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ABSTRACT 

In this paper, Performance analysis of RC6, Twofish and 

Rijndael block cipher algorithms have been done on the basis 

of execution time and resource utilization. CPU utilization 

and memory utilization both are considered for determining 

resource utilization. These algorithms are parameterized 

algorithm and were designed to meet the requirements of 

the Advanced Encryption Standard (AES) competition and 

selected among five finalists of that competition. These three 

algorithms have a variable block size and a variable key size 

in their structure and encrypt four w-bits at a time. Allowable 

choices for w are 16 bits, 32 bits, and 64 bits. Twofish and 

Rijndael have same structure for encryption and decryption 

while RC6 have different. RC6, Twofish and Rijndael have 

20, 16 and 10 rounds respectively. Performances of these 

three algorithms have been evaluated on key size of 128-bits, 

192-bit and 256-bit in this paper. 
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1. INTRODUCTION 
Symmetric key encryption is common to ensure data 

confidentiality, it uses same key for both encryption of plain 

text and decryption of cipher text. As illustrated in fig 1.  

 

Fig 1 : Symetric encryption 

In cryptography, the Advanced Encryption Standard (AES) 

[1] is an encryption standard adopted by the U.S. government. 

Back in 1997 the National Institute of Standards and 

Technology (NIST) made a public call for new cipher 

algorithms that could replace the DES. A rough summary of 

the requirements made by NIST for the new AES were the 

following: 

 Symmetric-key cipher 

 Block cipher 

 Support for 128-bit block sizes 

 Support for 128-, 192-, and 256-bit key lengths  

A combination of factors such as security, performance, 

efficiency, ease of implementation and flexibility contributed 

to the selection of this algorithm as the AES. RC6 [2], 

Twofish [3] and Rijndael [4] were designed to meet the 

requirements of the Advanced Encryption Standard (AES) 

competition and selected among five finalists of that 

competition, and explained in further sections. 

1.1 RC6 
RC6 is derived from RC5 [5]. There are two main new 

features in RC6 compared to RC5: the inclusion of integer 

multiplication and the use of four w-bit working registers 

instead of two w-bit registers as in RC5. It was designed 

by Ron Rivest, Matt Robshaw, Ray Sidney and Yiqun Lisa 

Yin. The algorithm was also submitted to the NESSIE and 

CRYPTREC projects. It is a proprietary algorithm, patented 

by RSA Security [6]. 

1.2 Twofish 
Twofish is a 128-bit symmetric key block cipher proposed by 

B.Schneier [3]. Twofish accepts a variable-length key up to 

256 bits. The cipher is a 16-round Feistel network which 

adapted components from the ciphers Khufu [7], Square [8] 

and SAFER [9]. Notable features of the design Twofish 

include key-dependent S-boxes, maximum distance separable 

(MDS) matrice, pseudo-Hadamard transform (PHT) and a 

highly complex key schedule. Basic Terms used in Twofish: 

1.2.1 Feistel Networks 
A Feistel network [3] is a general method of transforming any 

function (usually called the F function) into a permutation. It 

was invented by Horst Feistel [10] in his design of Lucifer 

and popularized by DES. The fundamental building block of 

Feistel networks is the F-function: a key-dependent mapping 

of an input string onto an output string. The alternative 

substitution and permutation operations of Feistel network is 

invented from Product Cipher brought up by Claude Shannon 

[11] in 1949. 

1.2.2 Diffusion 
“Diffusion” means that any change of bits in a plaintext will 

affect many bits in cipher text to enhance complexity between 

the plaintext and the cipher text. In a block encryption / 

decryption system, diffusion can be achieved by repeatedly 

implementing a specific permutation and then execute a 

functional operation [12]. 
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1.2.3 Confusion 
“Confusion” can be achieved by manipulating the relations 

between cipher text and sub key to be more complicated, 

leaving no chance of existence of direct linear relationship 

[12]. 

1.2.4 S-boxes 
An S-box [3] is a table-driven non-linear substitution 

operation used in most block ciphers. S-boxes vary in both 

input size and output size and can be created either randomly 

or algorithmically. 

1.2.5 MDS Matrices 
A maximum distance separable (MDS) [3] code over a field is 

a linear mapping from a field elements to b field elements, 

producing a composite vector of a + b elements, with the 

property that the minimum number of non-zero elements in 

any non-zero vector is at least b + 1 [13]. Reed-Solomon (RS) 

error-correcting codes are known to be MDS. A necessary and 

sufficient condition for a × b matrix to be MDS is that all 

possible square sub matrices, obtained by discarding rows or 

columns, are non-singular. 

1.2.6 Pseudo-Hadamard Transforms 
A pseudo-Hadamard transform (PHT) [3] is a simple mixing 

operation that runs quickly in software. It is used for 

diffusion. For given two inputs a & b, the 32-bit PHT is 

defined as: 

a0 = a + b mod 232   … (1) 

b0 = a + 2b mod 232   … (2) 

1.2.7 Whitening 
Whitening [3], the technique of XORing key material before 

the first round and after the last round, it was shown that 

whitening substantially increases the difficulty of key search 

attacks against the remainder of the cipher. 

1.3 Rijndael 
The Rijndael algorithm is a block cipher of 10, 12 ,14 rounds 

that encrypts blocks of 128, 192, or 256 bits respectively 

using symmetric keys of 128, 192 or 256 bits. In October 

2000, the Rijndael (pronounced Rain Doll) algorithm was 

chosen as the basis for the new standard encryption algorithm 

and now it is known as AES algorithm [14]. Specifically, 

Rijndael appears to perform consistently well in both 

hardware and software platforms under a wide range of 

environments. Brute force attack is the only effective attack 

known against it, in which the attacker tries to test all the 

characters combinations to unlock the encryption. Rijndael is 

not a Feistel structure but it also makes use of S-Boxes for 

increasing diffusion. 

2. RC6 
RC6 is very similar to RC5 in structure, using data-dependent 

rotations [5], addition modulo 2w and XOR operations; in fact, 

RC6 could be viewed as interweaving two parallel RC5 

encryption processes. However, RC6 does use an extra 

multiplication operation not present in RC5 in order to make 

the rotation dependent on every bit in a word and not just the 

least significant few bits. Integer multiplication is used to 

increase the diffusion achieved per round so that fewer rounds 

are needed and the speed of the cipher can be increased. The 

base-two logarithm of w will be denoted by lg w. 

Like RC5, RC6 is a fully parameterized family of encryption 

algorithms. A version of RC6 is more accurately specified as 

RC6-w/r/b where the word size is w bits, encryption consists 

of a nonnegative number of rounds r and b denotes the length 

of the encryption key in bytes. Since the AES submission is 

targeted at w = 32 and r = 20, we shall use RC6 as shorthand 

to refer to such versions. When any other value of w or r is 

intended in the text, the parameter values will be specified as 

RC6-w/r. Of particular relevance to the AES effort will be the 

versions of RC6 with 16-, 24- and 32-byte keys. For all 

variants, RC6-w/r/b operates on units of four w-bit words 

using the following basic operations [15]. 

The operations used in RC6 are defined as followings. 

A+B integer addition modulo 2w 

A-B integer subtraction modulo 2w 

A⊕B bitwise exclusive-or of w-bit words 

A*B integer multiplication modulo 2w 

A<<<B rotation of the w-bit word A to the left by the 
amount given by the least significant lg w bits of B 

A>>>B rotation of the w-bit word A to the right by the 
amount given by the least significant lg w bits of B 

f(x) = x(2x+1)mod 2w 

There are three routines in RC5: key expansion, encryption, 

and decryption. We discus each of them in next sections, Key-

Expansion algorithm is used to generate the round sub keys 

that will be use in encryption and decryption algorithms. RC6 

has different algorithms for encryption and decryption, in 

encryption it uses integer addition modulo 2w but in 

decryption it uses integer subtraction modulo 2w. RC6 is a 

symmetric key encryption so encryption and decryption 

algorithms uses same key. 

2.1 Key-Expansion Algorithm 
Key-Expansion Algorithm of RC6 is similar as RC5, only 

difference is that RC6 will be generate 2r+4 additive round 

keys rather that 2(r + 1) used in RC5 [15]. 

Key-Expansion with RC6-w/r/b 

Input: b byte key that is preloaded into c word array 

L[0,1,…, c-1], r denotes the no of rounds. 

Output: 2r+4 w-bit round keys S[0,1, …, 2r + 2,2r+3]. 

Procedure: 

S[0] = Pw, 

For i= 1 to 2r+3 do 

{ 

S[i] = S[i – 1] + Qw 

} 

X = Y = a = b = 0 

Iteration =3 * max(c, 2r+4) 

For i = 1 to Iteration do 

{ 

X = S[a] = (S[a] + X + Y) <<< 3 

Y =L[b] = (L[b] +X + Y) <<< (X + Y) 

i = (a + 1) mod (2r + 4) 

j = (b + 1) mod c  

} 

2.2 Encryption Algorithm 
Fig 2 illustrates the encryption procedure of RC6; decryption 

procedure is just reverse of this structure by converting 

addition operation to subtraction operations. 
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Fig 2: RC6 Block Cipher 

RC6 works with four w-bit registers A, B, C, D which contain 

the initial input plain text as well as the output cipher text at 

the end of encryption. The first byte of plain text or cipher 

text is placed in the least-significant byte of A, the last byte of 

plain text or cipher text is placed into the most-significant 

byte of D. Pseudo code of encryption [15] is given below; at 

first we load plain text in to registers A, B, C, D and then 

apply these operations to encrypt the plain text. 

Encryption with RC6-w/r/b 

Input: Plain text stored in four w-bit input registers A, B, C, D. r 

denotes the no of rounds and 2r+4 w-bit round keys S[0,1, .., 2r + 3] 

Output: Cipher text will be store in A, B, C, D 

Procedure:  

B = B + S[0] 

D = D + S[1] 

for i = 1 to r do 

{ 

t = (B * (2B + 1)) <<< lg w 

u = (D * (2D + 1)) <<< lg w 

A = ((A ⊕ t) <<< u) + S[2i] 

C = ((C ⊕ u) <<< t) + S[2i+ 1] 

(A, B, C, D) = (B, C, D, A) 

} 

A = A + S[2r + 2] 

C = C + S[2r + 3] 

Operation (A, B, C, D) = (B, C, D, A) means the parallel 

assignment of values on the right to registers on the left. After 

applying these operations on registers A, B, C, D plain text 

gets converted into the cipher text. 

2.3 Decryption Algorithm 

Pseudo code of decryption [15] is given below; for decryption 

of cipher text load these cipher text into registers A, B, C, D 

and then apply these operations to convert cipher text into 

plain text. 

Decryption with RC6-w/r/b 

Input: Cipher text stored in four w-bit input registers A, B, C, D. r 

denotes the no of rounds and 2r+4 w-bit round keys S[0, 1,.., 2r + 3] 

Output: Plain text will be store in A, B, C, D 

Procedure:  

C = C - S[2r + 3] 

A = A - S[2r + 2] 

for i = r down to 1 do 

{ 

(A, B, C, D) = (D,  A, B, C) 

u = (D * (2D + 1)) <<< lg w 

t = (B * (2B + 1)) <<< lg w 

C = ((C - S[2i + 1]) >>> t) ⊕ u 

A = ((A - S[2i]) >>> u) ⊕ t 

} 

D = D - S[1] 

B = B - S[0] 

This algorithm uses integer subtraction modulo 2w and right 

rotation on registers for getting plain text; it does reverse 

operations on registers. 

3. TWOFISH 
Fig 3 shows an overview of the Twofish block cipher. 

Twofish uses a 16-round Feistel-like structure with additional 

whitening of the input and output. The only non-Feistel 

elements are the 1-bit rotates. The rotations can be moved into 

the F function to create a pure Feistel structure, but this 

requires an additional rotation of the words just before the 

output whitening step.  

The plaintext is split into four 32-bit words, these are XORed 

with four key words in input whitening step. This is followed 

by sixteen rounds. In each round, the two words on the left are 

used as input to the g functions. (One of them is rotated by 8 

bits first.) The g function consists of four byte-wide key-

dependent S-boxes, followed by a linear mixing step based on 

an MDS matrix. The results of the two g functions are 

combined using a Pseudo-Hadamard Transform (PHT) and 

two keywords are added. These two results are then XORed 

into the words on the right (one of which is rotated left by 1 

bit first and other one is rotated right afterwards). The left and 

right halves are then swapped for the next round except the 

last round and the four words are XORed with four more key 

words to produce the cipher text [3]. 

Operations used in Enhanced Twofish 

 A+B integer addition modulo 2w 

 A⊕B bitwise exclusive-or of w-bit words. 

 <<<n rotation to the left by n-bit. 

 >>>n rotation to the right by n-bit. 

  (A, B, C, D) = (C, D, A, B) parallel assignment 

Notations used in Enhanced Twofish 

 0x hexadecimal representation 

 rXLi the i-th left-half data of X in the round r 

(i=1~2,r=0~16) 

 rXRi the i-th right-half data of X in the round r 

(i=1~2,r=0~16) 

 M the master key consists of 32 bytes m0,…,m31 

 Ki the input/output whitening sub key and round sub 

key (i=0~39) 

 Li the S-box key(i=0~3) 

3.1 Encryption 
Twofish block cipher has same structure for encryption and 

decryption both; it is a significant advantage of Feistel 

network. To encrypt a 128-bit input plaintext P, we first 

divide it into four 32-bit data 0XL1,
 0XL2,

 0XR1,
 0XR2 and 

XORed with four 32-bit sub key K0, K1, K2, K3. Then, the 

following operations are performed form r=0 to 15. 

(T0, T1) = F(rXL1, (
rXL2<<<8), L) 

r+1XL1 = ((T0+K4r+8) ⊕ 
rXR1) <<< 1 

r+1XL2 = (T1+K4r+9) ⊕ (rXR2 >>> 1) 
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r+1XR1 =
 rXL1 

r+1XR2=
 rXL2 

After 16 rounds undo last swap and then 15XL1,
 15XL2,

 15XR1,
 

15XR2 are concatenated and XORed with K4, K5, K6, K7. The 

resultant output is the 128-bit cipher text. 

 

Fig 3: Twofish Block Cipher 

3.2 Decryption 
The decryption procedure of Twofish can be done in the same 

way as the encryption procedure by reversing the order of the 

sub keys, which is one of merits of Feistel networks [3]. 

4. RIJNDAEL 
Rijndael encrypts blocks of 128, 192, or 256 bits respectively 

using symmetric keys of 128, 192 or 256 bits. Operations in 

Rijndael algorithm are performed on a two-dimensional byte 

array of four rows and four columns or State that contain 128 

bits [16]. Rijndael algorithm can be better understood in three 

parts, KeyExpansion algorithm, Encryption algorithm and 

Decryption algorithm. 

4.1 KeyExpansion Algorithm: 
Round keys Ki are derived from the 128-bit user key by 

means of the key expansion algorithm. The total number of 

round keys required is equal to r + 1(where r = Number of 

rounds) because one extra key is needed in the Initial round. 

KeyExpansion algorithm takes a 4-word (16-byte) as input 

and produces a linear array of (r + 1) * 4 words ((r + 1) * 16 

bytes). The following pseudocode describes the 

KeyExpansion algorithm [4]. 

4.1.1 KeyExpansion (byte key [16], word w [(r+1)*4]) 
{ 

word temp; 

for (i = 0; i < 4; i++) 

{ 

w [i] = (key [4 * i], key [4 * i + 1], key [4 * i + 2], 

key [4 * i + 3]); 

} 

for (i = 4; i < (r + 1) * 4; i++) 

{ 

temp = w [i - 1]; 

if (i % 4 = 0) 

{ 

temp = SubWord ( RotWord (temp)) ⊕ Rcon[i / 4]; 

} 

w [i] = w [i - 4] ≈ temp; 

} 

} 

4.1.2 KeyExpansion Algorithm uses these terms [4], 

4.1.2.1 RotWord: it performs a one-byte circular left shift 

on a word. This means that an input word [b0, b1, b2, b3] is 

transformed into [b1, b2, b3, b0]. 

4.1.2.2 SubWord: it performs a byte substitution on each 

byte of its input word, using the S-Box. 

4.1.2.3 Rcon[x]: is a round constant. 

 

Fig 4: Rijndael Encryption Algorithm 

4.2 Encryption Algorithm: 
The process of Rijndael encryption is illustrated in fig 4. The 

algorithm consists of Initial round, (r-1) uniform rounds, 

followed by Final round. The Initial round performs 

AddRoundKey function (as explained below). The reason that 

the rounds have been listed as "(r-1) uniform rounds followed 

by Final round" is because the Final round involves a slightly 

different manipulation from the others. The (r-1) uniform 

rounds consist of four functions [17]: 

1. SubstituteBytes (SB): a non-linear substitution step 

where each byte is replaced with another according to a 

lookup table (S-Box). 

2. ShiftRows (SR): a transposition step where each row of 

the state is shifted cyclically a certain number of steps. 

Row 1 is circular left shift by one place, Row 2 by two, 

Row 3 by three places whereas, Row 0 remains 

unchanged. 

3. MixColumns (MC): a mixing operation which operates 

on the columns of the state combining the four bytes in 
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each column. Each column is considered a polynomial 

over GF(28) and multiplied modulo X4+ 1 with a fixed 

polynomial C(x), where C(x) = '03'x3 + '01'x2 + '01'x + 

'02' 

4. AddRoundKey (ARK): each byte of the state is XORed 

with the round key. 

The Final round only performs SubstituteBytes, 

ShiftRows and AddRoundKey transformations. Output of 

the final round is treated as the cipher text. 

4.3 Decryption Algorithm: 
In decryption method, the sequence of the transformations 

differs from that of the encryption approach. It comprises of 

an inverse of the final round, inverses of the (r-1) rounds, 

followed by the initial round. The inverse of the round is 

found by inverting each of the transformations in the round.  

1. InverseSubstituteBytes (SB-1): it is obtained by applying 

the inverse of the affine transformation and taking the 

multiplicative inverse in GF (28) of the result.  

2. InverseShiftRows (SR-1): In this transformation, row 0 is 

not shifted, row 1 is shifted left by three places, row 2 by 

two places and row 3 by one places.  

3. InverseMixColumns (MC-1): The polynomial, C(x), used 

to transform the state columns in the 

InverseMixColumns is given by, C(x) = 'B'x3 + 'OD'x2 + 

'09'x + 'OE' 

The same set of keys is used in encryption and decryption 

process of Rijndael but is used in reverse order. 

5. COMPARISON AND ANALYSIS 
A comparative analysis of RC6, Twofish & Rijndael is 

performed to provide some measurements on the encryption 

and decryption. Effects of several parameters such as number 

of rounds, block size and the length of secret key on the 

performance evaluation criteria are investigated.  

These three encryption algorithms were implemented in c# in 

visual studio 2009. Performance was measured on a 3GHz 

Pentium®4 with 1GB of RAM running Windows XP 

professional Version 2002, Service pack 3. 

5.1 Parametric Comparison 
Table 1 summarizes the comparison of RC6, Twofish & 

Rijndael for different design parameters such as word size, 

block size, number of rounds and secret key size. 

Table 1: Comparison on the basis of parameters 

Parameters Algorithm Type 

RC6 Twofish Rijndael 

b (key length 

in bytes) 

0 - 255 16, 24 or 32 16, 24 or 32 

r (no of 

rounds) 

0 – 255   

(standard 20) 

16 10, 12, 14 

No of round 

keys 

2r+4 2r+8 r+1 

Block size in 

words 

4w 4w 4w 

w (word size 

in bits) 

16, 32, 64 

(standard 32) 

16, 32, 64 

(standard 32) 

16, 32, 64 

(standard 32) 

Block size in 

bits 

64, 128, 256 

(standard 128) 

64, 128, 256 

(standard 

128) 

64, 128, 256 

(standard 128) 

Used 

Function 

F(x) = x(2x+1)  

mod 2w 

S-Box, MDS, 

PHT 

SB, SR, MC, 

ARK, SB-1, SR-1, 

MC-1, S-Box 

Used 

Operation 
+, -, ⊕, *, 

<<<, >>> 

+, ⊕,  <<<, 

>>> 

⊕,  <<<, >>> 

5.2 Performance Comparison 
In addition, to improve the accuracy of our timing 

measurements, program was executed 10 times for each input 

file and we report the average of the times thereby obtained. 

In this observation key size have three values 16-bytes, 24-

bytes and 32-bytes while number of round(r) was fixed 20 for 

RC6, 16 for Twofish and 10 for Rijndael. 

5.2.1 On the basis of Execution Time 

We compare the execution time of each algorithm on 

different-2 file types like text file, audio file & video files, for 

this purpose we mainly used 6 files and recorded their 

execution (encryption or decryption) times in milliseconds for 

these three algorithms. List of Input files and their size are 

given in Table 2, 3 and 4. 

Table 2: Comparison for 16-bytes key 

File Name 

(file type) 

File Size 

(in KB) 

RC6 Twofish Rijndael 

A.doc 712 200.8125 232.5 229.65 

B.pdf 649 178.5 205 214.625 

C.jpg 656 196.45 224.5 232.75 

D.gif 1396 258.925 314.75 309.5 

E.mp3 2068 320 383.5 380.45 

F.avi 2800 357.5 426.735 435 

Table 3: Comparison for 24-bytes key 

File Name 

(file type) 

File Size 

(in KB) 

RC6 Twofish Rijndael 

A.doc 712 205 241.25 246.125 

B.pdf 649 183 209.85 223.25 

C.jpg 656 205.125 238.75 241.325 

D.gif 1396 263.5 321.45 327.847 

E.mp3 2068 337.5 397.125 398.575 

F.avi 2800 370.25 443.95 454.65 

Table 4: Comparison for 32-bytes key 

File Name 

(file type) 

File Size 

(in KB) 

RC6 Twofish Rijndael 

A.doc 712 209.75 256.95 268.125 

B.pdf 649 187.5 213.75 228.75 

C.jpg 656 209.8125 241.5 253.45 

D.gif 1396 267.5125 329.75 333.85 

E.mp3 2068 351.25 415.025 421.25 

F.avi 2800 375 455.75 473.925 

Fig 5, 6 and 7 illustrate the execution time according to their 

file size for each files using algorithms RC6, Twofish and 

Rijndael for 16-bytes, 24-bytes and 32-bytes key respectively. 

Execution time of RC6 is represented by blue color; Twofish 

is represented by red color and Rijndael is represented by 

green color. 
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Fig 5: Execution time for 16-bytes key 

 
Fig 6: Execution time for 24-bytes key 

 
Fig 7: Execution time for 32-bytes key 

Graph shows that RC6 performs faster than Twofish & 

Rijndael for every key size. It can also be concluded that 

increasing key size decreases the performance. 

5.2.2  On the basis of Resource Utilization (CPU 

Utilization & Memory Utilization) 

In this section a video file (.avi) of 2800KB was executed by 

these three algorithms RC6, Twofish and Rijndael. CPU 

utilization and Memory utilization for each algorithm was also 

captured. For the accuracy point of view we executed that file 

5 times and then taken the average of them. 

 
Fig 8: CPU Utilization & Memory Utilization of RC6 

Fig 8 shows the CPU utilization and Memory utilization for 

RC6 block cipher algorithm. Blue line represents the CPU 

usage in percentage (0-100 %) and Red line represents the 

Memory usage in 10MB (40 means 400MB). Average CPU 

utilization is 51.00 % and average Memory utilization is 

505.49 MB for RC6.  

 
Fig 9: CPU Utilization & Memory Utilization of Twofish 

Fig 9 shows the CPU utilization and Memory utilization for 

Twofish algorithm. Blue line represents the CPU usage in 

percentage (0-100 %) and Red line represents the Memory 

usage in 10MB (40 means 400MB). Average CPU utilization 

is 50.46 % and average Memory utilization is 490.67 MB for 

Twofish. 

 
Fig 10: CPU Utilization & Memory Utilization of Rijndael 

Fig 9 shows the CPU utilization and Memory utilization for 

Rijndael algorithm. Blue line represents the CPU usage in 

percentage (0-100 %) and Red line represents the Memory 

usage in 10MB (40 means 400MB). Average CPU utilization 

is 50.72 % and average Memory utilization is 473.17 MB for 

Rijndael. 

5.3 Result Analysis 
RC6 performs faster than Twofish & Rijndael. Fig 11 shows 

the average execution time for these three algorithms to 

execute the files mentioned in table 2, 3 and 4. According to 

fig 11 RC6 is 1.182 times faster than Twofish and 1.191 times 

faster than Rijndael for 16-bytes key, 1.184 times faster than 

Twofish and 1.209 times faster than Rijndael for 24-bytes 

key, 1.195 times faster than Twofish and 1.236 times faster 
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than Rijndael for 32-bytes key. Result also concludes that 

performance of all these three algorithms are inversely 

proportional to keysize, if keysize will increase the 

performance will decrease and vice-versa. 

 

Fig 11: Average Execution Time in millisecond 

In addition, if we consider on resource utilization then we got 

that RC6 utilize 14.82 MB extra memory compared to 

Twofish and 32.32 MB extra memory compared to Rijndael, 

while CPU utilization is approximately same for all these 

three algorithms. 

6. CONCLUSION 
In this research paper RC6, Twofish and Rijndael block cipher 

algorithms were compared by using C# program in visual 

studio 2009. Performance of these three algorithms were 

measured on a 3GHz Pentium®4 with 1GB of RAM running 

Windows XP professional Version 2002, Service pack 3. 

Comparative analysis of RC6, Twofish and Rijndael have 

been done with a set of input files and evaluated the 

encryption & decryption time. Results conclude that RC6 is 

1.182 times faster than Twofish and 1.191 times faster than 

Rijndael for 16-bytes key, 1.184 times faster than Twofish 

and 1.209 times faster than Rijndael for 24-bytes key, 1.195 

times faster than Twofish and 1.236 times faster than Rijndael 

for 32-bytes key. Result also concludes that performance of 

all these three algorithms is inversely proportional to keysize, 

if keysize will increase the performance will decrease and 

vice-versa. 

In resource utilization point of view, RC6 utilize 14.82 MB 

extra memory compared to Twofish and 32.32 MB extra 

memory compared to Rijndael, while CPU utilization is 

approximately same for all these three algorithms. So RC6 

block cipher algorithm is faster and simpler than Twofish & 

Rijndael block cipher algorithms. Using RC6 is beneficial 

where high encryption rate is required while Rijndael is 

beneficial where memory is much concern. 
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