
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.17, March 2012

16

Development of An Algorithm for All Type of Network
Flow Problems

Pawan Tamta
Department of Mathematics

S.S.J. Campus Almora
Kumaun University, Nainital

Uttarakhand, India

B. P. Pande
Department of IT

S.S.J. Campus Almora
Kumaun University, Nainital

Uttarakhand, India

H. S. Dhami
Department of Mathematics

S.S.J. Campus Almora
Kumaun University, Nainital

Uttarakhand, India

ABSTRACT

We develop an algorithm which reduces the arbitrary instance

of the network flow problem to a simple path disjoint network

in polynomial time. Then the flow in each path is taken as the

minimum of the arc capacities of that path from where the

flow in each arc can be easily determined. The polynomial

time algorithm can determine any instance of the network

flow problem faster than the previously existing algorithms .

An example has been given to elucidate the process. At the

end a MATLAB program based on this algorithm has been

given.

General Terms

Network flow problem, computational complexity

Keywords

Maximum Flow Network Problem (MFNP), Simple path

disjoint network, polynomial time algorithm.

1. INTRODUCTION
In the Maximum Flow Network Problem (MFNP), we are

given a capacitated s–t (directed) network where each arc has

a fixed capacity. The objective is to determine the flow in

each arc and the maximum flow that can be routed through

the network.

Network flow problems model the essential issues in many

real-world resource allocation problems, including

coordinating tactical air strikes[13], combating drug

trafficking [19], controlling infections in a hospital [2],

chemically treating raw sewage [14], and controlling

floods [15] The study of network flow problem is basic to

many advanced problems such as Maximum Flow Network

Interdiction Problem(MFNIP) in particular originates from

the Cold War, when analysts at the RAND Corporation

studied how to interdict the Soviet Union’s railroad traffic

into Eastern Europe using the fewest resources [9], They

accomplished this by solving a Minimum Capacity s–t Cut

Problem; this is the earliest known formulation of this

fundamental problem [17]. From the 1960s to the turn of the

21st century, there has been an extensive amount of academic

literature on various network problems. All the models aimed

at finding the solution by considering the arc capacities and

less attention has been given to the simplification of the

network, most of which is listed in [6]. The basic framework

for maximum flow network interdiction with explicit budget

constraints was first studied in [13].In the early 1990s,

Wood [19], resurrected interest in network interdiction by

introducing MFNIP. A similar problem to MFNIP, called the

Network Inhibition Problem (NIP), was independently

introduced by Phillips in [14]. Numerous variants of network

interdiction problems have also been studied, including

shortest path network interdiction [10], stochastic network

interdiction [7] and [11], multiple commodity network

interdiction [12] and[19], facility interdiction[6], and a variant

of MFNIP where flow is routed before arcs are removed [8].

There is also literature on more-than-two-stage interdiction

models where infrastructure may be reinforced against

attacks [4]. The special case of MFNIP when an interdictor

removes exactly k arcs from the network in order to minimize

the maximum flow in the resulting network is known as the k-

Most Vital Arcs Problem [15]; in [19], this problem is called

the Cardinality Maximum Flow Network Interdiction Problem

(CMFNIP).

In this paper we develop an algorithm which reduces any

arbitrary instance of the network problem to a simple source

to node path disjoint network in polynomial time. The

maximum flow in the network, the flow in each arc and the

cuts of the network can be determined in a simple way as

compared to the previously existing methods in which we

have to determine the residuals in each step and then after a

lengthy calculation we can determine the flow in each arc.

2. PRELIMINARIES
We denote a network as (N, A) where N is the set of nodes and

A is the set of arcs. We assume without loss of generality that

all of our networks have a unique source s∈N and a unique

sink t∈N. An arc that originates from node u and terminates at

node v is denoted as (u, v). For a node v we denote the set of

all arcs entering node v as δ+(v), and we denote the set of all

arcs leaving node v as δ−(v). We refer to an s–t cut as either a

set of arcs that disconnects s from t upon their removal, or

alternatively, as a bipartition of the nodes where s and t are

not in the same partition. Since the only cuts of interest in this

paper are s–t cuts, we henceforth refer to them as cuts.

Similarly, we denote an undirected graph as (V, E) where V is

the set of vertices and E is the set of edges. We denote an

edge between vertices u and v by {u,v}.And an arc between

node i and j as (i, j). The arc capacity of every arc (i, j) is

given as Cij. The set of different paths from node i is given as

Pi
t and a particular path is given as pi

t. Each source to sink

path is given as Pni. The flow in path Pni is given as Fni and

flow in arc (i,j) as Fn(i,j). Nodes which are directly connected

to source node are of main concern here so we define this

node set as 𝐴.Obviously 𝐴 ⊂ N.

3. SOURCE TO NODE DISJOINT PATH
Here we give a function which defines source to node disjoint

path. The special feature of the path is that two consecutive

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.17, March 2012

17

arcs are not common in any two paths. As a starting node here

we consider the node set which is directly connected to the

source node without any intermediate node.

Pni= (s, i) + pi
t (3.1)

s.t ∀ pi
t ∈ Pi

t

and ∀ (l,m) + (m,n) ∈ pi
t

⇒ (l.m) + (m,n) ∉ pj
t ∀ j≠ i (3.2)

Flow in Pni

Fni = Min(Cij) (3.3)

if (l,m) ∈ Pni and (l,m) ∉ Pnj ∀ j ≠ i

then flow in arc (l,m)= Fni (3.4)

if (l,m) ∈ ∩i Pni

Then flow in arc (l,m)= 𝛴i Fni (3.5)

Maximum flow in the network = 𝛴i Fni , ∀ i∈ 𝐴 (3.6)

Equation 3.1 determines source to sink path for every node

n∈ 𝐴, equation 3.2 imposes the condition that any two paths

can not have two arcs common if they are in sequence.

Therefore the possibility of the portion of any path having

more than one arc, is being restricted here.

Equation 3.3 gives the flow Fni in every path Pni which is

minimum arc capacity of the arcs constituting the path Pni .

Equation 3.4 determines the flow in any arc belonging to path

Pni which is same as the flow in path Pnj if that arc uniquely

belongs to Pni.

Equation 3.5 determines the flow in any arc (l,m) if it belongs

to more than one path as sum of the flow in respective paths.

Equation 3.6 determines the maximum flow in the network as

sum of the flows in every arc.

Equations 3.1 to 3.6 altogether constitutes the algorithm

which gives the maximum flow in the network, flow in each

arc and determines the cut.

4. ALGORITHM TRANSFORMS THE

COMPLICATED NETWORK IN TO A

SIMPLE SOURCE TO SINK PATH

NETWORK IN POLYNOMIAL TIME
The equation set 3.1 and 3.2 constitute the algorithm which

transforms the network in polynomial time. In any directed

graph having N nodes the maximum number of arcs are N(N-

1).The algorithm searches each arc for the possible source to

sink path. Therefore the maximum number of efforts can not

exceed N(N-1) < N.N= N2.Efforts being bounded above by

the polynomial of degree 2 shows that equation set 3.1 and

3.2 is a polynomial time algorithm of degree 2.

The algorithm can solve arbitrary instance of the network

flow model efficiently.

Here we consider the network (fig 4.1) with given arc

capacities. After each source to sink path determined by

equation 3.1 and 3.2 the network easily gets transformed in to

(fig 4.2). Then the flow in each path and every arc is

determined by equations 3.3 to3.6

Fig 4.1: Initial Network

Arc capacities are given as

Cs1 = 20, C12= 10, C2t = 8, C13=12, Cs2= 15, C32=8, Cs3=13,

C3t=9

By the application of the above mentioned function this

network can be reduced as Figure 4.2

Fig 4.2: Network after reduction

5. RESULTS
Referred to figure 4.2, Flow in different path is given as

F1= 8, F2=8, F3= 8, F4= 9

Arc capacities are given as

Cs1 = 8+8=16, C12= 8, C2t=8+8+8= 24, C13=C32=8, Cs2=8,

Cs3=9,C3t=9

Maximum flow in the network, F1 + F2 + F3 + F4 = 33.

s

1 2

t 1 3 2

2

3

s

1

3

2

t

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.17, March 2012

18

6. CONCLUSION
The complicated network has been reduced to the simplest

source to node path network without any intermediate node,

which can be applied to any complicated network related

problems such as network flow interdiction problem. The

algorithm has the capability to reduced the network in

polynomial time from where the flow in each arc, cuts and

total flow has been easily calculated.

7. REFERENCES
[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network

Flows: Theory, Algorithms and Applications, Prentice

Hall, Upper Saddle River (1993).

[2] N. Assimakopoulos, A network interdiction model for

hospital infection control, Computers in Biology and

Medicine 17 (1987), pp. 413–422

[3] L. Bingol, A Lagrangian heuristic for solving a network

interdiction problem, Master’s thesis, Naval Postgraduate

School, 2001.

[4] G.G. Brown, M.W. Carlyle, J. Salmerón and R.K. Wood,

Defending critical infrastructure, Interfaces 36 (2006),

pp. 530–544

[5] C. Burch, R.D. Carr, M. Marathe, C.A. Phillips and E.

Sundberg, A decomposition-based pseudoapproximation

algorithm for network flow inhibition. In: D.L.

Woodruff, Editor, Network Interdiction and Stochastic

Integer Programming, Kluwer Academic Press (2002),

pp. 51–68.

[6] R.L. Church, M.P. Scaparra and R.S. Middleton,

Identifying critical infrastructure: The median and

covering facility interdiction problems, Annals of the

Association of American Geographers 94 (2004), pp.

491–502. |

[7] K.J. Cormican, D.P. Morton and R.K. Wood, Stochastic

network interdiction, Operations Research 46 (1998), pp.

184–197.

[8] D. Du and R. Chandrasekaran, The maximum residual

flow problem: NP-hardness with two-arc destruction,

Networks 50 (2007), pp. 181–182.

[9] T.E. Harris, F.S. Ross, Fundamentals of a method for

evaluating rail network capacities, Research

Memorandum RM-1573, The RAND Corporation, Santa

Monica, CA.

[10] E. Israeli and R.K. Wood, Shortest-path network

interdiction, Networks 40 (2002), pp. 97–111

[11] U. Janjarassuk and J.T. Linderoth, Reformulation and

sampling to solve a stochastic network interdiction

problem, Networks 52 (2008), pp. 120–132.

[12] C. Lim and J.C. Smith, Algorithms for discrete and

continuous multicommodity flow network interdiction

problems, IIE Transactions 39 (2007), pp. 15–26.

[13] A.W. McMasters and T.M. Mustin, Optimal interdiction

of a supply network, Naval Research Logistics Quarterly

17 (1970), pp. 261–268.

[14] C.A. Phillips, The network inhibition problem, in:

Proceedings of the 25th Annual ACM Symposium on the

Theory of Computing, 1993 pp. 776–785.

[15] H.D. Ratliff, G.T. Sicilia and S.H. Lubore, Finding the n

most vital links in flow networks, Management Science

21 (1975), pp. 531–539.

[16] J.O. Royset and R.K. Wood, Solving the bi-objective

maximum-flow network-interdiction problem, INFORMS

Journal on Computing 19 (2007), pp. 175–184.

[17] A. Schrijver, On the history of the transportation and the

maximum flow problems, Mathematical Programming

91 (2002), pp. 437–445

[18] A. Uygun, Network interdiction by Lagrangian

relaxation and branch-and- bound, Master’s thesis, Naval

Postgraduate School, 2002.

[19] R.K. Wood, Deterministic network interdiction,

Mathematical and Computer Modelling 17 (1993), pp.

1–18.

8. APPENDIX
MATLAB Program of the algorithm

>> A=[1,3];

>> Cs1=20;

>> Cs3=13;

>> C12=10;

>> Cs2=15;

>> C13=12;

>> C32=8;

>> C2t=8;

>> C3t=9;

>> P1=[Cs1,C12,C2t];

>> P2=[Cs1,C13,C32,C2t];

>> P3=[Cs2,C2t];

>> P4=[Cs3,C3t];

>> F1=min(P1)

F1=8

>> F2=min(P2)

F2 = 8

>> F3=min(P3)

F3 = 8

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.17, March 2012

19

>> F4=min(P4)

F4 = 9

>> Fs1=F1+F2

Fs1 = 16

>> Fs2=F3

Fs2 = 8

>> Fs3=F4

Fs3 = 9

>> F12=F1

F12 = 8

>> F2t=F1+F2+F3

F2t = 24

>> F13=F2

F13 = 8

>> F32=F2

F32 = 8

>> F3t=F4

F3t = 9

>> Mf=F1+F2+F3+F4

Mf = 33

