagonal and between the other 

two parts, respectively. 

 Step 6: Divide the matrix  I into four parts, uniformly. 

Move the odd rows with the even rows  between the two 

parts in the main diagonal and between the other two 

parts, respectively.  

An indexed image of an 'Albert Einstein' sized 256256  

(see Fig. 3(a)) is used as a plain image and the encrypted 

images are shown in Figs. 3. The grey scale histograms are 

given in Figs. 4. The Figs. 4(b), 4(c), 4(d) and 4(e) show 

uniformity in distribution of grey scale of the encrypted 

images. In addition, the average pixel intensity for plain image 

is 98.92, and for encrypted images are 127.60, 127.69, 127.32, 

127.55, respectively. 

 

Fig 3: Images of test results. 

 

Fig 4: Histograms of images. 

 

4.2 Analysis of security of the proposed 

encryption scheme  
Security is a major intransitive of a cryptosystem. Here, a 

complete analysis is made on the security of the cryptosystem. 

We have tried to explain that this cipher image is sufficiently 

secure against various cryptographical attacks, as shown 

below: 

4.2.1 Key space analysis 
The Key space size is the total number of different keys that 

can be used in the encryption [21]. Security issue is the size of 

the key space. If it is not large enough, the attackers may 

guess the image with brute-force attack. If the precision is 
14

10


, the size of key spaces for initial conditions and 

control parameters of the self-similarity method and 

segmentation method are 
186

2  and 
206

2 , respectively. 

These sizes are large enough to defeat brute-force by any 

super computer today. 

4.2.2 Correlation Coefficient analysis 
The statistical analysis has been performed on the encrypted 

images from examples of A, B, C, D. This is shown by a test 

of the correlation between two adjacent pixels in plain image 

and encrypted image. We randomly select 2000 pairs of two-

adjacent pixels (in vertical, horizontal, and diagonal direction) 

from plain images and ciphered images, and calculate the 

correlation coefficients, respectively by using the following 

two equations (see Table 2 and Fig. 5) [20,21]: 
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N
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Where, E(x) is the estimation of mathematical expectations of   

x,  D(x) is the estimation of variance of   x, and Cov(x,y) is 

the estimation of covariance between x and y, where x and y 

are grey scale values of two adjacent pixels in the image. 

Table 2: Correlation coefficients of two adjacent 

pixels in the plain image and the ciphered images of 

examples of A, B, C, D 

Direction 
Plain 

Image 
Ciphered Image 

 A B C D 

Horizontal 0.9341 0.0026 0.0019 0.0015 0.0004 

Vertical 0.9634 0.0087 0.0095 0.0021 0.0046 

Diagonal 0.9402 0.0036 0.0038 0.0029 0.0024 

 

 

Fig 5: Correlation distributions of two horizontally 

adjacent pixels in the plain image and the ciphered 

images. 

 

4.2.3 Differential attack 
Attackers try to find out a relationship between the plain 

image and the cipher image, by studying how differences in 

an input can affect the resultant difference at the output in an 

attempt to derive the key [22]. Trying to make a slight change 

such as modifying one pixel of the plain image, attacker 

observes the change of the cipher image [22]. To test the 

influence of one pixel change on the whole encrypted image 

by the proposed scheme, two common measures are used: 

 Number of Pixels Change Rate (NPCR) stands for the 

number of pixels change rate while, one pixel of plain image 

is changed. Unified Average Changing Intensity (UACI) 

measures the average intensity of differences between the 

plain image and ciphered image. The NPCR and The UACI, 

are used to test the influence of one pixel change on the whole 

image encrypted by the proposed scheme and can be defined 

as following: 

%100
255

)j,i(C)j,i(C

HW

1
UACI

%100
HW

)j,i(D

NPCR

j,i

21

j,i














 













 

 

where W  and H  are the width and height of 1C  or 2C . 

1C  and 2C  are two ciphered images, whose corresponding 

original images have only one pixel difference and also have 

the same size. The )j,i(C1 and )j,i(C2 are grey-scale 

values of the pixels at grid (i,j). The D(i,j)  determined by 

)j,i(C1  and )j,i(C2 . If  )j,i(C)j,i(C 21  , then, 

D(i, j) = 1; otherwise, D(i, j) = 0. We have done some tests on 

the proposed scheme (256 grey scale image of size 

256256 ) to  find out the extent of change produced by 

one pixel change in the plain image (see Table 3). The results 

demonstrate that the proposed scheme can survive differential 

attack. 

Table 3: Results of the differential attack in the ciphered 

images of examples of A, B, C, D. 

 A B C D 

NPCR 42% 48% 45% 38% 

UACI 38% 33% 31% 39% 

 

5. CONCLUSION 
We have proposed a chaotic encryption scheme based on 

pseudorandom bit padding that the bits be generated by the 

novel generalized threshold function (segmentation and self-

similarity) methods. The security of the cipher images of this 

scheme is evaluated by the key space analysis, the correlation 

of two adjacent pixels and differential attack. The 

distributions of the ciphered images are very close to the 

uniform distribution, which can well protect the information 

of the image to withstand the statistical attack. We suggest the 

use of these methods to design other secure cryptosystems.         
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