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ABSTRACT 

A new approach for clustering analysis using array token Petri 

net structure is introduced.  We define two kinds of distances 

between an array R and a group of arrays characterized by 

Array Token Petri Net. A clustering procedure is proposed.   
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1. INTRODUCTION 
The theoretical concepts of array grammars have been used 

effectively in the field of syntactic character recognition [1, 

2]. Cluster analysis can be performed on a set of patterns on 

the basis of a selected similarity measure. The results of 

cluster analysis can then be used directly for Pattern 

Recognition. Similarity measure for syntactic patterns in 

terms of grammar transformations has been proposed. 

Distance between arrays in terms of the error transformations 

required to derive one array from another has already been 

defined in literature. Application of array grammars to 

clustering analysis exists in literature [3, 4]. A clustering 

procedure for English characters has been proposed by 

defining a distance between an array and a group of arrays 

characterized by an array grammar. 

On the other hand Petri net [5] is an abstract formal model of 

information flow. Motivated by the fact that Array Token 

Petri Net Structure (ATPNS) has been defined to generate 

most of the two dimensional languages generated by array 

grammars [6, 7, 8, 9, 10], we have tried to use ATPNS in 

clustering. Here we propose an algorithm to generate distorted 

English characters. First we start with the Petri Net that 

generates the alphabet in perfect ratio. Add more transitions to 

the Petri Net to get the Core Petri Net which generates a 

noiseless, pure character of the alphabet which may not 

maintain a perfect ratio. Adding extra transitions to the Core 

Petri net enables it to generate some variations or noisy 

alphabets. The Petri Net generating noisy characters are called 

Augmented Petri Net [11]. Then we define two kinds of 

distances between an array R and a group of arrays 

characterized by Array Token Petri Net. We introduce a 

clustering procedure to be used in character recognition. In 

this paper we have used only one primitive ‘x’. ‘.’ is used to 

denote a blank. 

This paper is organized as follows. Section 2 gives all the 

basic definitions and notations used. Section 3 defines the 

distance measure between arrays and also gives the clustering 

procedure.  

2. ARRAY TOKEN PETRI NET 
In this section we define the basic concepts of Petri net, Array 

Token Petri Net Structure, Core Petri Net, Augmented Petri 

Net and give some examples. 

Definition: 2.1 

A Petri Net structure is a four tuple C = (P, T, I, O) where  

P = {p1, p2,....., pn} is a finite set of places, n ≥ 0,  

T = {t1, t2,…, tm} is a finite set of transitions m ≥ 0, P∩T= Ø,  

I : T → P∞ is the input function from transitions to bags of 

places and O : T → P∞ is the output function from transitions 

to bags of places. 

Definition: 2.2 

A Petri Net marking is an assignment of tokens to the places 

of a Petri Net. The tokens are used to define the execution of a 

Petri Net .The number and position of tokens may change 

during the execution of a Petri Net.  In this paper arrays over 

an alphabet are used as tokens.  

Basic Notations: denotes the arrays made up of elements 

of . If A and B are two arrays having same number of rows 

then A ⱷ  B is the column wise catenation of A and B. If two 

arrays have the same number of columns then AӨB is the row 

wise catenation of A and B. (x)n denotes a horizontal 

sequence of n „x‟ and (x)n denotes a vertical sequence of n „x‟ 

where x є . (x)n+1
  =  (x)n ⱷ x  and (x)n+1 = (x)n Ө x. We use 

the symbol  to denote either ⱷ or Ө. 

Catenation Rule as label for transitions: Column catenation 

rule is in the form A ⱷ B. Here the array A denotes the mn 

array in the input place of the transition. B is an array 

language whose number of rows will depend on „m‟ the 

number of rows of A. The number of columns of B is fixed. 

For example A ⱷ   mxx   adds two columns of x after 

the last column of the array A which is in the input place. But  

 mxx   ⱷ  A would add two columns of x before the 

first column of A. „m‟ always denotes the number of rows of 

the input array A.  Row catenation rule is in the form A Ө B. 

Here again the array A denotes the mxn array in the input 

place of the transition. B is an array language whose number 

of columns will depend on „n‟ the number of columns of A. 

The number of rows of B is always fixed. For example A Ө 
n

x

x








adds two rows of x after the last row of the array A 

which is in the input place. But 

n

x

x








Ө A would add two 

rows of x before the first row of the array A. „n‟ always 

denotes the number of columns of the input array A.  
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Enabled transitions:  If all the input places of a transition 

have the same array as tokens, the transition becomes enabled. 

On firing it removes the array from the input places and 

moves it into all its output places.  

 

Position of tokens before firing the transition 

 

 

 

 

 

 

 

Position of tokens after firing the transition 

 

 

 

 

 

 

 

If all the input places of a transition have different arrays as 

token or if one input place has different arrays as tokens then 

the transition without a label is not enabled. The label has to 

specify one of its input places. The transition becomes 

enabled if it has an input place as label and that input place 

has at least the required number of tokens of the same array. 

Firing the transition removes an array from all its input places 

and puts the array, in the place specified by the label, into all 

its output places.   

 

Position of tokens before firing the transition 

 

 

 

 

 

 

 

Firing the transition moves the array in place p1( specified 

in the label of t1) to p3. 

 

 

 

 

 

 

 

If all the input places of a transition have the same array as a 

token, the transition becomes enabled. If the transition has a 

catenation rule as label then firing it removes the array from 

the input places (denoted by A) catenates the array according 

to the rule and moves it into all its output places. If the 

transition has many input places and all the input places have 

different arrays as token then the transition with catenation 

rule as label cannot fire. If the transition has one input place 

with different arrays as token then the transition with 

catenation rule as label cannot fire. 

 

Position of arrays before firing the enabled transition 

 

 

 

 

 

 

 If A =  

aaa

aaa

aaa

      

 

Firing the transition puts A1 in place p3.  

 

 

 

 

 

 

 

A1 =  

yxx

aaa

aaa

aaa

Firing t1 adds a row  yxx   as n =3 

 

Definition 2.3:  

If C = (P, T, I,O) is a Petri net structure with arrays over of 

Σ** as initial markings, M0 : P → Σ**, label of at least one 

transition being catenation rule and a finite set of final places 

F   P, then the Petri net structure C is defined as Array 

Token Petri Net Structure (ATPNS). 

 

Definition 2.4: 
If C is a ATPNS then the language generated by the Petri net 

C is defined as L(C) = {A є Σ** / A is in p for some p in F}.  

 

With arrays of Σ** in some places as tokens or initial marking, 

all possible sequences of transitions are fired. Firing a 

transition either just moves the array or catenates according to 

the rule and then moves the array to the output place. Arrays 

reaching the final places are collected to form the language 

generated by C. 

 

Definition 2.5:  

 If C is an ATPNS, let B be the collection of array languages 

used in the catenation rules of the labels attached to the 

transitions of C. We define the Core Petri Net (CPN) as the 

tuple (C, B). Let us see an example of a CPN generating pure 

L. By varying the firing sequences we get the class of arrays 

in different sizes and different ratios.  

 
Example 2.1:  

Core Petri Net (C, B ) to generate a class of noiseless L. The 

Petri Net C is given in the figure 

 

 

 

 

 

 

 
 
 
 
 

 

S  = 
xx

x 
,     B1 = 

 
x

m 1
 ,  B2 =   1


n

x  , B = { B1, B2},  

F = { p6 }. 

The firing sequence t1t2
3t3t4

2
 t5

    derives the following array 

P1 

P2 

t1 A 

A 

P3 

P3 

P1 

t1 

P2 

A 

P1 

P2 

t1(p1) 
A A  

A1 P3 

  A         

A                
P3 

P1 

t1(p1) 

P2 

AA 

           

A                
P3 

A Ѳ(x)n-1y 

P1 

t1 

P2 

  A1 

t1(p1) 

B2 Ө A P1 

P4 P3 t5 

S 

S 

t4 

t3 

t2 

A ΦB1 

P2 

           

A                

A Ө (x)n-1y 

P1 
t1 

P2 

A 

A 
P3 
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xx

x 
     t1 t2

3    
xxxxx

x 
   t3 t4

2       

xxxxx

x

x

x







 

3. DISTANCE MEASURE BETWEEN 

ARRAYS 
In this section we define row shift, column shift and also two 

kinds of distances between an array R and a group of arrays 

characterized by the Augmented Array Token Petri Net.  

 

Definition 3.1:  

Let A and B are two arrays over a {x}. Let 1≤ i ≤ m, 1≤ j ≤ n. 

If aij = x with bij ≠ x and if there exists k with 1≤ k ≤ n such 

that aik ≠ x with bik = x then define the row shift  

Rij(A,B) = min |j-k|, where the minimum is taken over for all 

such k. If no such k exists then find k , with 1≤ k ≤ m such 

that akj ≠ x and bkj = x, then define the column shift  

Cij(A,B) = min |j-k|, where the minimum is taken over for all 

such k. If aij = bij = x then both Rij(A,B) and Cij(A,B)  are 

zero. 

 

If ‟x‟ is missing in the ij th position look for it in the ith row (an 

extra „x‟), if not look for it in jth column (an extra x). If no 

such k is found either in the same row or column then both the 

row shift Rij and column shift Cij are undefined. No „x‟ in any 

position should be taken for both row shift as well as column 

shift. 

 

Definition 3.2:  

Let A and B are two arrays over a {x}. The distance measure 

between A and B is defined as 

D(A,B) = ),(),(

1 1

BACBAR ij

m

i

n

j

ij 
 

 

if, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, all Rij(A,B) and Cij(A,B) are 

properly defined. Otherwise we define D(A,B) = ∞. 

Let us explain with an example.  

If R =

xxxx

xxxx

xx

x

x

x

x

x

x

 and A =  

xxxxxxxx

x

x

x

x

x

x

x

x

 

then R11 = 2, R21 = 1, C92 = 1, C95 = 1, C96 = 2 and C97 = 1. 

All other row shifts and column shifts are zero. D(A, R) = 3 + 

5 = 8. There is no undefined row or column shift in this 

example. 

We assume that every array R is a variation of a pure noiseless 

array A, generated by some noiseless, pure array generated by 

a core Petri net (C, B). The array token Petri net structure uses 

the concept of column and row catenation to generate English 

alphabets. Without loss of generality we can assume that we 

add a single row or single column at a time when a transition 

is fired. The various array languages used as label in 

generation of English alphabets are as follows. 

Arrays used in row catenation rules 1)(  nx , xn 1)(  , n)( , 

nx)( , xx n 2)(  .  If B has the array language 1)(  nx then add 

2)(  nx to the augmented array language list Ba. If B has the 

array xn 1)(   language then add   xn 2)(  to the augmented 

array language list Ba. If B has the array language 

xx n 2)(  then add xx n 3)(   and   xx n 3)( to the augmented 

array language list Ba. 

Arrays used in column catenation rules 

1)(  m

x
, 

x

m 1)( 
, 

x

x

m 2)(  , 
m)( ,  

mx)( . 

If B has the array language 
1)(  m

x
then add

2)( 



m

x  to 

the augmented array language list Ba. If B has the array 

language
x

m 1)( 
 then add   



 

x

m 2)(

to the augmented 

array language list Ba.  If B has the array language 

x

x

m 2)(  then add

x

x

m 3)( 



 and



 

x

x

m 3)(  to the augmented 

array language list Ba. 

 

Add the extra array languages to B to form Ba. Add extra 

transitions, with catenation rules using the augmented array 

languages as labels, to the CPN to form the augmented Petri 

net structure Ca. Then Augmented Petri Net (APN) is the tuple 

(Ca, Ba). The given R may belong to the language generated 

by APN. We now give the algorithm to construct APN given a 

CPN. 

Algorithm: 

Input.  Core Petri Net (C, B) where C = (P, T, I, O) with P = 

{p1, p2,....pq} is a finite set of places, q ≥  0,  T = {t1, t2,…, tl} 

is a finite set of transitions l ≥ 0, P∩T= Ø, I:T→P∞ is the input 

function from transitions to bags of places and O:T→P∞ is the 

output function from transitions to bags of places. B ={ B1, 

B2,…, Br}the collection of array languages used in the labels 

of the transitions of C. 

Output. Augmented Petri Net (Ca, Ba) where Ca = 

(Pa,Ta,Ia,Oa) with Pa  is a finite set of places, Ta = {t1, t2,…, tl, 

t1
′, t2

′,…tk
′} is a finite set of transitions, P∩T= Ø, Ia:  T→P∞ is 

the input function from transitions to bags of places and 

Oa:T→P∞ is the output function from transitions to bags of 

places. Ba ={ B1, B2,…, Br, B1
′, B2

′, .. , Bk
′} the collection of 

array languages used in the labels of the transitions of Ca. 

Start: 

Step 1. Let Pa = P, Ta = T, Ia = I, Oa = O, Ba = B.  

Step 2. For i = 1, .., r repeat steps 3 to step 11.  

Step 3.  If Bi  is a row matrix with „x‟ only at b11 then define 

Bi
′  as a row matrix with „x‟ only at b12.  Add Bi

′ to Ba. Go to 

step 9. 

Step 4. If Bi  is a row matrix with „x‟ only at b1n then define 

Bi
′  as a row matrix with „x‟ only at b1n-1.  Add Bi

′ to Ba. Go to 

step 9. 

Step 5. If Bi  is a row matrix with „x‟ at b11 and b1n  then 

define Bi
′  as a row matrix with „x‟ at b12 and b1n. Define Bi

″ as 

a row matrix with „x‟ at b11 and b1n-1.  Add both Bi
′ and Bi

″ to 

Ba. Go to step 9. 

Step 6.  If Bi  is a column matrix with „x‟ only at b11 then 

define Bi
′  as a column matrix with „x‟ only at b21. Add Bi

′ to 

Ba. Go to step 9. 
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Step 7. If Bi  is a column matrix with „x‟ only at bn1 then 

define Bi
′  as a column matrix with „x‟ only at bn-11.  Add Bi

′ to 

Ba. Go to step 9. 

Step 8. If Bi  is a column matrix with „x‟ at b11 and bn1  then 

define Bi
′  as a column matrix with „x‟ at b21 and bn1. Define 

Bi
″  as a column matrix with „x‟ at b11 and bn-11. Add both Bi

′ 

and Bi
″ to Ba. Go to step 9. 

Step 9. For j = 1,2,…l repeat step 10. 

Step 10.  If tj is the transition which has a catenation rule 

A Bi involving Bi, with input place p and output place q 

then add a transition tj
′ (tj

″ ) to Ta. Label of tj
′
 is the catenation 

rule A  Bi
′ (A  Bi

″), with input place p and output place q. 

Add the transitions tj
′ and tj

″ ( if it exists) in Ta. 

Step 11. For every tj
′ (tj

″ ), 1≤ j ≤ l, added in step 9 Ia(tj
 ′) = 

Ia(tj) and Oa(tj
′) = Oa(tj) ( I

a(tj
 ″) = Ia(tj) and Oa(tj

″) = Oa(tj) ). 

Add these extra input and output functions arising due to the 

addition of extra transitions to Ia and Oa. Increase I value by 1 

and go to step 3. 

Step 12. Ca = (Pa,Ta,Ia,Oa)  and  Ba ={ B1, B2,…, Br, 

Bi
′,Bi

″,…}. 

End. 

 

We use the algorithm to construct the APN for the CPN given 

in example 2.1. 

 

Example 3.1:  

Core Petri Net (C, B) to generate the character L is given in 

example 2.1 

Step 1.  Let Pa = {p1,p2, p3,p4}, Ta = {t1,t2, t3,t4, t5},  Ia(t1) = 

{p1, p2}, Ia(t2) = {p3} Ia(t3) = {p3}, Ia(t4) = {p4}, Ia(t5) = {p4}, 

Oa(t1) = {p1, p3}, Oa(t2) = {p3} oa(t3) = {p4}, Oa(t4) = {p4}, 

Oa(t5) = {p2}, Ba ={B1, B2}.  

Step 2. Since r = 2, i takes values 1 and 2. 

Since B1 is a column matrix with bn1 = x we go to step 7. 

Step 7.  Define B1
′ =  

2)( 



m

x .  Add B1
′ to Ba. 

Step 9.  j takes values from 1 to 5. 

Step 10. We find the transition t2 with the label A ΦB1, I(t2) = 

{p3} and O(t2) = {p3} involving the array language B1. Add in 

the net the transition t2
′ with label A ⱷ B1

 ′.  Add t2
′ to Ta.   

Step 11. Add Ia(t2
′ ) = {p3}, Oa(t2

′ ) = {p3} to the input output 

functions respectively. Increase I to 2. and go to step 3. 

Since B2 is a row matrix with b1n  = x we go to step 4. 

Step 4.  B2 = xn 1)(  hence define B2
′ =   xn 2)( .  Add B2

′ to 

Ba. 

Step 9.  j takes values 1 to 5. 

Step 10.  t4 is the transition with label B2 Ө A, I(t4) = { p4} and 

O(t4) = {p4}. Add in the net the transition t4
′ with label B2

′Ө 

A. Add t4
′ to Ta. 

Step 11.  Add Ia(t4
′ ) = {p4}, Oa(t4

′ ) = {p4} to the input output 

functions respectively.  

Step 12. Ta = Ta  { t2
′, t4

′ }, Ia = Ia   {Ia(t2
′ ) = {p3}, Ia(t4

′ ) 

= {p4}}, O a = Oa  { Oa(t2
′ ) = {p3}, Oa(t4

′ ) = {p4}}. Ca = 

(Pa,Ta,Ia,Oa),  Ba = Ba  { B1
′, B2

 ′}. 

Now let us draw the graph of the Augmented Petri Net. 

S = 
xx

x 
, B1 =

 
x

m 1
, B2 =   1


n

x , B1
′=



 

x

m 2)(

and B2
′ 

= 2)(  nx  to Ba. The graph of APN is given below. 

 

 

 

 

 

 

 
 

 

 

 

 

 

  

S = 
xx

x 
,  B1 =

 
x

m 1
, B1

′ =  

2)( 



m

x ,  B2 =   1


n
x ,  

B2
′
  = 2)(  nx    

This Augmented Petri Net which generates both pure L and 

noisy L. If the firing sequence does not contain any 

augmented transitions then the L generated will be noiseless. 

The firing sequence t1 t2
2
  t2

′ t2 t3t4
3 t4

′
 t4

2  t5, which has some 

augmented transitions, will generate the following distorted L. 

xxxxx

xx

x

x

x

x

x

x

















 

Now we are in a position to define the distance between an 

array and a group of arrays characterized by both CPN and 

APN. 

 

Definition 3.3:  

Distance between an array R and a group of arrays 

characterized by a APN Ca, denoted by da( C
a, R) =  min D(A, 

R) where the minimum is taken over all arrays A generated 

by Ca. 

 

Definition 3.4:  

Distance between an array R and a group of arrays 

characterized by a CPN C, denoted by dc( C, R) = da (C
a, R) 

+ minimum number of augmented transitions required to 

generate the array A whose distance with R is minimum. 

 

Let us explain the definition with a given R and the arrays 

generated by the firing sequences of the net given in  

example 3.1. 

R    =         

xxxx

xxxx

xx

x

x

x

x

x

x
      

The firing sequence t1t2
2 t2

′3
 t2t3t4

5 t4
′2

 t5 generates the array         

A =

xxxxx

xxxx

x

x

x

x

x

x

x
        

and D(A, R) = 3 which is the minimum and so da (C
a, R) =3.  

 

Given an array R and Ck, 1 ≤  k ≤ n a set of  CPN generating 

various English alphabets, construct the corresponding set of 

B2
′
 ϴ A 

P2 

P1 

t1(p1) t4 

t4
′ t2

′ 

A ΦB1
′ 

S 

S 

t5 t3 

t2 

A ΦB1 

P3 P

4 

B2ϴA 
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APN. For 1 ≤  k ≤ n, evaluate da (Ck
a, R ) for all APN 

constructed. Assign the array R in to the cluster generated by 

the Ck
a for which da (Ck

a, R ) is minimum, provided k is 

unique. Note that for more than one value of k the distance da 

(Ck
a, R ) could be minimum. If that is the case for those 

values of k evaluate dc( Ck, R). Classify the array R in to the 

cluster generated by the Ck for which dc (Ck, R ) is minimum. 

4. CONCLUSION 
In this paper we have proposed an algorithm to derive an 

Augmented Petri Net from the Core Petri Net to generate 

irregular English Alphabets. We have defined a distance 

between a given array and a group of arrays generated by the 

Augmented Petri Net and Core Petri Net. With this distance 

definition we have given a clustering procedure to be used in 

character recognition. 
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