
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

21

An Application of Array Token Petri Nets to Clustering

Analysis for Syntactic Patterns

D. Lalitha

Department of Mathematics
Sathyabama University

 Chennai-119, India

K. Rangarajan
Department of MCA
Bharath University
Chennai-73, India

ABSTRACT

A new approach for clustering analysis using array token Petri

net structure is introduced. We define two kinds of distances

between an array R and a group of arrays characterized by

Array Token Petri Net. A clustering procedure is proposed.

Keywords

Augmented Petri net, core Petri net, column shift, distance,

firing sequence, row shift.

1. INTRODUCTION
The theoretical concepts of array grammars have been used

effectively in the field of syntactic character recognition [1,

2]. Cluster analysis can be performed on a set of patterns on

the basis of a selected similarity measure. The results of

cluster analysis can then be used directly for Pattern

Recognition. Similarity measure for syntactic patterns in

terms of grammar transformations has been proposed.

Distance between arrays in terms of the error transformations

required to derive one array from another has already been

defined in literature. Application of array grammars to

clustering analysis exists in literature [3, 4]. A clustering

procedure for English characters has been proposed by

defining a distance between an array and a group of arrays

characterized by an array grammar.

On the other hand Petri net [5] is an abstract formal model of

information flow. Motivated by the fact that Array Token

Petri Net Structure (ATPNS) has been defined to generate

most of the two dimensional languages generated by array

grammars [6, 7, 8, 9, 10], we have tried to use ATPNS in

clustering. Here we propose an algorithm to generate distorted

English characters. First we start with the Petri Net that

generates the alphabet in perfect ratio. Add more transitions to

the Petri Net to get the Core Petri Net which generates a

noiseless, pure character of the alphabet which may not

maintain a perfect ratio. Adding extra transitions to the Core

Petri net enables it to generate some variations or noisy

alphabets. The Petri Net generating noisy characters are called

Augmented Petri Net [11]. Then we define two kinds of

distances between an array R and a group of arrays

characterized by Array Token Petri Net. We introduce a

clustering procedure to be used in character recognition. In

this paper we have used only one primitive ‘x’. ‘.’ is used to

denote a blank.

This paper is organized as follows. Section 2 gives all the

basic definitions and notations used. Section 3 defines the

distance measure between arrays and also gives the clustering

procedure.

2. ARRAY TOKEN PETRI NET
In this section we define the basic concepts of Petri net, Array

Token Petri Net Structure, Core Petri Net, Augmented Petri

Net and give some examples.

Definition: 2.1

A Petri Net structure is a four tuple C = (P, T, I, O) where

P = {p1, p2,....., pn} is a finite set of places, n ≥ 0,

T = {t1, t2,…, tm} is a finite set of transitions m ≥ 0, P∩T= Ø,

I : T → P∞ is the input function from transitions to bags of

places and O : T → P∞ is the output function from transitions

to bags of places.

Definition: 2.2

A Petri Net marking is an assignment of tokens to the places

of a Petri Net. The tokens are used to define the execution of a

Petri Net .The number and position of tokens may change

during the execution of a Petri Net. In this paper arrays over

an alphabet are used as tokens.

Basic Notations: denotes the arrays made up of elements

of . If A and B are two arrays having same number of rows

then A ⱷ B is the column wise catenation of A and B. If two

arrays have the same number of columns then AӨB is the row

wise catenation of A and B. (x)n denotes a horizontal

sequence of n „x‟ and (x)n denotes a vertical sequence of n „x‟

where x є . (x)n+1
 = (x)n ⱷ x and (x)n+1 = (x)n Ө x. We use

the symbol  to denote either ⱷ or Ө.

Catenation Rule as label for transitions: Column catenation

rule is in the form A ⱷ B. Here the array A denotes the mn

array in the input place of the transition. B is an array

language whose number of rows will depend on „m‟ the

number of rows of A. The number of columns of B is fixed.

For example A ⱷ  mxx adds two columns of x after

the last column of the array A which is in the input place. But

 mxx ⱷ A would add two columns of x before the

first column of A. „m‟ always denotes the number of rows of

the input array A. Row catenation rule is in the form A Ө B.

Here again the array A denotes the mxn array in the input

place of the transition. B is an array language whose number

of columns will depend on „n‟ the number of columns of A.

The number of rows of B is always fixed. For example A Ө
n

x

x








adds two rows of x after the last row of the array A

which is in the input place. But

n

x

x








Ө A would add two

rows of x before the first row of the array A. „n‟ always

denotes the number of columns of the input array A.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

22

Enabled transitions: If all the input places of a transition

have the same array as tokens, the transition becomes enabled.

On firing it removes the array from the input places and

moves it into all its output places.

Position of tokens before firing the transition

Position of tokens after firing the transition

If all the input places of a transition have different arrays as

token or if one input place has different arrays as tokens then

the transition without a label is not enabled. The label has to

specify one of its input places. The transition becomes

enabled if it has an input place as label and that input place

has at least the required number of tokens of the same array.

Firing the transition removes an array from all its input places

and puts the array, in the place specified by the label, into all

its output places.

Position of tokens before firing the transition

Firing the transition moves the array in place p1(specified

in the label of t1) to p3.

If all the input places of a transition have the same array as a

token, the transition becomes enabled. If the transition has a

catenation rule as label then firing it removes the array from

the input places (denoted by A) catenates the array according

to the rule and moves it into all its output places. If the

transition has many input places and all the input places have

different arrays as token then the transition with catenation

rule as label cannot fire. If the transition has one input place

with different arrays as token then the transition with

catenation rule as label cannot fire.

Position of arrays before firing the enabled transition

 If A =

aaa

aaa

aaa

Firing the transition puts A1 in place p3.

A1 =

yxx

aaa

aaa

aaa

Firing t1 adds a row yxx as n =3

Definition 2.3:

If C = (P, T, I,O) is a Petri net structure with arrays over of

Σ** as initial markings, M0 : P → Σ**, label of at least one

transition being catenation rule and a finite set of final places

F  P, then the Petri net structure C is defined as Array

Token Petri Net Structure (ATPNS).

Definition 2.4:
If C is a ATPNS then the language generated by the Petri net

C is defined as L(C) = {A є Σ** / A is in p for some p in F}.

With arrays of Σ** in some places as tokens or initial marking,

all possible sequences of transitions are fired. Firing a

transition either just moves the array or catenates according to

the rule and then moves the array to the output place. Arrays

reaching the final places are collected to form the language

generated by C.

Definition 2.5:

 If C is an ATPNS, let B be the collection of array languages

used in the catenation rules of the labels attached to the

transitions of C. We define the Core Petri Net (CPN) as the

tuple (C, B). Let us see an example of a CPN generating pure

L. By varying the firing sequences we get the class of arrays

in different sizes and different ratios.

Example 2.1:

Core Petri Net (C, B) to generate a class of noiseless L. The

Petri Net C is given in the figure

S =
xx

x 
, B1 =

 
x

m 1
 , B2 =   1


n

x , B = { B1, B2},

F = { p6 }.

The firing sequence t1t2
3t3t4

2
 t5

 derives the following array

P1

P2

t1 A

A

P3

P3

P1

t1

P2

A

P1

P2

t1(p1)
A A

A1 P3

 A

A
P3

P1

t1(p1)

P2

AA

A
P3

A Ѳ(x)n-1y

P1

t1

P2

 A1

t1(p1)

B2 Ө A P1

P4 P3 t5

S

S

t4

t3

t2

A ΦB1

P2

A

A Ө (x)n-1y

P1
t1

P2

A

A
P3

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

23

xx

x 
 t1 t2

3
xxxxx

x 
 t3 t4

2

xxxxx

x

x

x







3. DISTANCE MEASURE BETWEEN

ARRAYS
In this section we define row shift, column shift and also two

kinds of distances between an array R and a group of arrays

characterized by the Augmented Array Token Petri Net.

Definition 3.1:

Let A and B are two arrays over a {x}. Let 1≤ i ≤ m, 1≤ j ≤ n.

If aij = x with bij ≠ x and if there exists k with 1≤ k ≤ n such

that aik ≠ x with bik = x then define the row shift

Rij(A,B) = min |j-k|, where the minimum is taken over for all

such k. If no such k exists then find k , with 1≤ k ≤ m such

that akj ≠ x and bkj = x, then define the column shift

Cij(A,B) = min |j-k|, where the minimum is taken over for all

such k. If aij = bij = x then both Rij(A,B) and Cij(A,B) are

zero.

If ‟x‟ is missing in the ij th position look for it in the ith row (an

extra „x‟), if not look for it in jth column (an extra x). If no

such k is found either in the same row or column then both the

row shift Rij and column shift Cij are undefined. No „x‟ in any

position should be taken for both row shift as well as column

shift.

Definition 3.2:

Let A and B are two arrays over a {x}. The distance measure

between A and B is defined as

D(A,B) =),(),(

1 1

BACBAR ij

m

i

n

j

ij 
 

if, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, all Rij(A,B) and Cij(A,B) are

properly defined. Otherwise we define D(A,B) = ∞.

Let us explain with an example.

If R =

xxxx

xxxx

xx

x

x

x

x

x

x

 and A =

xxxxxxxx

x

x

x

x

x

x

x

x

then R11 = 2, R21 = 1, C92 = 1, C95 = 1, C96 = 2 and C97 = 1.

All other row shifts and column shifts are zero. D(A, R) = 3 +

5 = 8. There is no undefined row or column shift in this

example.

We assume that every array R is a variation of a pure noiseless

array A, generated by some noiseless, pure array generated by

a core Petri net (C, B). The array token Petri net structure uses

the concept of column and row catenation to generate English

alphabets. Without loss of generality we can assume that we

add a single row or single column at a time when a transition

is fired. The various array languages used as label in

generation of English alphabets are as follows.

Arrays used in row catenation rules 1)( nx , xn 1)( , n)( ,

nx)(, xx n 2)( . If B has the array language 1)( nx then add

2)( nx to the augmented array language list Ba. If B has the

array xn 1)( language then add   xn 2)(to the augmented

array language list Ba. If B has the array language

xx n 2)( then add xx n 3)( and   xx n 3)(to the augmented

array language list Ba.

Arrays used in column catenation rules

1)( m

x
,

x

m 1)(
,

x

x

m 2)( ,
m)( ,

mx)(.

If B has the array language
1)( m

x
then add

2)(



m

x to

the augmented array language list Ba. If B has the array

language
x

m 1)(
 then add



 

x

m 2)(

to the augmented

array language list Ba. If B has the array language

x

x

m 2)( then add

x

x

m 3)(



 and



 

x

x

m 3)(to the augmented

array language list Ba.

Add the extra array languages to B to form Ba. Add extra

transitions, with catenation rules using the augmented array

languages as labels, to the CPN to form the augmented Petri

net structure Ca. Then Augmented Petri Net (APN) is the tuple

(Ca, Ba). The given R may belong to the language generated

by APN. We now give the algorithm to construct APN given a

CPN.

Algorithm:

Input. Core Petri Net (C, B) where C = (P, T, I, O) with P =

{p1, p2,....pq} is a finite set of places, q ≥ 0, T = {t1, t2,…, tl}

is a finite set of transitions l ≥ 0, P∩T= Ø, I:T→P∞ is the input

function from transitions to bags of places and O:T→P∞ is the

output function from transitions to bags of places. B ={ B1,

B2,…, Br}the collection of array languages used in the labels

of the transitions of C.

Output. Augmented Petri Net (Ca, Ba) where Ca =

(Pa,Ta,Ia,Oa) with Pa is a finite set of places, Ta = {t1, t2,…, tl,

t1
′, t2

′,…tk
′} is a finite set of transitions, P∩T= Ø, Ia: T→P∞ is

the input function from transitions to bags of places and

Oa:T→P∞ is the output function from transitions to bags of

places. Ba ={ B1, B2,…, Br, B1
′, B2

′, .. , Bk
′} the collection of

array languages used in the labels of the transitions of Ca.

Start:

Step 1. Let Pa = P, Ta = T, Ia = I, Oa = O, Ba = B.

Step 2. For i = 1, .., r repeat steps 3 to step 11.

Step 3. If Bi is a row matrix with „x‟ only at b11 then define

Bi
′ as a row matrix with „x‟ only at b12. Add Bi

′ to Ba. Go to

step 9.

Step 4. If Bi is a row matrix with „x‟ only at b1n then define

Bi
′ as a row matrix with „x‟ only at b1n-1. Add Bi

′ to Ba. Go to

step 9.

Step 5. If Bi is a row matrix with „x‟ at b11 and b1n then

define Bi
′ as a row matrix with „x‟ at b12 and b1n. Define Bi

″ as

a row matrix with „x‟ at b11 and b1n-1. Add both Bi
′ and Bi

″ to

Ba. Go to step 9.

Step 6. If Bi is a column matrix with „x‟ only at b11 then

define Bi
′ as a column matrix with „x‟ only at b21. Add Bi

′ to

Ba. Go to step 9.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

24

Step 7. If Bi is a column matrix with „x‟ only at bn1 then

define Bi
′ as a column matrix with „x‟ only at bn-11. Add Bi

′ to

Ba. Go to step 9.

Step 8. If Bi is a column matrix with „x‟ at b11 and bn1 then

define Bi
′ as a column matrix with „x‟ at b21 and bn1. Define

Bi
″ as a column matrix with „x‟ at b11 and bn-11. Add both Bi

′

and Bi
″ to Ba. Go to step 9.

Step 9. For j = 1,2,…l repeat step 10.

Step 10. If tj is the transition which has a catenation rule

A Bi involving Bi, with input place p and output place q

then add a transition tj
′ (tj

″) to Ta. Label of tj
′
 is the catenation

rule A  Bi
′ (A  Bi

″), with input place p and output place q.

Add the transitions tj
′ and tj

″ (if it exists) in Ta.

Step 11. For every tj
′ (tj

″), 1≤ j ≤ l, added in step 9 Ia(tj
 ′) =

Ia(tj) and Oa(tj
′) = Oa(tj) (I

a(tj
 ″) = Ia(tj) and Oa(tj

″) = Oa(tj)).

Add these extra input and output functions arising due to the

addition of extra transitions to Ia and Oa. Increase I value by 1

and go to step 3.

Step 12. Ca = (Pa,Ta,Ia,Oa) and Ba ={ B1, B2,…, Br,

Bi
′,Bi

″,…}.

End.

We use the algorithm to construct the APN for the CPN given

in example 2.1.

Example 3.1:

Core Petri Net (C, B) to generate the character L is given in

example 2.1

Step 1. Let Pa = {p1,p2, p3,p4}, Ta = {t1,t2, t3,t4, t5}, Ia(t1) =

{p1, p2}, Ia(t2) = {p3} Ia(t3) = {p3}, Ia(t4) = {p4}, Ia(t5) = {p4},

Oa(t1) = {p1, p3}, Oa(t2) = {p3} oa(t3) = {p4}, Oa(t4) = {p4},

Oa(t5) = {p2}, Ba ={B1, B2}.

Step 2. Since r = 2, i takes values 1 and 2.

Since B1 is a column matrix with bn1 = x we go to step 7.

Step 7. Define B1
′ =

2)(



m

x . Add B1
′ to Ba.

Step 9. j takes values from 1 to 5.

Step 10. We find the transition t2 with the label A ΦB1, I(t2) =

{p3} and O(t2) = {p3} involving the array language B1. Add in

the net the transition t2
′ with label A ⱷ B1

 ′. Add t2
′ to Ta.

Step 11. Add Ia(t2
′) = {p3}, Oa(t2

′) = {p3} to the input output

functions respectively. Increase I to 2. and go to step 3.

Since B2 is a row matrix with b1n = x we go to step 4.

Step 4. B2 = xn 1)( hence define B2
′ =   xn 2)(. Add B2

′ to

Ba.

Step 9. j takes values 1 to 5.

Step 10. t4 is the transition with label B2 Ө A, I(t4) = { p4} and

O(t4) = {p4}. Add in the net the transition t4
′ with label B2

′Ө

A. Add t4
′ to Ta.

Step 11. Add Ia(t4
′) = {p4}, Oa(t4

′) = {p4} to the input output

functions respectively.

Step 12. Ta = Ta  { t2
′, t4

′ }, Ia = Ia  {Ia(t2
′) = {p3}, Ia(t4

′)

= {p4}}, O a = Oa  { Oa(t2
′) = {p3}, Oa(t4

′) = {p4}}. Ca =

(Pa,Ta,Ia,Oa), Ba = Ba  { B1
′, B2

 ′}.

Now let us draw the graph of the Augmented Petri Net.

S =
xx

x 
, B1 =

 
x

m 1
, B2 =   1


n

x , B1
′=



 

x

m 2)(

and B2
′

= 2)( nx to Ba. The graph of APN is given below.

S =
xx

x 
, B1 =

 
x

m 1
, B1

′ =

2)(



m

x , B2 =   1


n
x ,

B2
′
 = 2)( nx

This Augmented Petri Net which generates both pure L and

noisy L. If the firing sequence does not contain any

augmented transitions then the L generated will be noiseless.

The firing sequence t1 t2
2
 t2

′ t2 t3t4
3 t4

′
 t4

2 t5, which has some

augmented transitions, will generate the following distorted L.

xxxxx

xx

x

x

x

x

x

x

















Now we are in a position to define the distance between an

array and a group of arrays characterized by both CPN and

APN.

Definition 3.3:

Distance between an array R and a group of arrays

characterized by a APN Ca, denoted by da(C
a, R) = min D(A,

R) where the minimum is taken over all arrays A generated

by Ca.

Definition 3.4:

Distance between an array R and a group of arrays

characterized by a CPN C, denoted by dc(C, R) = da (C
a, R)

+ minimum number of augmented transitions required to

generate the array A whose distance with R is minimum.

Let us explain the definition with a given R and the arrays

generated by the firing sequences of the net given in

example 3.1.

R =

xxxx

xxxx

xx

x

x

x

x

x

x

The firing sequence t1t2
2 t2

′3
 t2t3t4

5 t4
′2

 t5 generates the array

A =

xxxxx

xxxx

x

x

x

x

x

x

x

and D(A, R) = 3 which is the minimum and so da (C
a, R) =3.

Given an array R and Ck, 1 ≤ k ≤ n a set of CPN generating

various English alphabets, construct the corresponding set of

B2
′
 ϴ A

P2

P1

t1(p1) t4

t4
′ t2

′

A ΦB1
′

S

S

t5 t3

t2

A ΦB1

P3 P

4

B2ϴA

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

25

APN. For 1 ≤ k ≤ n, evaluate da (Ck
a, R) for all APN

constructed. Assign the array R in to the cluster generated by

the Ck
a for which da (Ck

a, R) is minimum, provided k is

unique. Note that for more than one value of k the distance da

(Ck
a, R) could be minimum. If that is the case for those

values of k evaluate dc(Ck, R). Classify the array R in to the

cluster generated by the Ck for which dc (Ck, R) is minimum.

4. CONCLUSION
In this paper we have proposed an algorithm to derive an

Augmented Petri Net from the Core Petri Net to generate

irregular English Alphabets. We have defined a distance

between a given array and a group of arrays generated by the

Augmented Petri Net and Core Petri Net. With this distance

definition we have given a clustering procedure to be used in

character recognition.

5. REFERENCES
[1] H. Fernau, R. Freund and M. Holzer, Character

recognition with k-head finite array automata, Advances

in Pattern Recognition, Lecture Notes in Computer

Science, 1998, Volume 1451, pp 282-291.

[2] H. Fernau and R. Freund, Bounded Parallelism in Array

Grammars used for Character Recognition, Advances in

Structural and Syntactical Pattern Recognition, Lecture

Notes in Computer Science, 1996, Volume 1121, pp 40 -

49.

[3] Patrick Shen-Pei Wang, An Application Of Array

Grammars To Clustering Analysis For Syntactic

Patterns, Pattern Recognition Vol. 17, No. 4, 1984, pp.

441- 451.

[4] K.S. Fu, S.Y.Lu, A Clustering Procedure for Syntactic

Patterns, IEEE Trans. Syst. Man and Cybernet. SMC-7,

1977, 734- 742

[5] James L. Peterson, Petri Net Theory and Modeling of

systems, Prentice Hall, Englewood Cliffs, N J, 1981.

[6] D. Lalitha and K. Rangarajan, Adjunct array token Petri

nets, Proceedings of International Conference on

Operations Research Applications in Engineering and

Management (ICOREM), Anna University,

Tiruchirapalli, 2009, pp. 431–445.

[7] D. Lalitha and K. Rangarajan, Column and Row

Catenation Petri Net Systems, Proceeding of Fifth IEEE

International Conference on Bio-Inspired Computing:

Theories and Applications, 2010, pp.1382–1387.

[8] D. Lalitha and K. Rangarajan, Characterization of

Pasting System Using Array Token Petri Nets,

International Journal of Pure and Applied Mathematics,

Vol 70, issue 3, 2009, pp 24-29.

[9] D. Lalitha, K. Rangarajan, D.G. Thomas, “Petri Net

Generating Hexagonal Arrays,” LNCS 6636, 2011, pp.

235–247, Proceedings of IWCIA 2011, The Fourteenth

International Workshop on Combinatorial Image

Analysis.

[10] D. Lalitha, K. Rangarajan, D.G. Thomas, Petri Net

Generating Context-Sensitive Hexagonal Array

Languages, International Conference on Mathematical

and Computational Models, 2011, pp 389-397.

[11] D. Lalitha and K. Rangarajan, Augmented Petri Nets

Generating Irregular English Alphabets, Proceedings of

the National Conference on Mathematical Techniques

and its Applications, 2012, pp 204-212.

