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ABSTRACT 

We develop an algorithm which reduces the arbitrary instance 

of the network flow problem to a simple path disjoint network 

in polynomial time. Then the flow in each path is taken as the 

minimum of the arc capacities of that path from where the 

flow in each arc can be easily determined. The polynomial 

time algorithm can determine any instance of the network 

flow problem faster than the previously existing algorithms . 

An example has been given to elucidate the process. At the 

end a MATLAB program based on this algorithm has been 

given. 
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1. INTRODUCTION 
In the Maximum Flow Network Problem (MFNP), we are 

given a capacitated s–t (directed) network where each arc has 

a fixed capacity. The objective is to determine the flow in 

each arc and the maximum flow that can be routed through 

the network.  

Network flow problems model the essential issues in many 

real-world resource allocation problems, including 

coordinating tactical air strikes[13], combating drug 

trafficking [19], controlling infections in a hospital [2], 

chemically treating raw sewage [14], and controlling 

floods [15] The study of network flow problem is basic to 

many advanced problems such as Maximum Flow Network 

Interdiction Problem( MFNIP) in particular originates from 

the Cold War, when analysts at the RAND Corporation 

studied how to interdict the Soviet Union’s railroad traffic 

into Eastern Europe using the fewest resources [9], They 

accomplished this by solving a Minimum Capacity s–t Cut 

Problem; this is the earliest known formulation of this 

fundamental problem [17]. From the 1960s to the turn of the 

21st century, there has been an extensive amount of academic 

literature on various network problems. All the models aimed 

at finding the solution by considering the arc capacities and 

less attention has been given to the simplification of the 

network, most of which is listed in [6]. The basic framework 

for maximum flow network interdiction with explicit budget 

constraints was first studied in [13].In the early 1990s, 

Wood [19], resurrected interest in network interdiction by 

introducing MFNIP. A similar problem to MFNIP, called the 

Network Inhibition Problem (NIP), was independently 

introduced by Phillips in [14]. Numerous variants of network 

interdiction problems have also been studied, including 

shortest path network interdiction [10], stochastic network 

interdiction [7] and [11], multiple commodity network 

interdiction [12] and[19], facility interdiction[6], and a variant 

of MFNIP where flow is routed before arcs are removed [8]. 

There is also literature on more-than-two-stage interdiction 

models where infrastructure may be reinforced against 

attacks [4]. The special case of MFNIP when an interdictor 

removes exactly k arcs from the network in order to minimize 

the maximum flow in the resulting network is known as the k-

Most Vital Arcs Problem [15]; in [19], this problem is called 

the Cardinality Maximum Flow Network Interdiction Problem 

(CMFNIP). 

In this paper we develop an algorithm which reduces any 

arbitrary instance of the network problem to a simple source 

to node path disjoint network in polynomial time. The 

maximum flow in the network, the flow in each arc and the 

cuts of the network can be determined in a simple way as 

compared to the previously existing methods in which we 

have to determine the residuals in each step and then after a 

lengthy calculation we can determine the flow in each arc.  

2. PRELIMINARIES 
We denote a network as (N, A) where N is the set of nodes and 

A is the set of arcs. We assume without loss of generality that 

all of our networks have a unique source s∈N and a unique 

sink t∈N. An arc that originates from node u and terminates at 

node v is denoted as (u, v). For a node v we denote the set of 

all arcs entering node v as δ+(v), and we denote the set of all 

arcs leaving node v as δ−(v). We refer to an s–t cut as either a 

set of arcs that disconnects s from t upon their removal, or 

alternatively, as a bipartition of the nodes where s and t are 

not in the same partition. Since the only cuts of interest in this 

paper are s–t cuts, we henceforth refer to them as cuts. 

Similarly, we denote an undirected graph as (V, E) where V is 

the set of vertices and E is the set of edges. We denote an 

edge between vertices u and v by {u,v}.And an arc between 

node i and j as (i, j). The arc capacity of every arc (i, j) is 

given as Cij. The set of different paths from node i is given as 

Pi
t and a particular path is given as pi

t. Each source to sink 

path is given as Pni. The flow in path Pni is given as Fni and 

flow in arc (i,j) as Fn(i,j). Nodes which are directly connected 

to source node are of main concern here so we define this 

node set as 𝐴.Obviously 𝐴 ⊂ N. 

3. SOURCE TO NODE DISJOINT PATH 
Here we give a function which defines source to node disjoint 

path. The special feature of the path is that two consecutive 
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arcs are not common in any two paths. As a starting node here 

we consider the node set which is directly connected to the 

source node without any intermediate node. 

Pni=    (s, i) + pi
t    (3.1) 

s.t  ∀ pi
t ∈ Pi

t   

and ∀ (l,m) + (m,n) ∈ pi
t    

⇒ (l.m) + (m,n) ∉ pj
t ∀ j≠ i    (3.2) 

Flow in Pni                                                                                                                                                          

Fni = Min(Cij)     (3.3) 

if  (l,m) ∈ Pni and (l,m) ∉ Pnj ∀ j ≠ i                                                                                                                 

then flow in arc (l,m)= Fni   (3.4)                               

if (l,m) ∈ ∩i Pni   

Then flow in arc (l,m)= 𝛴i Fni   (3.5) 

Maximum flow in the network = 𝛴i Fni , ∀ i∈ 𝐴 (3.6) 

Equation 3.1 determines source to sink path for every node 

n∈ 𝐴, equation 3.2 imposes the condition that any two paths 

can not have two arcs common if they are in sequence. 

Therefore the possibility of the portion of any path having 

more than one arc, is being restricted here. 

Equation 3.3 gives the flow Fni in every path Pni which is 

minimum arc capacity of the arcs constituting the path Pni .  

Equation 3.4 determines the flow in any arc belonging to path 

Pni which is same as the flow in path Pnj if that arc uniquely 

belongs to Pni. 

Equation 3.5 determines the flow in any arc (l,m) if it belongs 

to more than one path as sum of the flow in respective paths. 

Equation 3.6 determines the maximum flow in the network as 

sum of the flows in every arc. 

Equations 3.1 to 3.6 altogether constitutes the algorithm 

which gives the maximum flow in the network, flow in each 

arc and determines the cut. 

4. ALGORITHM TRANSFORMS THE 

COMPLICATED NETWORK IN TO A 

SIMPLE SOURCE TO SINK PATH 

NETWORK IN POLYNOMIAL TIME 
The equation set 3.1 and 3.2 constitute the algorithm which 

transforms the network in polynomial time. In any directed 

graph having N nodes the maximum number of arcs are N(N-

1).The algorithm searches each arc for the possible source to 

sink path. Therefore the maximum number of efforts can not 

exceed N(N-1) < N.N= N2.Efforts being bounded above by 

the polynomial of degree 2 shows that equation  set 3.1 and 

3.2 is a polynomial time algorithm of degree 2. 

The algorithm can solve arbitrary instance of the network 

flow model efficiently. 

Here we consider the network (fig 4.1) with given arc 

capacities. After each source to sink path determined by 

equation 3.1 and 3.2 the network easily gets transformed in to 

(fig 4.2). Then the flow in each path and every arc is 

determined by equations 3.3 to3.6 

 

Fig 4.1: Initial Network 

Arc capacities are given as 

Cs1 = 20, C12= 10, C2t = 8, C13=12, Cs2= 15, C32=8, Cs3=13, 

C3t=9 

By the application of the above mentioned function this 

network can be reduced as Figure 4.2

  

Fig 4.2: Network after reduction 

5. RESULTS 
Referred to figure 4.2, Flow in different path is given as 

F1= 8, F2=8, F3= 8, F4= 9 

Arc capacities are given as  

Cs1 = 8+8=16, C12= 8, C2t=8+8+8= 24, C13=C32=8, Cs2=8, 

Cs3=9,C3t=9 

Maximum flow in the network, F1 + F2 + F3 + F4 = 33. 
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6. CONCLUSION 
The complicated network has been reduced to the simplest 

source to node path network without any intermediate node, 

which can be applied to any complicated network related 

problems such as network flow interdiction problem. The 

algorithm has the capability to reduced the network in 

polynomial time from where the flow in each arc, cuts and 

total flow has been easily calculated.  
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8. APPENDIX 
MATLAB Program of the algorithm 

>> A=[1,3]; 

>> Cs1=20; 

>> Cs3=13; 

>> C12=10; 

>> Cs2=15; 

>> C13=12; 

>> C32=8; 

>> C2t=8; 

>> C3t=9; 

>> P1=[Cs1,C12,C2t]; 

>> P2=[Cs1,C13,C32,C2t]; 

>> P3=[Cs2,C2t]; 

>> P4=[Cs3,C3t]; 

>> F1=min(P1) 

F1=8 

>> F2=min(P2) 

F2 = 8 

>> F3=min(P3) 

F3 = 8 
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>> F4=min(P4) 

F4 = 9 

>> Fs1=F1+F2 

Fs1 = 16 

>> Fs2=F3 

Fs2 = 8 

>> Fs3=F4 

Fs3 = 9 

>> F12=F1 

F12 = 8 

>> F2t=F1+F2+F3 

F2t = 24 

>> F13=F2 

F13 = 8 

>> F32=F2 

F32 = 8 

>> F3t=F4 

F3t = 9 

>> Mf=F1+F2+F3+F4 

Mf = 33 

 

 


