
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

8

Performance Analysis of RC5, Blowfish and DES Block
Cipher Algorithms

Harsh Kumar Verma

Department of Computer Science & Engineering
National Institute of Technology, Jalandhar

Punjab (India)

Ravindra Kumar Singh
Department of Computer Science & Engineering

National Institute of Technology, Jalandhar
Punjab (India)

ABSTRACT

In this paper, Performance analysis of RC5, Blowfish and DES

block cipher algorithms have been done on the basis of

execution time and resource utilization. CPU utilization and

memory utilization both are considered for determining resource

utilization. These three algorithms are parameterized algorithm

and encrypt two w-bits at a time. Allowable choices for w are 16

bits, 32 bits, and 64 bits. Blowfish and DES have same structure

for encryption and decryption while RC5 have different. RC5

has 12 and Blowfish & DES have 16 rounds. These three

algorithms have a variable block size and a variable key size in

their structure. Performances of RC5 & Blowfish algorithms

have been evaluated on key size of 128-bits, 192-bit and 256-bit

while key size is fixed 64-bit for DES in this paper.

General Terms

Cryptography, Block cipher, Symmetric encryption, RC5,

Blowfish, DES

Keywords

Cryptography, Block cipher, Symmetric encryption, RC5,

Blowfish, DES

1. INTRODUCTION
In cryptography, the use of the symmetric key encryption is

common to ensure data confidentiality, it uses same key for both

encryption of plain text and decryption of cipher text. As

illustrated in fig 1.

Fig 1 : Symetric encryption

Symmetric key encryption code can be divided into the block

cipher and stream one [1]. RC5 [2], Blowfish [3] and DES [4]

are symmetric key block ciphers, and explained in further

sections.

1.1 RC5
RC5 is a block cipher notable for its simplicity. Designed

by Ronald Rivest in1994, RC stands for "Rivest Cipher", or

alternatively, "Ron's Code" [5, 6]. It is suitable for hardware and

software implementation, because it uses only those operations

which are available in typical microprocessor [2].

1.2 Blowfish
Blowfish is a variable-length key symmetric block cipher,

designed in 1993 by Bruce Schneier and included in a large

number of cipher suites and encryption products. Schneier

designed Blowfish as a general-purpose algorithm, intended as

an alternative to the aging DES [7]. It is significantly faster than

DES when implemented on 32-bit microprocessors with large

data caches, such as the Pentium and the PowerPC. It is only

suitable for applications where the key does not change often,

like a communications link or an automatic file encryptor.

Notable features of the design Blowfish include key-

dependent S-boxes and a highly complex key schedule [3].

Implementations of Blowfish that require the fastest speeds

should unroll the loop and ensure that all subkeys are stored in

cache; it requires total 521 iterations to generate all required

subkeys.

1.3 DES
The Data Encryption Standard (DES) was developed in the

1970s by the National Bureau of Standards with the help of the

National Security Agency[8]. Its purpose is to provide a standard

method for protecting sensitive commercial and unclassified

data. IBM created the first draft of the algorithm, calling it

LUCIFER. DES officially became a federal standard in

November of 1976 [2]. It is based on a symmetric-key

algorithm that uses a 56-bit key for encrypting 64-bits plaintext.

DES uses Feistel network and it has 16 rounds in its structure.

The notable feature of DES is using S-Box, a table-driven non-

linear substitution operation in which input size and output size

both can vary either randomly or algorithmically for increasing

diffusion.

1.4 Basic Terms

1.4.1 Feistel Networks
A Feistel network is a general method of transforming any

function (usually called the F function) into a permutation. It

was invented by Horst Feistel [9] in his design of Lucifer and

popularized by DES. The fundamental building block of Feistel

networks is the F-function: a key-dependent mapping of an input

string onto an output string. The alternative substitution and

permutation operations of Feistel network is invented from

Product Cipher brought up by Claude Shannon [10] in 1949.

1.4.2 Diffusion
“Diffusion” means that any change of bits in a plaintext will

affect many bits in cipher text to enhance complexity between

the plaintext and the cipher text. In a block encryption /

decryption system, diffusion can be achieved by repeatedly

implementing a specific permutation and then execute a
functional operation.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

9

1.4.3 Confusion
“Confusion” can be achieved by manipulating the relations

between cipher text and sub key to be more complicated, leaving
no chance of existence of direct linear relationship.

1.4.4 S-boxes
An S-box is a table-driven non-linear substitution operation used

in most block ciphers. S-boxes vary in both input size and output

size and can be created either randomly or algorithmically. S-

boxes were first used in Lucifer, then DES and afterwards in

most encryption algorithms.

2. RC5
The RC5 encryption algorithm is a block cipher that converts

plain text data blocks of 16, 32, and 64 bits into cipher text

blocks of the same length. It uses a key of selectable length b (0,

1, 2, ..., 255) byte. The algorithm is organized as a set of

iterations called rounds r that takes values in the range (0, 1, 2,

..., 255) as illustrated in fig. 2.

Fig 2: RC5 Encryption Algorithm

The operations performed on the data blocks include bitwise

exclusive-OR of words, data-dependent rotations by means of

circular left and right rotations and Two's complement

addition/subtraction of words, which is modulo-2w

addition/subtraction. RC5 is a fully parameterized family of

encryption algorithms, it is more accurately specified as RC5-

w/r/b where the word size is w bits, encryption consists of a

nonnegative number of rounds r and b denotes the length of the

encryption key in bytes. The original suggested choice of

parameters were w = 32 bits, r = 12 and b = 16-byte. For all

variants, RC5-w/r/b operates on units of two w-bit words using

the following basic operations.

The operations used in RC5 are defined as followings.

1. A+B integer addition modulo 2w

2. A-B integer subtraction modulo 2w

3. A⊕B bitwise exclusive-or of w-bit words

4. A<<<B rotation of the w-bit word A to the left by the
amount given by the least significant lg w bits of B

5. A>>>B rotation of the w-bit word A to the right by the
amount given by the least significant lg w bits of B

There are three routines in RC5: key expansion, encryption, and

decryption [11]. We discus each of them in next sections, Key-

Expansion algorithm is used to generate the round sub keys that

will be use in both encryption and decryption algorithms. RC5

has different algorithms for encryption and decryption, in

encryption it uses integer addition modulo 2w but in decryption it

uses integer subtraction modulo 2w. RC5 is a symmetric key

encryption so encryption and decryption algorithms uses same

key.

2.1 Key-Expansion Algorithm
The user supplies a key of b bytes, copy the secret key K[0...b-1]

into an array L[0..c-1] of c = ceil(b/u), where u = w/8 in little-

endian order. In other words, we fill up L using u consecutive

key bytes of K. Any unfilled byte positions in L are zeroed. In

the case that b = c = 0, set c = 1 and L[0] = 0. The number of w-

bit words that will be generated for additive round keys is 2(r +

1) and these are stored in the array S[0, ..., 2r + 1].

Magic Constants Pw and Qw are defined for arbitrary w as

follows:

Pw = Odd ((e -1) 2w) … (1)

Qw = Odd ((v - 1) 2w) … (2)

Where

e is the base of natural logarithms (e = 2.718281828459) and

v is the golden ratio (v =1.618033988749)

Odd (x) is the odd integer nearest to x [2].

Table 1 [2] show these magic constants in hexadecimal using

several values of w. Which are calculated by above expressions

(1) & (2).

Table 1. Magic Constants values Pw and Qw

W 16 32 64

Pw B7E1 B7E15163 B7E151628AED2A6B

Qw 9E37 9E3779B9 9E3779B97F4A7C15

Key-Expansion with RC5-w/r/b

Input: b byte key that is preloaded into c word array L[0,1,…,

c-1], r denotes the no of rounds.

Output: 2r+2 w-bit round keys S[0, 1, …, 2r, 2r+1].

Procedure:

S[0] = Pw,

For i= 1 to 2r+1 do

{

S[i] = S[i – 1] + Qw

}

X = Y = a = b = 0

Iteration =3 * max(c, 2r+2)

For i = 1 to Iteration do

{

X = S[a] = (S[a] + X + Y) <<< 3

Y =L[b] = (L[b] +X + Y) <<< (X + Y)

i = (a + 1) mod (2r + 2)

j = (b + 1) mod c

}

2.2 Encryption Algorithm
Fig 3 illustrates the encryption procedure of RC5; decryption

procedure is just reverse of this structure by converting addition

operation to subtraction operations.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

10

Fig 3: RC5 Block Cipher

RC5 works with two w-bit registers A and B which contain the

initial input plain text as well as the output cipher text at the end

of encryption. The first byte of plain text or cipher text is placed

in the least-significant byte of A, the last byte of plain text or

cipher text is placed into the most-significant byte of B. Pseudo

code of encryption is given below; at first we load plain text in

to registers A and B then apply these operations to encrypt the

plain text [5].

Encryption with RC5-w/r/b

Input: Plain text stored in two w-bit input registers A and B. r

denotes the no of rounds and 2r+2 w-bit round keys S[0, 1, ..., 2r +

1]

Output: Cipher text will be store in A and B.

Procedure:

A = A + S[0]

B = B + S[1]

for i = 1 to r do

{

A = ((A ⊕ B) <<< B) + S[2i]

B = ((B ⊕ A) <<< A) + S[2i+ 1]

}

After applying these operations on registers A and B plain text

get converted into the cipher text and we store it in any file that

is called encrypted file.

Decryption Algorithm

Pseudo code of decryption is given below; for decryption of

cipher text load cipher text into registers A and B then apply

these operations to convert cipher text into plain text.

Decryption with RC5-w/r/b

Input: Cipher text stored in two w-bit input registers A and B. r

denotes the no of rounds and 2r+2 w-bit round keys S[0, 1, ..., 2r +

1]

Output: Plain text will be store in A and B.

Procedure:

for i = r down to 1 do

{

B = ((B - S[2i + 1]) >>>A) ⊕ A

A = ((A - S[2i]) >>> B) ⊕ B

}

B = B - S[1]

A = A - S[0]

This algorithm uses integer subtraction modulo 2w and right

rotation on registers for getting plain text; it does reverse

operations on registers.

3. BLOWFISH
Fig 4 shows the action of Blowfish. Each line represents 32 bits.

The algorithm keeps two subkey arrays: the 18-entry P-array and

four 256-entry S-boxes. The S-boxes accept 8-bit input and

produce 32-bit output. One entry of the P-array is used every

round, and after the final round, each half of the data block is

XORed with one of the two remaining unused P-entries.

Fig 4 : Blowfish Encryption

Fig 5 shows Blowfish's F-function. The function splits the 32-bit

input into four eight-bit quarters, and uses the quarters as input

to the S-boxes. The outputs are added modulo 232 and XORed to

produce the final 32-bit output.

Fig 5 : F-function of Blowfish

Blowfish consists of two parts: a key-expansion part and a data-

encryption part. Key expansion converts a key of at most 448

bits into several subkey arrays totaling 4168 bytes.

Data encryption occurs via a 16-round Feistel network. Each

round consists of a key-dependent permutation, and a key- and

data-dependent substitution. All operations are XORs and

additions on 32-bit words. The only additional operations are

four indexed array data lookups per round.

3.1 Subkeys Generation:
Blowfish uses a large number of subkeys. These keys must be

precomputed before any data encryption or decryption [7].

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

11

3.1.1 SubKeys

1. The P-array consists of 18 32-bit subkeys:

P1, P2,..., P18.

2. There are four 32-bit S-boxes with 256 entries each:

S1,0, S1,1,..., S1,255;

S2,0, S2,1,..,, S2,255;

S3,0, S3,1,..., S3,255;

S4,0, S4,1,..,, S4,255.

3.1.2 Generating the Subkeys:

The subkeys are calculated using the Blowfish algorithm.

The exact method is as follows[7]:

1. Initialize first the P-array and then the four S-boxes, in

order, with a fixed string. This string consists of the

hexadecimal digits of pi (less the initial 3). For

example:

P1 = 0x243f6a88

P2 = 0x85a308d3

P3 = 0x13198a2e

P4 = 0x03707344

2. XOR P1 with the first 32 bits of the key, XOR P2 with

the second 32-bits of the key, and so on for all bits of

the key (possibly up to P14). Repeatedly cycle through

the key bits until the entire P-array has been XORed

with key bits. (For every short key, there is at least one

equivalent longer key; for example, if A is a 64-bit key,

then AA, AAA, etc., are equivalent keys.)

3. Encrypt the all-zero string with the Blowfish algorithm,
using the subkeys described in steps (a) and (b).

4. Replace P1 and P2 with the output of step (c).

5. Encrypt the output of step (c) using the Blowfish
algorithm with the modified subkeys.

6. Replace P3 and P4 with the output of step (e).

7. Continue the process, replacing all entries of the P-

array, and then all four S-boxes in order, with the output

of the continuously-changing Blowfish algorithm.

3.2 Encryption:
Blowfish is a Feistel network consisting of 16 rounds [7]. The

input is a 64-bit data element, X.

Divide X into two 32-bit halves: XL, XR. Then, the following

operations are performed form r=1 to 16.

XL = XL ⊕ Pi

XR = F(XL) ⊕ XR

Swap XL and XR

After 16 rounds Swap XL and XR (Undo the last swap.) and then

XR and XL are XORed with P17 and P18.

XR = XR ⊕ P17

XL = XL ⊕ P18

Lastly recombine XL and XR.

Function F (see Figure 3): Divide XL into four eight-bit quarters:

a, b, c, and d.

F(XL) = ((S1,a + S2,b mod 232) ⊕ S3,c) + S4,d mod 232

3.3 Decryption
Decryption is exactly the same as encryption, except that P1,

P2,..., P18 are used in the reverse order [7]. This is not so obvious

because XOR is commutative and associative. A common

mistake is to use inverse order of encryption as decryption

algorithm (i.e. first XORing P17 and P18 to the ciphertext block,

then using the P-entries in reverse order).

4. DES (Data Encryption Standard)

Fig 6: DES Encryption Algorithm

DES encryption process is illustrated in fig 6; there are mainly

three algorithms in DES Key Generation algorithm, Encryption

algorithm and Decryption algorithm. Each of them is described

in further sections.

4.1 Key Generation:
64-bit key is used as input to the key schedule algorithm of DES

which produces 16 round keys as shown in fig 2. There are three

steps in key schedule algorithm [1].

4.1.1 Permuted Choice One (PC-1): 8×8 matrix is used

to store 64-bits key, PC-1 ignores 8th column and read bits

column by column from bottom to top and rearrange it in 8×7

matrix row by row from left to right. At first processing starts

from column 1st towards 7th but after rearranging 4 rows in new

matrix(till 4th values from bottom in column 4th), processing

gets start from column 7th towards 4th, at 4th columns 4 values

from bottom are already fetched so 5th to 8th values are used to

fill new matrix. Thus PC-1 produces 56-bits output.

4.1.2 Rotate Left: The resulting 56-bits output of PC-1 is

then treated as two 28-bits quantities, labeled C0 and D0. At each

round, Ci-1 and Di-1 are separately subjected to rotate left of 1 or

2 bits according to Table2 [2].

Table 2: Schedule of Left Rotation

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rotated Bits 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Initial

Permutation

Round 1

Round 2

Round 16

32-bit swap

Inverse Initial

Permutation

Permuted Choice 2

Permuted Choice 2

Permuted Choice 2

Permuted Choice 1

Rotate Left

Rotate Left

Rotate Left

K1

K2

K2

48

48

48

56

56

56

56

56

56

64

64

64

64

64

64-bit Plaintext

64-bit Ciphertext

64-bit Key

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

12

4.1.3 Permuted Choice Two (PC-2): After rotate left

both 28-bits quantities merge and served as input to PC-2, which

produces a 48-bit round key that are used in F function.

4.2 Encryption:
The process of encryption consists of four stages [1].

4.2.1 Initial Permutation (IP): 8×8 matrix is used to

store 64-bits Plaintext. Reading even columns first then odd

columns (sequence of columns 2, 4, 6, 8, 1, 3, 5& 7) from

bottom to top and rearranging it row by row (sequence of rows

1, 2, 3, 4, 5, 6, 7 & 8) from left to right.

4.2.2 Round: there are 16 iterations for substitution in which

64-bits data are divided in two halves (Li & Ri) of 32-bits. 32-

bits of Ri is used for function F and Li remain unchanged, Fig 7

illustrate the working of one round. Three functions play major

role in this stage.

4.2.2.1 Expansion Permutation (E): This function is

used to expand 32-bits of data to 48-bits of data by using Left

rotation and right rotation. 8×6 matrix is used to store 48-bits;

32-bits are stored in columns 2nd, 3rd, 4th & 5th. Then rotate one

bit left to column 2nd and store it in column 6th and rotate one bit

right to column 5th and store it in column 1st.

4.2.2.2 S-Box: A set of eight 4×16 S-Boxes are used to

convert 48-bits data to 32-bits data. 48-bits divided in 8 parts of

6-bits each. Every S-Box accepts that 6-bits data (2 MSB bits are

used to select rows and 4 LSB bits are used to select columns) to

select a hexadecimal number (4-bits output). Thus the result is

32-bits data from eight S-Boxes.

4.2.2.3 Permutation (P): 32-Bits data is permutated in this

function for getting higher diffusion.

Fig 7: Round Function of DES

The 32-bits left (Li) and right (Ri) parts of every intermediate

value for ith iteration swaps their place:

Li = Ri-1

Ri = Li-1 ⊕ F (Ri-1, Ki)

where Ki is round key.

4.2.3 32-bit Swap: left and right halves of output of last

(16th) iteration swaps their places.
L16 = R16

R16 = L16

4.2.4 Inverse Initial Permutation (IP
-1

): it is reverse to

initial permutation, that is M=IP-1(IP (M)). In this permutation

read matrix row by row (sequence of rows 4, 1, 5, 2, 6, 3, 8& 4)

form right to left and rearrange it column by column (sequence

of columns 1, 2, 3, 4, 5, 6, 7 & 8) from top to bottom.

4.3 Decryption:
As with any Feistel cipher, decryption uses the same algorithm

as encryption, except that the application of the round keys is

reversed [1].

5. COMPARISON AND ANALYSIS
A comparative analysis of RC5, Blowfish & DES is performed

to provide some measurements on the encryption and

decryption. Effects of several parameters such as number of

rounds, block size and the length of secret key on the

performance evaluation criteria are investigated.

These three encryption algorithms were implemented in c# in

visual studio 2009. Performance was measured on a 3GHz

Pentium®4 with 1GB of RAM running Windows XP

professional Version 2002, Service pack 3.

5.1 Parametric Comparison
Table 3 summarizes the comparison of RC5, Blowfish & DES

for different design parameters such as word size, block size,

number of rounds and secret key size.

Table 3: Comparison on the basis of parameters

Parameters Algorithm Type

RC5 Blowfish DES

b (key length in

bytes)

0 - 255 16, 24 or 32 8

r (no of rounds) 0 – 255

(standard 12)

16 16

No of round keys 2r+2 r+2 r

Block size in words 2w 2w 2w

w (word size in

bits)

16, 32, 64

(standard 32)

16, 32, 64

(standard 32)

16, 32, 64

(standard 32)

Block size in bits 32, 64, 128

(standard 64)

32, 64, 128

(standard 64)

32, 64, 128

(standard 64)

Used Function Does not exist S-Box IP, IP-1, E, P, S-

Box, PC-1, PC-2

Used Operation +, -, ⊕, <<<,

>>>

+, ⊕, <<<,

>>>

⊕, <<<, >>>

5.2 Performance Comparison
In addition, to improve the accuracy of our timing

measurements, program was executed 10 times for each input

file and we report the average of the times thereby obtained. In

this observation key size is 8-bytes for DES while Blowfish &

RC5 have three values 16-bytes, 24-bytes and 32-bytes. Number

of round(r) was fixed 12 for RC5 and 16 for Blowfish & DES.

Li-1

Ri

Ri-1

Expansion/Permutation

(E)

Substitution/Choice

(S-Box)

XOR

Permutation

(P)

XOR

Li

Ki F

32-bits 32-bits

48

48

48

32

32

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

13

5.2.1 On the basis of Execution Time

We compare the execution time of each algorithm on different-2

file types like text file, audio file & video files, for this purpose

we mainly used 6 files and recorded their execution (encryption

or decryption) times in milliseconds for these three algorithms.

List of Input files and their size are given in Table 4.

Fig 8 illustrates the execution time according to their file size for

each file using algorithms RC5, Blowfish and DES. Graph

shows that RC5 performs faster than Blowfish & DES for every

key size. It can also be concluded that increasing key size

decreases the performance of Blowfish.

Table 4: Comparison on the basis of execution time

File Name

(file type)

File

Size (in

KB)

RC5-

128

RC5-192 RC5-256 Blowfish-

128

Blowfish-

192

Blowfish-

256

DES-64

A.doc 712 125 109.375 109.375 200.8125 205 209.75 364.25

B.pdf 649 109.375 93.75 109.375 178.5 183 187.5 340.5

C.jpg 656 78.125 93.75 93.75 196.45 205.125 209.8125 376.75

D.gif 1396 156.25 156.25 156.25 258.925 263.5 267.5125 427.5

E.mp3 2068 234.375 234.375 234.375 320 337.5 351.25 532.625

F.avi 2800 312.5 312.5 328.125 357.5 370.25 375 574.25

Fig 8: Execution time of RC6, Twofish & AES for 32-bytes key

5.2.2 On the basis of CPU Utilization & Memory

Utilization
In this section a video file (.avi) of 2800KB was executed by

these three algorithms RC5, Blowfish and DES. CPU

utilization and Memory utilization for each algorithm was also

captured. For the accuracy point of view we executed that file

5 times and then taken the average of them.

Fig 9: CPU Utilization & Memory Utilization of RC5

Fig 9 shows the CPU utilization and Memory utilization for

RC5 block cipher algorithm. Blue line represents the CPU

usage in percentage (0-100 %) and Red line represents the

Memory usage in 10MB (40 means 400MB). Average CPU

utilization is 51.15 % and average Memory utilization is

499.63 MB for RC5.

Fig 10: CPU Utilization & Memory Utilization of Blowfish

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

14

Fig 10 shows the CPU utilization and Memory utilization for

Blowfish algorithm. Blue line represents the CPU usage in

percentage (0-100 %) and Red line represents the Memory

usage in 10MB (40 means 400MB). Average CPU utilization

is 51.17 % and average Memory utilization is 485.73 MB for

Blowfish.

Fig 11: CPU Utilization & Memory Utilization of DES

Fig 11 shows the CPU utilization and Memory utilization for

DES algorithm. Blue line represents the CPU usage in

percentage (0-100 %) and Red line represents the Memory

usage in 10MB (40 means 400MB). Average CPU utilization

is 50.43 % and average Memory utilization is 462.17 MB for

DES.

5.3 Result Analysis
RC5 performs faster than Blowfish & DES. Fig 12 shows the

average execution time for these three algorithms to execute

the files mentioned in table 4. According to fig 12 RC5 is 1.54

times faster than Blowfish and 2.57 times faster than DES.

Result also concludes that performance of Blowfish algorithm

is inversely proportional to keysize, if keysize will increase

the performance will decrease and vice-versa.

Fig 12: Average Execution Time in millisecond

In addition, if we consider on resource utilization then we got

that RC5 utilize 13.9 MB extra memory compared to

Blowfish and 37.46 MB extra memory compared to DES,

while CPU utilization is approximately same for all these

three algorithms.

6. CONCLUSION
In this research paper RC5, Blowfish and DES block cipher

algorithms were compared by using C# program in visual

studio 2009. Performance of these three algorithms were

measured on a 3GHz Pentium®4 with 1GB of RAM running

Windows XP professional Version 2002, Service pack 3.

Comparative analysis of RC5, Blowfish and DES have been

done with a set of input files and evaluated the encryption &

decryption time. Results conclude that RC5 is 1.54 times

faster than Blowfish and 2.57 times faster than DES. Result

also concludes that performance of Blowfish algorithm is

inversely proportional to keysize, if keysize will increase the

performance will decrease and vice-versa.

In resource utilization point of view, RC5 utilize 13.9 MB

extra memory compared to Blowfish and 37.46 MB extra

memory compared to DES, while CPU utilization is

approximately same for all these three algorithms. So RC5

block cipher algorithm is faster and simpler than Blowfish &

DES block cipher algorithms. Using RC5 is beneficial where

high encryption rate is required.

7. REFERENCES
[1] W. Stallings, "Cryptography and Network Security:

Principles and Practice", Prentice-Hall, New Jersey,

1999.

[2] “RC5” “wikipedia.org”. Available at:

http://en.wikipedia.org/wiki/RC5

[3] “Blowfish”, “wikipedia.org”, [online] Available at:

http://en.wikipedia.org/wiki/Blowfish_(cipher)

[4] “Data Encryption Standard”, “wikipedia.org”, [online]

Available at: http://

http://en.wikipedia.org/wiki/Data_Encryption_Standard

[5] Ronald L. Rivest, “RC5 Encryption Algorithm”, Dr

Dobbs Journal, Vol. 226, PP. 146-148, Jan 1995.

[6] Ronald L. Rivest, The RC5 Encryption Algorithm, MIT

Laboratory for Computer Science 545 Technology

Square, Cambridge, Mass.02139 (Revised March 20,

1997). Available at: httu://theory.lcs.mit.cdu/-

rivest/Rivest-rc5rev.pdf

[7] B. Schneier, “Description of a New Variable-Length

Key, 64-Bit Block Cipher (Blowfish)”, [online]

Available at: http://www.schneier.com/paper-blowfish-

fse.html

[8] NIST FIPS PUB 46-3. “Data Encryption Standard.

Federal Information Processing Standards, National

Bureau of Standards, U.S. Department of Commerce,

Washington D.C., 1977.

[9] H. Feistel, W.A. Notz, and J.L. Smith, “Some

Cryptographic Techniques for Machine-to-Machine Data

Communications”, Proceedings on the IEEE, v. 63, n.

11, 1975, pp. 1545 -1554.

[10] C. Shannon, Communication theory of secrecy systems,

Bell System Technical Journal, vol 28,pp 656-715, 1949.

[11] “What are RC5 and RC6”,”rsa.com”. Available at:

http://www.rsa.com/rsalabs/node.asp?id=2251

