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ABSTRACT 

The image gets corrupted by Additive White Gaussian Noise 

during the process of acquisition, transmission, storage and 

retrieval. Denoising refers to suppressing the noise while 

retaining the edges and other important detailed structures as 

much as possible. This paper presents a general structure of 

the recovery of images using a combination of variation 

methods and wavelet analysis. The variation formulation of 

the problem allows us to build the properties of the recovered 

signal directly into the analytical machinery. The efficient 

wavelet representation allows us to capture and preserve sharp 

features in the signal while it evolves in accordance with the 

variation laws. We propose the three different variation model 

for removing noise as Horizontal, vertical and Cluster. 

Horizontal and Vertical variation model obtained the 

threshold at each decomposed level of Wavelet. Cluster 

variation model moving mask in different wavelet sub band. 

This proposed scheme has better PSNR as compared to other 

existing technique. 
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1. INTRODUCTION 
Image processing is a field that continues to grow, with new 

applications being developed at an ever increasing pace; it 

includes digital cameras, intelligent traffic monitoring, 

handwriting recognition on checks, signature validation and 

so on. It is a fascinating and exciting area to be involved in 

today with application areas ranging from the entertainment 

industry to the space program. One of the most interesting 

aspects of this information revolution is the ability to send and 

receive complex data that transcends ordinary written text. 

Visual information, transmitted in the form of digital images, 

has become a major method of communication for the 21st 

century. During transmission and acquisition, images are 

often corrupted by various noises. The aim of image denoising 

is to reduce the noise level while keeping the image features 

as much as possible [1] [2]. The image denoising approaches 

can put into two broad categories like spatial domain and 

frequency domain [3]. In the spatial domain approach the 

pixels of an image are manipulated directly, such as median 

filter, averaging filter, point processing, Weiner filter, etc [4].  

The frequency domain approach is based on modifying the 

transformed image such as Fourier transform and Wavelet 

transform of an image.  One of the widely used techniques is 

the wavelet thresholding. This scheme performs on noisy 

images as small coefficients in the high frequencies. A 

thresholding can be done by setting these small coefficients to 

zero; will eliminate much of the noise in the image [5] [6].  

The denoising scheme using proposed variation model is 

shown in figure (1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Variation Model with wavelet 

 

2. RELATED WORK ON TOTAL 

VARIATION IMAGE DENOISING 
Image denoising is an important research field in image 

processing. It is often considered as a pre-processing step for 

other image tasks such as image segmentation, image 

registration and so on. Image restoration includes many 

aspects, for example denoising, deblurring, in painting and 

colorization etc. In the last two decades many authors have 

introduced certain tools for the image denoising problem.  

Introduction in a classic paper by Rudin, Osher, and Fatemi, 

total variation minimizing models have become one of the 

most popular and successful methodology for image 

restoration [7]. Total Variation is a well known image prior 

introduced by Rudin, Osher and Fatemi (ROF). For a 

differential function Rf  2]1,0[:  it is computed 

as 


 ff
TV

 , and can be extended to the space 

)]1,0([ 2BV   that contains functions with discontinuities.  

The total variation is used as a regularization to denoise an 

image by solving the strictly convex problem  

TVBVf
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as originally proposed by ROF. The regularization weight λ 

should be tuned to match the noise level contaminating f0. 

Several algorithms have been proposed to solve this problem. 

Such primal, dual, or primal-dual schemes for denoising are 

often a building block for solving more complex inverse 

problems.  A. Haddad [8] begins with a review of well-known 
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properties of BV.  They define the space of functions of 

bounded variation BV. This space is endowed with an 

isotropic norm BV. . They fix the dimension to 2 and 

choose 
2R  so that concentrates on dilatation. S 

Osher[9] propose a new model for image restoration and 

image decomposition into cartoon and texture, based on the 

total variation minimization of Rudin, Osher, and Fatemi, and 

on oscillatory functions, which follows results of Meyer[10], 

involving H-1 norm. This model performs better on textured 

images, and the “residual” component has less structure than 

in the standard TV model. Fang fang Dong [11] proposed 

vectorial algorithm to some applications besides image 

denoising. They stated that vectorial algorithm can be used in 

many problems which need the 1l  regularization. Yang 

Wang and Haomin Zhou [12] propose a denoising algorithm 

for medical images based on a combination of the total 

variation minimization scheme and the wavelet scheme.  This 

method offers effective noise removal in real noisy medical 

images while maintaining sharpness of objects. More 

importantly, this scheme allows us to implement an effective 

automatic stopping time criterion. Another improvement is the 

multiscale fitting parameters targeting denoising in the high 

frequency domain, which yields a significant reduction in 

number of iterations needed to achieve the desired denoising 

as well as a small performance improvement in terms of 

PSNR on simulated noisy images. Kossi Edoh and John Paul 

Roop[13] , presents an adaptive multilevel total variation 

(TV) method for image denoising which utilizes TV partial 

differential equation (PDE) model and exploits the 

multiresolution properties of wavelets. They develop a fast 

method which combines TV denoising with denoising from 

wavelet compression, which is known to produce results 

which are superior to either method alone. Gabriele Steidl, 

Joachim Weickert, Thomas Brox, Pavel Mrazek, And Martin 

Welk [14] investigate under which conditions one can prove 

equivalence between four discontinuity preserving denoising 

techniques in the 1-D case: soft wavelet thresholding, TV 

diffusion, TV regularization, and SIDEs. Starting from a 

simple two-pixel case they were able to derive analytical 

solutions. Antonin Chambolle [15] proposes an algorithm for 

minimizing the total variation of an image, and provides a 

proof of convergence. He has work on applications to image 

denoising, zooming, and the computation of the mean 

curvature motion of interfaces. Paul Rodriguez, Brendt 

Wohlberg [16] proposes a simple but flexible method for 

solving the generalized vector-valued TV (VTV) functional, 

which includes both the 
2l -VTV and 

1l -VTV 

regularizations as special cases, to address the problems of 

deconvolution and denoising of vector-valued images with 

Gaussian or salt-and pepper noise. Yilun Wang, Junfeng 

Yang, Wotao Yin, And Yin Zhang [17],  proposes, analyze 

and test an alternating minimization algorithm for recovering 

images from blurry and noisy observations with total variation 

(TV) regularization. Their algorithm arises from a new half-

quadratic model applicable to not only the anisotropic but also 

isotropic forms of total variation discretizations.  Banazier A. 

Abrahim, Yasser Kadah[18], proposes a new speckle 

reduction method and coherence enhancement of ultrasound 

images based on method that combines total variation (TV) 

method and wavelet shrinkage. In this method, a noisy image 

is decomposed into sub bands of LL, LH, HL, and HH in 

wavelet domain. LL sub band contains the low frequency 

coefficients along with less noise, which can be easily 

eliminated using TV based method. More edges and other 

detailed information like textures are contained in the other 

three sub bands. They propose a shrinkage method based on 

the local variance to extract them from high frequency noise. 

David C. Dobsony and Curtis R. Vogel [19], analyzes the 

convergence of an iterative method for solving nonlinear 

minimization problems. The iterative method involves a 

lagged diffusivity approach in which sequences of linear 

diffusion problems are solved. Global convergence in a finite-

dimensional setting is established, and local convergence 

properties, including rates and their dependence on various 

parameters, are examined. Rick Chartrand [20] considers the 

problem of differentiating a function specified by noisy data. 

Regularizing the differentiation process avoids the noise 

amplification of finite-difference methods. He used total 

variation regularization, which allows for discontinuous 

solutions. The resulting simple algorithm accurately 

differentiates noisy functions, including those which have a 

discontinuous derivative. 

3. DISCRETE WAVELET TRANSFORM 
Wavelets are the functions generated from one single function 

by dilations and translations [21] [22] where dilation means 

scaling the wavelet and translation meaning shifting the 

wavelet. The wavelet expansion set is not unique. A wavelet 

system is a set of building blocks to construct or represent a 

signal or function. It is a two- dimensional expansion set, 

usually a basis for some class one or higher dimensional 

signals.  

The wavelet can be represented by a weighted sum of shifted 

scaling function  t2       as, 

Zn           ),2(2)()( 1 
n

ntnht  ----- (1) 

For some set of coefficient h1 (n), this function gives the 

prototype or mother wavelet  )(t   for a class of expansion 

function of the form  

)2(2)( 2/

, ktt jj

kj    ----------- (2) 

Where 
j2    the scaling of is 

jt 2,     is the translation in t , 

and 
2/2 j

 maintains the
2L     norms of the wavelet at 

different scales. The construction of wavelet using a set of 

scaling function   )(tk and  )(, tkj      that                    

could span all of )(2 RL  therefore function 

)()( 2 RLtg  can be written as  

 









k j

kjk tkjdtkctg
0

, )(),()()()(  ------- (3) 

First summation in the above equation gives a function that is 

low resolution of ),(tg  for each increasing index j in the 
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second summation, a higher resolution function is added 

which gives increasing details. The function  

),( kjd  indicates the differences between the translation 

index k, and the scale parameter j.  Figure (2 a) shows the 

structure of two stages down sampling filter banks in terms of 

coefficients.

 

 

 

 

 

 

 

 

 

 

 

(a) Two stages down sampling Filter bank 

 

 

 

 

 

 

 

 

 

 

 

 

     (b) Two stages up sampling filter.  

Fig 2: down sampling and up sampling filter. 

 

 

 

 

 

 

 

 

 

           (a): Row wise decomposition  (b) One dimensional decomposition  (c)Two dimensional decomposition  

Fig 3: Two-dimensional wavelet transform 

 

A reconstruction of the original fine scale coefficient of the 

signal made from a combination of the scaling function and 

wavelet coefficient at a course resolution  is derived by 

considering a signal in the j+1 scaling function space 

1)(  jtf   .  Figure (2 b) shows the structure of two 

stages up sampling filter banks in terms of coefficients i.e. 

synthesis from coarse scale to fine scale [23] [24] [25]. 

The DWT is identical with a hierarchical sub band system 

where the sub bands are logarithmically spaced in frequency 

and represent octave-band decomposition. By applying DWT, 

the image is actually divided i.e. decomposed into four sub 

bands and critically sub-sampled as shown in Figure (3 a). 

These four sub bands arise from separable applications of 

vertical and horizontal analysis filters for wavelet 

decomposition as shown in Figure (3 b). The filters h0 and h1 

shown in Figure (2) are one-dimensional Low Pass Filter 

(LPF) and High Pass Filter (HPF), respectively. Thus, 

decomposition provides sub bands corresponding to different 

resolution levels and orientation.   

These sub bands labeled LH, LH, HL and HH represent the 

finest scale wavelet coefficients, i.e. detail images while the 

sub band LL corresponds to coarse level coefficients, i.e. 

approximation image. To obtain the next coarse level of 

wavelet coefficients, the sub band LL alone is further 

decomposed and critically sampled using similar filter bank 

shown in Figure (2). This results in two-level wavelet 

decomposition as shown in Figure (3 c). The decomposed 

image can be reconstructed using a reconstruction (i.e. Inverse 

DWT) or synthesis filter. 

4. PROPOSED VARIATION 

TECHNIQUE 
Image denoising is one of the measure issues in image 

processing, not only because it plays a key preliminary role in 

many computer vision systems, but also because it is probably 

the simplest way to address the fundamental issue of image 
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modeling, as a starting point towards more complex tasks like 

deblurring, demosaicking, in painting, etc. We propose the 

new method to determine variation around the neighbor and 

modify the pixel according to the energy in that block.  A 

discretized gradient for an image 
NRf    is defined as  

),(),,((),( jifjifjif yx             where    

    
otherwise                                       0

1-ni0 if     ),(),1(
),(



 


jifjif

jifx

   

    
otherwise                                       0

1-nj0 if     ),()1,(
),(



 


jifjif

jify

These equations give the gradient with respect to horizontal 

and vertical axis in image. Figure (4) shows a technique of 

horizontal, vertical and neighboring variation proposed model 

where, X is marked as the location of the pixel in an image.    

 
(a)Horizontal Variation  (b) Vertical Variation      

 
  (c) Cluster Variation          

Fig 4: Variation Model 

4.1 Horizontal Variation: 
We propose a wavelet based Variation denoising scheme. In 

our scheme, the wavelet coefficients are selected and modified 

by applying the horizontal and vertical variation model.  

The horizontal variation model applied to the image noisy 

image patch.  
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Where, Hvar is the horizontal variation. To obtain the 
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Where,     is the regularization parameter of the patch. The 

coefficient can be modified by  
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The horizontal coefficients are get modified by regularization 

parameter.  

A. Vertical Variation 

The vertical variation model applied to the image noisy image 

patch.  
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here, Hvar is the horizontal variation. To obtain the 

regularization parameter of the patch we need to calculate 

energy of the patch.  
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Where,  is the regularization parameter of the patch. The 

coefficient can be modified by  
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The vertical coefficients are get modified by regularization 

parameter. 

 

4.2 Cluster Variation 
The cluster variation can be obtained by measuring the 

variation at its neighbor. Consider 3*3 clusters apply to the 

wavelet as shown in figure (5).  
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Fig 5: 3*3 cluster 

d (1) =(x (i, j)-x (i-1,j-1)) 

     d(2) =(x(i,j)-x(i-1,j)) 

     d(3) =(x(i,j)-x(i-1,j+1)) 

     d(4) =(x(i,j)-x(i,j-1)) 

     d(5) =(x(i,j)-x(i,j+1)) 

     d(6) =(x(i,j)-x(i+1,j-1)) 

     d(7) =(x(i,j)-x(i+1,j)) 

     d(8) =(x(i,j)-x(i+1,j+1)) 


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1

1
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kk
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The obtained cluster variation coefficients d will be replaced 

by modified coefficients x (i, j). Repeat this procedure to all 

sub band of Wavelet Transform and modified the Wavelet 

coefficient. This 3*3 mask will move through the sub band 
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and get modified coefficients. This method will not add any 

blur in the image. 

5. IMPLEMENTATION AND RESULTS 
We demonstrate the Variation scheme for removing 

noise. The wavelet Variation scheme allows us to modify the 

wavelet coefficients primarily in the high frequency domain. 

The proposed variation model obtained through the horizontal 

and vertical variation technique gives comparative result at all 

type of noise. The coefficients modified at any level patch by 

patch in this technique. The horizontal and vertical variation 

technique gives us the threshold value at each level of the sub 

band. These threshold coefficients will further modified by 

taking inverse Wavelet Transform. The noise is removed by 

taking the inverse wavelet transform of modified coefficients. 

The cluster variation is performed by modification of each 

pixel done at the center pixel level at all direction. This 3*3 

mask will be moving in the each sub band of decomposed 

Wavelet. This modified Wavelet coefficients at each 

decomposition level using cluster variation will further 

processed. This sub band will further up sampled by inverse 

Wavelet Transform. We get better result to all types of noise 

for this variation based regularization method with wavelet as 

shown in figure (6). Results show that the wavelet based 

horizontal Variation scheme preserves details like edges of the 

images as shown in figure (7). Results of Vertical variation 

with different noise density are shown in figure (8). Results of 

cluster variation with different noise density in wavelet 

domain are shown in figure (9). All results are combined in 

Table (1) shows the different variation technique with the 

different noise. 

6. CONCLUSION 
In this paper we propose Horizontal, Vertical and cluster 

variation technique. This variation model has gives better 

result when the noise density is increases. The image output 

of variation model, we have compared with the existing 

method. It shows that the existing methods introduce blur in 

the edges, but proposed scheme has preserves the edges. It has 

good output with high noise density. Its output images 

visually have immune to noise. In the high Gaussian noise 

density our proposed scheme has better result in comparison 

with the existing method. In the high Speckle noise density 

cluster variation has better result than the existing method. In 

the Salt and Pepper noise density all proposed scheme has 

better PSNR as compared to the existing method.  
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Fig 6: Variation based image denoising with different noise 

 
Table 1: Discrete Variation Model 

Result for Lena Grayscale image PSNR 

Methods / 

Different Noise 

with different 

Variance 

Gaussian Noisy Image  Salt and Pepper Noisy Image Speckle Noisy Image Poisson’

s Noisy  

varianc

e 

0.0001 

variance 

0.001 

varianc

e 0.01 

noise 

density 

0.0005 

noise 

density 

0.005 

noise 

density 

0.05 

 

varianc

e 0.0004 

 

varianc
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varianc

e 0.04 

 

 

Variation Existing 

Method 
39.0432 30.3717 20.3980 38.0274 29.0831 18.8844 38.8144 30.0294 20.0653 27.6249 

Cluster Variation 26.9298 25.7157 23.1412 27.2462 26.0150 25.0754 26.0987 25.8306 23.1432 25.4096 

Horizontal 

Variation 
22.4632 28.2214 15.5213  21.7780 22.5298 23.0342 22.2532 27.6541 15.1977 25.8700 

Vertical Variation 18.1114 25.6088 15.0313 17.3889 18.2763 27.2317 18.2486 24.8501 15.6168 26.2101 
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Gaussian noise 0.0001 Gaussian noise 0.001 Gaussian noise 0.01 Poisson  

   

  

Salt pepp 0.0005 Salt pepp 0.005 Salt pepp 0.05   

   

  

Speckle0.0004 Speckle0.004 Speckle0.04   

Fig 7: Denoising using Horizontal variation with different noise density 
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Fig 8: Denoising using Vertical variation with different noise density 

 

 

Fig 9: Denoising using Cluster variation with different noise density 
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