
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

1

Performance Analysis of RC6, Twofish and Rijndael

Block Cipher Algorithms

Harsh Kumar Verma

Department of Computer Science & Engineering
National Institute of Technology, Jalandhar

Punjab (India)

Ravindra Kumar Singh
Department of Computer Science & Engineering

National Institute of Technology, Jalandhar
Punjab (India)

ABSTRACT

In this paper, Performance analysis of RC6, Twofish and

Rijndael block cipher algorithms have been done on the basis

of execution time and resource utilization. CPU utilization

and memory utilization both are considered for determining

resource utilization. These algorithms are parameterized

algorithm and were designed to meet the requirements of

the Advanced Encryption Standard (AES) competition and

selected among five finalists of that competition. These three

algorithms have a variable block size and a variable key size

in their structure and encrypt four w-bits at a time. Allowable

choices for w are 16 bits, 32 bits, and 64 bits. Twofish and

Rijndael have same structure for encryption and decryption

while RC6 have different. RC6, Twofish and Rijndael have

20, 16 and 10 rounds respectively. Performances of these

three algorithms have been evaluated on key size of 128-bits,

192-bit and 256-bit in this paper.

General Terms

Cryptography, Block cipher, Symmetric encryption, RC6,

Twofish, Rijndael

Keywords

Cryptography, Block cipher, Symmetric encryption, RC6,

Twofish, Rijndael

1. INTRODUCTION
Symmetric key encryption is common to ensure data

confidentiality, it uses same key for both encryption of plain

text and decryption of cipher text. As illustrated in fig 1.

Fig 1 : Symetric encryption

In cryptography, the Advanced Encryption Standard (AES)

[1] is an encryption standard adopted by the U.S. government.

Back in 1997 the National Institute of Standards and

Technology (NIST) made a public call for new cipher

algorithms that could replace the DES. A rough summary of

the requirements made by NIST for the new AES were the

following:

 Symmetric-key cipher

 Block cipher

 Support for 128-bit block sizes

 Support for 128-, 192-, and 256-bit key lengths

A combination of factors such as security, performance,

efficiency, ease of implementation and flexibility contributed

to the selection of this algorithm as the AES. RC6 [2],

Twofish [3] and Rijndael [4] were designed to meet the

requirements of the Advanced Encryption Standard (AES)

competition and selected among five finalists of that

competition, and explained in further sections.

1.1 RC6
RC6 is derived from RC5 [5]. There are two main new

features in RC6 compared to RC5: the inclusion of integer

multiplication and the use of four w-bit working registers

instead of two w-bit registers as in RC5. It was designed

by Ron Rivest, Matt Robshaw, Ray Sidney and Yiqun Lisa

Yin. The algorithm was also submitted to the NESSIE and

CRYPTREC projects. It is a proprietary algorithm, patented

by RSA Security [6].

1.2 Twofish
Twofish is a 128-bit symmetric key block cipher proposed by

B.Schneier [3]. Twofish accepts a variable-length key up to

256 bits. The cipher is a 16-round Feistel network which

adapted components from the ciphers Khufu [7], Square [8]

and SAFER [9]. Notable features of the design Twofish

include key-dependent S-boxes, maximum distance separable

(MDS) matrice, pseudo-Hadamard transform (PHT) and a

highly complex key schedule. Basic Terms used in Twofish:

1.2.1 Feistel Networks
A Feistel network [3] is a general method of transforming any

function (usually called the F function) into a permutation. It

was invented by Horst Feistel [10] in his design of Lucifer

and popularized by DES. The fundamental building block of

Feistel networks is the F-function: a key-dependent mapping

of an input string onto an output string. The alternative

substitution and permutation operations of Feistel network is

invented from Product Cipher brought up by Claude Shannon

[11] in 1949.

1.2.2 Diffusion
“Diffusion” means that any change of bits in a plaintext will

affect many bits in cipher text to enhance complexity between

the plaintext and the cipher text. In a block encryption /

decryption system, diffusion can be achieved by repeatedly

implementing a specific permutation and then execute a

functional operation [12].

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

2

1.2.3 Confusion
“Confusion” can be achieved by manipulating the relations

between cipher text and sub key to be more complicated,

leaving no chance of existence of direct linear relationship

[12].

1.2.4 S-boxes
An S-box [3] is a table-driven non-linear substitution

operation used in most block ciphers. S-boxes vary in both

input size and output size and can be created either randomly

or algorithmically.

1.2.5 MDS Matrices
A maximum distance separable (MDS) [3] code over a field is

a linear mapping from a field elements to b field elements,

producing a composite vector of a + b elements, with the

property that the minimum number of non-zero elements in

any non-zero vector is at least b + 1 [13]. Reed-Solomon (RS)

error-correcting codes are known to be MDS. A necessary and

sufficient condition for a × b matrix to be MDS is that all

possible square sub matrices, obtained by discarding rows or

columns, are non-singular.

1.2.6 Pseudo-Hadamard Transforms
A pseudo-Hadamard transform (PHT) [3] is a simple mixing

operation that runs quickly in software. It is used for

diffusion. For given two inputs a & b, the 32-bit PHT is

defined as:

a0 = a + b mod 232 … (1)

b0 = a + 2b mod 232 … (2)

1.2.7 Whitening
Whitening [3], the technique of XORing key material before

the first round and after the last round, it was shown that

whitening substantially increases the difficulty of key search

attacks against the remainder of the cipher.

1.3 Rijndael
The Rijndael algorithm is a block cipher of 10, 12 ,14 rounds

that encrypts blocks of 128, 192, or 256 bits respectively

using symmetric keys of 128, 192 or 256 bits. In October

2000, the Rijndael (pronounced Rain Doll) algorithm was

chosen as the basis for the new standard encryption algorithm

and now it is known as AES algorithm [14]. Specifically,

Rijndael appears to perform consistently well in both

hardware and software platforms under a wide range of

environments. Brute force attack is the only effective attack

known against it, in which the attacker tries to test all the

characters combinations to unlock the encryption. Rijndael is

not a Feistel structure but it also makes use of S-Boxes for

increasing diffusion.

2. RC6
RC6 is very similar to RC5 in structure, using data-dependent

rotations [5], addition modulo 2w and XOR operations; in fact,

RC6 could be viewed as interweaving two parallel RC5

encryption processes. However, RC6 does use an extra

multiplication operation not present in RC5 in order to make

the rotation dependent on every bit in a word and not just the

least significant few bits. Integer multiplication is used to

increase the diffusion achieved per round so that fewer rounds

are needed and the speed of the cipher can be increased. The

base-two logarithm of w will be denoted by lg w.

Like RC5, RC6 is a fully parameterized family of encryption

algorithms. A version of RC6 is more accurately specified as

RC6-w/r/b where the word size is w bits, encryption consists

of a nonnegative number of rounds r and b denotes the length

of the encryption key in bytes. Since the AES submission is

targeted at w = 32 and r = 20, we shall use RC6 as shorthand

to refer to such versions. When any other value of w or r is

intended in the text, the parameter values will be specified as

RC6-w/r. Of particular relevance to the AES effort will be the

versions of RC6 with 16-, 24- and 32-byte keys. For all

variants, RC6-w/r/b operates on units of four w-bit words

using the following basic operations [15].

The operations used in RC6 are defined as followings.

A+B integer addition modulo 2w

A-B integer subtraction modulo 2w

A⊕B bitwise exclusive-or of w-bit words

A*B integer multiplication modulo 2w

A<<<B rotation of the w-bit word A to the left by the
amount given by the least significant lg w bits of B

A>>>B rotation of the w-bit word A to the right by the
amount given by the least significant lg w bits of B

f(x) = x(2x+1)mod 2w

There are three routines in RC5: key expansion, encryption,

and decryption. We discus each of them in next sections, Key-

Expansion algorithm is used to generate the round sub keys

that will be use in encryption and decryption algorithms. RC6

has different algorithms for encryption and decryption, in

encryption it uses integer addition modulo 2w but in

decryption it uses integer subtraction modulo 2w. RC6 is a

symmetric key encryption so encryption and decryption

algorithms uses same key.

2.1 Key-Expansion Algorithm
Key-Expansion Algorithm of RC6 is similar as RC5, only

difference is that RC6 will be generate 2r+4 additive round

keys rather that 2(r + 1) used in RC5 [15].

Key-Expansion with RC6-w/r/b

Input: b byte key that is preloaded into c word array

L[0,1,…, c-1], r denotes the no of rounds.

Output: 2r+4 w-bit round keys S[0,1, …, 2r + 2,2r+3].

Procedure:

S[0] = Pw,

For i= 1 to 2r+3 do

{

S[i] = S[i – 1] + Qw

}

X = Y = a = b = 0

Iteration =3 * max(c, 2r+4)

For i = 1 to Iteration do

{

X = S[a] = (S[a] + X + Y) <<< 3

Y =L[b] = (L[b] +X + Y) <<< (X + Y)

i = (a + 1) mod (2r + 4)

j = (b + 1) mod c

}

2.2 Encryption Algorithm
Fig 2 illustrates the encryption procedure of RC6; decryption

procedure is just reverse of this structure by converting

addition operation to subtraction operations.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

3

Fig 2: RC6 Block Cipher

RC6 works with four w-bit registers A, B, C, D which contain

the initial input plain text as well as the output cipher text at

the end of encryption. The first byte of plain text or cipher

text is placed in the least-significant byte of A, the last byte of

plain text or cipher text is placed into the most-significant

byte of D. Pseudo code of encryption [15] is given below; at

first we load plain text in to registers A, B, C, D and then

apply these operations to encrypt the plain text.

Encryption with RC6-w/r/b

Input: Plain text stored in four w-bit input registers A, B, C, D. r

denotes the no of rounds and 2r+4 w-bit round keys S[0,1, .., 2r + 3]

Output: Cipher text will be store in A, B, C, D

Procedure:

B = B + S[0]

D = D + S[1]

for i = 1 to r do

{

t = (B * (2B + 1)) <<< lg w

u = (D * (2D + 1)) <<< lg w

A = ((A ⊕ t) <<< u) + S[2i]

C = ((C ⊕ u) <<< t) + S[2i+ 1]

(A, B, C, D) = (B, C, D, A)

}

A = A + S[2r + 2]

C = C + S[2r + 3]

Operation (A, B, C, D) = (B, C, D, A) means the parallel

assignment of values on the right to registers on the left. After

applying these operations on registers A, B, C, D plain text

gets converted into the cipher text.

2.3 Decryption Algorithm

Pseudo code of decryption [15] is given below; for decryption

of cipher text load these cipher text into registers A, B, C, D

and then apply these operations to convert cipher text into

plain text.

Decryption with RC6-w/r/b

Input: Cipher text stored in four w-bit input registers A, B, C, D. r

denotes the no of rounds and 2r+4 w-bit round keys S[0, 1,.., 2r + 3]

Output: Plain text will be store in A, B, C, D

Procedure:

C = C - S[2r + 3]

A = A - S[2r + 2]

for i = r down to 1 do

{

(A, B, C, D) = (D, A, B, C)

u = (D * (2D + 1)) <<< lg w

t = (B * (2B + 1)) <<< lg w

C = ((C - S[2i + 1]) >>> t) ⊕ u

A = ((A - S[2i]) >>> u) ⊕ t

}

D = D - S[1]

B = B - S[0]

This algorithm uses integer subtraction modulo 2w and right

rotation on registers for getting plain text; it does reverse

operations on registers.

3. TWOFISH
Fig 3 shows an overview of the Twofish block cipher.

Twofish uses a 16-round Feistel-like structure with additional

whitening of the input and output. The only non-Feistel

elements are the 1-bit rotates. The rotations can be moved into

the F function to create a pure Feistel structure, but this

requires an additional rotation of the words just before the

output whitening step.

The plaintext is split into four 32-bit words, these are XORed

with four key words in input whitening step. This is followed

by sixteen rounds. In each round, the two words on the left are

used as input to the g functions. (One of them is rotated by 8

bits first.) The g function consists of four byte-wide key-

dependent S-boxes, followed by a linear mixing step based on

an MDS matrix. The results of the two g functions are

combined using a Pseudo-Hadamard Transform (PHT) and

two keywords are added. These two results are then XORed

into the words on the right (one of which is rotated left by 1

bit first and other one is rotated right afterwards). The left and

right halves are then swapped for the next round except the

last round and the four words are XORed with four more key

words to produce the cipher text [3].

Operations used in Enhanced Twofish

 A+B integer addition modulo 2w

 A⊕B bitwise exclusive-or of w-bit words.

 <<<n rotation to the left by n-bit.

 >>>n rotation to the right by n-bit.

 (A, B, C, D) = (C, D, A, B) parallel assignment

Notations used in Enhanced Twofish

 0x hexadecimal representation

 rXLi the i-th left-half data of X in the round r

(i=1~2,r=0~16)

 rXRi the i-th right-half data of X in the round r

(i=1~2,r=0~16)

 M the master key consists of 32 bytes m0,…,m31

 Ki the input/output whitening sub key and round sub

key (i=0~39)

 Li the S-box key(i=0~3)

3.1 Encryption
Twofish block cipher has same structure for encryption and

decryption both; it is a significant advantage of Feistel

network. To encrypt a 128-bit input plaintext P, we first

divide it into four 32-bit data 0XL1,
 0XL2,

 0XR1,
 0XR2 and

XORed with four 32-bit sub key K0, K1, K2, K3. Then, the

following operations are performed form r=0 to 15.

(T0, T1) = F(rXL1, (
rXL2<<<8), L)

r+1XL1 = ((T0+K4r+8) ⊕
rXR1) <<< 1

r+1XL2 = (T1+K4r+9) ⊕ (rXR2 >>> 1)

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

4

r+1XR1 =
 rXL1

r+1XR2=
 rXL2

After 16 rounds undo last swap and then 15XL1,
 15XL2,

 15XR1,

15XR2 are concatenated and XORed with K4, K5, K6, K7. The

resultant output is the 128-bit cipher text.

Fig 3: Twofish Block Cipher

3.2 Decryption
The decryption procedure of Twofish can be done in the same

way as the encryption procedure by reversing the order of the

sub keys, which is one of merits of Feistel networks [3].

4. RIJNDAEL
Rijndael encrypts blocks of 128, 192, or 256 bits respectively

using symmetric keys of 128, 192 or 256 bits. Operations in

Rijndael algorithm are performed on a two-dimensional byte

array of four rows and four columns or State that contain 128

bits [16]. Rijndael algorithm can be better understood in three

parts, KeyExpansion algorithm, Encryption algorithm and

Decryption algorithm.

4.1 KeyExpansion Algorithm:
Round keys Ki are derived from the 128-bit user key by

means of the key expansion algorithm. The total number of

round keys required is equal to r + 1(where r = Number of

rounds) because one extra key is needed in the Initial round.

KeyExpansion algorithm takes a 4-word (16-byte) as input

and produces a linear array of (r + 1) * 4 words ((r + 1) * 16

bytes). The following pseudocode describes the

KeyExpansion algorithm [4].

4.1.1 KeyExpansion (byte key [16], word w [(r+1)*4])
{

word temp;

for (i = 0; i < 4; i++)

{

w [i] = (key [4 * i], key [4 * i + 1], key [4 * i + 2],

key [4 * i + 3]);

}

for (i = 4; i < (r + 1) * 4; i++)

{

temp = w [i - 1];

if (i % 4 = 0)

{

temp = SubWord (RotWord (temp)) ⊕ Rcon[i / 4];

}

w [i] = w [i - 4] ≈ temp;

}

}

4.1.2 KeyExpansion Algorithm uses these terms [4],

4.1.2.1 RotWord: it performs a one-byte circular left shift

on a word. This means that an input word [b0, b1, b2, b3] is

transformed into [b1, b2, b3, b0].

4.1.2.2 SubWord: it performs a byte substitution on each

byte of its input word, using the S-Box.

4.1.2.3 Rcon[x]: is a round constant.

Fig 4: Rijndael Encryption Algorithm

4.2 Encryption Algorithm:
The process of Rijndael encryption is illustrated in fig 4. The

algorithm consists of Initial round, (r-1) uniform rounds,

followed by Final round. The Initial round performs

AddRoundKey function (as explained below). The reason that

the rounds have been listed as "(r-1) uniform rounds followed

by Final round" is because the Final round involves a slightly

different manipulation from the others. The (r-1) uniform

rounds consist of four functions [17]:

1. SubstituteBytes (SB): a non-linear substitution step

where each byte is replaced with another according to a

lookup table (S-Box).

2. ShiftRows (SR): a transposition step where each row of

the state is shifted cyclically a certain number of steps.

Row 1 is circular left shift by one place, Row 2 by two,

Row 3 by three places whereas, Row 0 remains

unchanged.

3. MixColumns (MC): a mixing operation which operates

on the columns of the state combining the four bytes in

AddRoundKey

SubstituteBytes

ShiftRows

MixColumns

InverseSubstituteByte

s

InverseShiftRows

InverseMixColumns

AddRoundKey

AddRoundKey

SubstituteBytes

ShiftRows

AddRoundKey

AddRoundKey

InverseSubstituteByte

s
InverseShiftRows

AddRoundKey

Plaintext

Expand key

w [4r, 4r+3]

w [0,3]

w [4r, 4r+3]

FINAL

ROUND

REPEAT

N-1

ROUND

S

FINAL

ROUND

REPEAT

N-1

ROUND

S

Plaintext

Ciphertext Ciphertext

Key

ENCRYPTION DECRYPTION

S-Box 0

S-Box 1

S-Box 2

S-Box 3

M

D

S
<<< 1

>>> 1

<<< 8

S-Box 0

S-Box 1

S-Box 2

S-Box 3

M

D

S

Cipher text (128 bit)

PHT
g

g

F

K0 K1 K2 K3

K4 K5 K6 K7

Plain text (128 bit)

 . . .

Legend Exclusive-or

Addition modulo -32

Input

whitening

Output

whitening

One

round

15

more

rounds

K2r+8

K2r+9

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

5

each column. Each column is considered a polynomial

over GF(28) and multiplied modulo X4+ 1 with a fixed

polynomial C(x), where C(x) = '03'x3 + '01'x2 + '01'x +

'02'

4. AddRoundKey (ARK): each byte of the state is XORed

with the round key.

The Final round only performs SubstituteBytes,

ShiftRows and AddRoundKey transformations. Output of

the final round is treated as the cipher text.

4.3 Decryption Algorithm:
In decryption method, the sequence of the transformations

differs from that of the encryption approach. It comprises of

an inverse of the final round, inverses of the (r-1) rounds,

followed by the initial round. The inverse of the round is

found by inverting each of the transformations in the round.

1. InverseSubstituteBytes (SB-1): it is obtained by applying

the inverse of the affine transformation and taking the

multiplicative inverse in GF (28) of the result.

2. InverseShiftRows (SR-1): In this transformation, row 0 is

not shifted, row 1 is shifted left by three places, row 2 by

two places and row 3 by one places.

3. InverseMixColumns (MC-1): The polynomial, C(x), used

to transform the state columns in the

InverseMixColumns is given by, C(x) = 'B'x3 + 'OD'x2 +

'09'x + 'OE'

The same set of keys is used in encryption and decryption

process of Rijndael but is used in reverse order.

5. COMPARISON AND ANALYSIS
A comparative analysis of RC6, Twofish & Rijndael is

performed to provide some measurements on the encryption

and decryption. Effects of several parameters such as number

of rounds, block size and the length of secret key on the

performance evaluation criteria are investigated.

These three encryption algorithms were implemented in c# in

visual studio 2009. Performance was measured on a 3GHz

Pentium®4 with 1GB of RAM running Windows XP

professional Version 2002, Service pack 3.

5.1 Parametric Comparison
Table 1 summarizes the comparison of RC6, Twofish &

Rijndael for different design parameters such as word size,

block size, number of rounds and secret key size.

Table 1: Comparison on the basis of parameters

Parameters Algorithm Type

RC6 Twofish Rijndael

b (key length

in bytes)

0 - 255 16, 24 or 32 16, 24 or 32

r (no of

rounds)

0 – 255

(standard 20)

16 10, 12, 14

No of round

keys

2r+4 2r+8 r+1

Block size in

words

4w 4w 4w

w (word size

in bits)

16, 32, 64

(standard 32)

16, 32, 64

(standard 32)

16, 32, 64

(standard 32)

Block size in

bits

64, 128, 256

(standard 128)

64, 128, 256

(standard

128)

64, 128, 256

(standard 128)

Used

Function

F(x) = x(2x+1)

mod 2w

S-Box, MDS,

PHT

SB, SR, MC,

ARK, SB-1, SR-1,

MC-1, S-Box

Used

Operation
+, -, ⊕, *,

<<<, >>>

+, ⊕, <<<,

>>>

⊕, <<<, >>>

5.2 Performance Comparison
In addition, to improve the accuracy of our timing

measurements, program was executed 10 times for each input

file and we report the average of the times thereby obtained.

In this observation key size have three values 16-bytes, 24-

bytes and 32-bytes while number of round(r) was fixed 20 for

RC6, 16 for Twofish and 10 for Rijndael.

5.2.1 On the basis of Execution Time

We compare the execution time of each algorithm on

different-2 file types like text file, audio file & video files, for

this purpose we mainly used 6 files and recorded their

execution (encryption or decryption) times in milliseconds for

these three algorithms. List of Input files and their size are

given in Table 2, 3 and 4.

Table 2: Comparison for 16-bytes key

File Name

(file type)

File Size

(in KB)

RC6 Twofish Rijndael

A.doc 712 200.8125 232.5 229.65

B.pdf 649 178.5 205 214.625

C.jpg 656 196.45 224.5 232.75

D.gif 1396 258.925 314.75 309.5

E.mp3 2068 320 383.5 380.45

F.avi 2800 357.5 426.735 435

Table 3: Comparison for 24-bytes key

File Name

(file type)

File Size

(in KB)

RC6 Twofish Rijndael

A.doc 712 205 241.25 246.125

B.pdf 649 183 209.85 223.25

C.jpg 656 205.125 238.75 241.325

D.gif 1396 263.5 321.45 327.847

E.mp3 2068 337.5 397.125 398.575

F.avi 2800 370.25 443.95 454.65

Table 4: Comparison for 32-bytes key

File Name

(file type)

File Size

(in KB)

RC6 Twofish Rijndael

A.doc 712 209.75 256.95 268.125

B.pdf 649 187.5 213.75 228.75

C.jpg 656 209.8125 241.5 253.45

D.gif 1396 267.5125 329.75 333.85

E.mp3 2068 351.25 415.025 421.25

F.avi 2800 375 455.75 473.925

Fig 5, 6 and 7 illustrate the execution time according to their

file size for each files using algorithms RC6, Twofish and

Rijndael for 16-bytes, 24-bytes and 32-bytes key respectively.

Execution time of RC6 is represented by blue color; Twofish

is represented by red color and Rijndael is represented by

green color.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

6

Fig 5: Execution time for 16-bytes key

Fig 6: Execution time for 24-bytes key

Fig 7: Execution time for 32-bytes key

Graph shows that RC6 performs faster than Twofish &

Rijndael for every key size. It can also be concluded that

increasing key size decreases the performance.

5.2.2 On the basis of Resource Utilization (CPU

Utilization & Memory Utilization)

In this section a video file (.avi) of 2800KB was executed by

these three algorithms RC6, Twofish and Rijndael. CPU

utilization and Memory utilization for each algorithm was also

captured. For the accuracy point of view we executed that file

5 times and then taken the average of them.

Fig 8: CPU Utilization & Memory Utilization of RC6

Fig 8 shows the CPU utilization and Memory utilization for

RC6 block cipher algorithm. Blue line represents the CPU

usage in percentage (0-100 %) and Red line represents the

Memory usage in 10MB (40 means 400MB). Average CPU

utilization is 51.00 % and average Memory utilization is

505.49 MB for RC6.

Fig 9: CPU Utilization & Memory Utilization of Twofish

Fig 9 shows the CPU utilization and Memory utilization for

Twofish algorithm. Blue line represents the CPU usage in

percentage (0-100 %) and Red line represents the Memory

usage in 10MB (40 means 400MB). Average CPU utilization

is 50.46 % and average Memory utilization is 490.67 MB for

Twofish.

Fig 10: CPU Utilization & Memory Utilization of Rijndael

Fig 9 shows the CPU utilization and Memory utilization for

Rijndael algorithm. Blue line represents the CPU usage in

percentage (0-100 %) and Red line represents the Memory

usage in 10MB (40 means 400MB). Average CPU utilization

is 50.72 % and average Memory utilization is 473.17 MB for

Rijndael.

5.3 Result Analysis
RC6 performs faster than Twofish & Rijndael. Fig 11 shows

the average execution time for these three algorithms to

execute the files mentioned in table 2, 3 and 4. According to

fig 11 RC6 is 1.182 times faster than Twofish and 1.191 times

faster than Rijndael for 16-bytes key, 1.184 times faster than

Twofish and 1.209 times faster than Rijndael for 24-bytes

key, 1.195 times faster than Twofish and 1.236 times faster

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.16, March 2012

7

than Rijndael for 32-bytes key. Result also concludes that

performance of all these three algorithms are inversely

proportional to keysize, if keysize will increase the

performance will decrease and vice-versa.

Fig 11: Average Execution Time in millisecond

In addition, if we consider on resource utilization then we got

that RC6 utilize 14.82 MB extra memory compared to

Twofish and 32.32 MB extra memory compared to Rijndael,

while CPU utilization is approximately same for all these

three algorithms.

6. CONCLUSION
In this research paper RC6, Twofish and Rijndael block cipher

algorithms were compared by using C# program in visual

studio 2009. Performance of these three algorithms were

measured on a 3GHz Pentium®4 with 1GB of RAM running

Windows XP professional Version 2002, Service pack 3.

Comparative analysis of RC6, Twofish and Rijndael have

been done with a set of input files and evaluated the

encryption & decryption time. Results conclude that RC6 is

1.182 times faster than Twofish and 1.191 times faster than

Rijndael for 16-bytes key, 1.184 times faster than Twofish

and 1.209 times faster than Rijndael for 24-bytes key, 1.195

times faster than Twofish and 1.236 times faster than Rijndael

for 32-bytes key. Result also concludes that performance of

all these three algorithms is inversely proportional to keysize,

if keysize will increase the performance will decrease and

vice-versa.

In resource utilization point of view, RC6 utilize 14.82 MB

extra memory compared to Twofish and 32.32 MB extra

memory compared to Rijndael, while CPU utilization is

approximately same for all these three algorithms. So RC6

block cipher algorithm is faster and simpler than Twofish &

Rijndael block cipher algorithms. Using RC6 is beneficial

where high encryption rate is required while Rijndael is

beneficial where memory is much concern.

7. REFERENCES
[1] “Report on the Development of the Advanced

Encryption Standard (AES).", “csrc.net”. Available at:

http://csrc.nist.gov/encryption/aes/round2/r2report.pdf

[2] Ronald L. Rivest, M.J.B. Robshaw, R. Sidney, and

Y.L.Yin, The RC6 TM Block Cipher , M.I.T. Laboratory

for Computer Science, 545 Technology Square,

Cambridge, MA 02139, Version 1.1 - August 20, 1998.

Available at: http://people.csail.mit.edu/rivest/Rc6.pdf

[3] Bruce Schneier, John Kelsey, Doug Whiting ,David

Wagner, Chris Hall, Niels Ferguson, “Twofish: A 128-

Bit Block Cipher”, 1998, [online] Available at:

http://www.certainkey.com/resources/article/twofish.pdf

[4] W. Stallings, "Cryptography and Network Security:

Principles and Practice", Prentice-Hall, New Jersey,

1999.

[5] “RC6® Block Cipher”, “rsa.com”. Available at:

http://www.rsa.com/rsalabs/node.asp?id=2512

[6] “RC6”, “wikipedia.org”. Available at:

http://en.wikipedia.org/wiki/RC6

[7] R. Merkle.” Fast software encryption functions”. In A.J.

Menezes and S.A.Vanstone, editors, Advances in

Cryptology - CRYPTO'90, LNCS 537, pp. 476~501.

Springer Verlag, 1991.

[8] J. Daemen, L. Knudsen, and V. Rijmen. “The block

cipher Square”. In E. Bi-ham, editor, Fast Software

Encryption, Fourth International Workshop, Haifa,

Israel, January 1997, LNCS 1267, pp. 149~165. Springer

Verlag, 1997.

[9] J.L. Massey.“ SAFER K-64: A byte-oriented block-

ciphering algorithm”. In R. Anderson, editor, Fast

Software Encryption - Proc. Cambridge Security

Workshop, Cambridge, U.K., LNCS 809, pp. 1~17.

Springer Verlag, 1994.

[10] H. Feistel, W.A. Notz, and J.L. Smith, “Some

cryptographic Techniques for Machine-to-Machine Data

Communications,” Proceedings on the IEEE, v. 63, n.11,

pp. 1545-1554, 1975.

[11] C. Shannon, Communication theory of secrecy systems,

Bell System Technical Journal, vol 28,pp 656-715, 1949.

[12] Shun-Lung Su, Lih-Chyau Wuu, and Jhih-Wei Jhang, “A

New 256-bits Block Cipher –Twofish256”, ISBN: 978-1-

4244-1365-2, 07 February 2008.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumbe

r=4447043

[13] F.J. MacWilliams and N.J.A. Sloane, “The Theory of

Error-Correcting Codes", North-Holland, Amsterdam,

1977.

[14] “Advanced Encryption Standard”, “wikipedia.org”,

[online] Available at: http://

http://en.wikipedia.org/wiki/Advanced_Encryption_Stan

dard

[15] Abdul Hamid M. Ragab, Nabil A. Ismail, Senior

Member IEEE, and Osama S. Farag Allah,

“Enhancements and Implementation of RC6TM Block

Cipher for Data Security”, IEEE Catalogue No. 01

CH37239-0-7803-7101-1/01 © 2001 IEEE.

[16] Fei Shao, Zinan Chang, Yi Zhang, “AES Encryption

Algorithm Based on the High Performance Computing of

GPU”, IEEE, ISBN: 978-1-4244-5726-7, February 26-

28, 2010.

[17] Parikh C., Patel P., “Performance Evaluation of AES

Algorithm on Various Development Platforms”, IEEE,

ISBN: 978-1-4244-1109-2, June 22-23, 2007.

