
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.14, March 2012

1

Neural Network based ACC for Optimized Safety and

Comfort

Merry Cherian

PG Student
Department of Electrical and

Electronics Engineering
Karunya University,Coimbatore

 S.Paul Sathiyan
Assistant Professor

Department of Electrical and
Electronics Engineering

Karunya University,Coimbatore

ABSTRACT
In recent years many studies on intelligent vehicles have been

devoted to solve problem such as accident prevention, traffic

flow smoothing. Adaptive Cruise Control (ACC) is used to

maintain a constant safe distance between the host vehicle and

the leading vehicle to avoid rear end collisions.It is an

automotive feature that allows the speed of the vehicle to

adapt to the traffic environment. ACC operates in distance

control mode and velocity control mode. The method by

which the ACC vehicle’s speed is controlled is via engine

throttle control and limited brake operation. The inter

vehicular distance between the vehicle is measured. Desired

speed is obtained from the distance measured. Neural

Network Controller is trained to produce the desired

acceleration and braking. In this paper, ACC is implemented

using three types of Neural Network such as Back

Propagation Network (BPN),Radial Basis Network (RBN)

and Generalized Regression Neural Network (GRNN).

Among the three it is observed that during safety conditions

BPN tracks the speed better and during comfort conditions

RBN acts best.

Keywords

Adaptive Cruise Control, Back Propagation Network, Radial

Basis Network, Generalized Regression Neural Network.

1. INTRODUCTION
The Adaptive Cruise Control (ACC) System is an extension

of the conventional Cruise Control System which is also

known as Intelligent Cruise Control or Autonomous

Intelligent Cruise Control (AICC) System. It overcomes the

disadvantage of Conventional Cruise Control. This AICC

system not only keeps the speed constant at a desired value

but it adapts the speed according to the vehicle moving in

front [1]. Hence, the system can be used in dense traffic with

repeated start and stop situations [2]. The ACC automatically

adjust the speed of the host vehicle to match the speed of the

leading vehicle, which subsequently adjusts the distance

between the two vehicles. If the preceding vehicle increases

its speed, the ACC system of the host vehicle automatically

increases its speed as well. A radar system attached to the

front of the vehicle is used to detect whether slower moving

vehicles are in the ACC vehicle's path. If a slower moving

vehicle is detected, the ACC system will slow the host vehicle

down and control the clearance, or time gap between the host

vehicle and the forward vehicle. If the system detects no

vehicle in the front, then the ACC system will accelerate the

vehicle to its set speed. This operation allows the ACC

vehicle to autonomously slow down and speed up with traffic

without intervention from the driver. The method by which

the ACC vehicle's speed is controlled is via engine throttle

control and limited brake operation. The distance and speed of

the vehicle is measured. Desired speed is obtained from the

distance measured [3]. Based on the desired speed and actual

speed, speed error is calculated. In this paper ACC is

implemented in the vehicle model using three Neural

Networks. They are Back Propagation Network (BPN), Radial

Basis Network (RBN) , Generalized Regression Neural

Network (GRNN) and performance analysis is done among

the three.

2. BPN BASED ACC
Neural networks are composed of simple elements operating

in parallel. These elements are inspired by biological nervous

systems. As in nature, the network function is determined

largely by the connections between elements. You can train a

neural network to perform a particular function by adjusting

the values of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a

particular input leads to a specific target output.Back

Propagation Network is a feed forward neural network. It was

created by generalizing the Widrow-Hoff learning rule to

multiple-layer networks and nonlinear differentiable transfer

functions. Input vectors and the corresponding target vectors

are used to train a network until it can approximate a function,

associate input vectors with specific output vectors, or classify

input vectors in an appropriate way as defined. Networks with

biases, a sigmoid layer, and a linear output layer are capable

of approximating any function with a finite number of

discontinuities. Standard back propagation is a gradient

descent algorithm, as is the Widrow-Hoff learning rule, in

which the network weights are moved along the negative of

the gradient of the performance function. The term back

propagation refers to the manner in which the gradient is

computed for nonlinear multilayer networks. There are a

number of variations on the basic algorithm that are based on

other standard optimization techniques, such as conjugate

gradient and Newton methods. Neural network toolbox

implements a number of these variations.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.14, March 2012

2

2.1 Architecture of BPN

Fig 1: Architecture of BPN

Feedforward networks often have one or more hidden layers

of sigmoid neurons followed by an output layer of linear

neurons. Multiple layers of neurons with nonlinear transfer

functions allow the network to learn nonlinear and linear

relationships between input and output vectors. The linear

output layer lets the network produce values outside the range

–1 to +1. On the other hand, if you want to constrain the

outputs of a network (such as between 0 and 1), then the

output layer should use a sigmoid transfer function (such as

logsig). Multilayer networks often use the log-sigmoid

transfer function logsig or tan-sigmoid function tansig.

2.2 Algorithm of BPN

STEP 1: Creating a training set of input speed error and

targets throttle command and brake command [4].

STEP 2: Creating a feedforward network, with 2 layers.

 Hidden layer-3 Neurons, Tansig transfer function

 Output layer-1 Neuron, Purelin transfer function

STEP 3: Training function: Levenberg-Marquardt

STEP 4: Setting of training parameters

 Learning rate=0.05

 Error goal=0

STEP 5: Training the network.

STEP 6: Finally, outputs are simulated.

3. RBN BASED ACC
Radial basis networks can require more neurons than standard

feedforward backpropagation networks, but often they can be

designed in a fraction of the time it takes to train standard

feedforward networks. They work best when many training

vectors are available. A Radial Basis Function (RBF) neural

network has an input layer, a hidden layer and an output layer.

The neurons in the hidden layer contain Gaussian transfer

functions whose outputs are inversely proportional to the

distance from the center of the neuron.

3.1 Architecture of RBN

Fig 2: Architecture of RBN

The || dist || box in this figure accepts the input vector p and

the input weight matrix IW1,1, and produces a vector having

S1 elements. The elements are the distances between the input

vector and vectors IW1,1 formed from the rows of the input

weight matrix. The bias vector b1 and the output of || dist ||

are combined with the MATLAB operation .*, which does

element-by-element multiplication. The function newrb

iteratively creates a radial basis network one neuron at a time.

Neurons are added to the network until the sum-squared error

falls beneath an error goal or a maximum number of neurons

have been reached. The call for this function is

net = newrb(P,T,GOAL,SPREAD)

The function newrb takes matrices of input and target

vectors P and T, and design parameters GOAL and SPREAD,

and returns the desired network. The design method of newrb

is similar to that of newrbe. The difference is that newrb

creates neurons one at a time. At each iteration, the input

vector those results in lowering the network error the most is

used to create a radbas neuron. The error of the new network

is checked, and if low enough newrb is finished. Otherwise

the next neuron is added. This procedure is repeated until the

error goal is met or the maximum number of neurons is

reached. We can design radial basis networks with the

function newrbe. This function can produce a network with

zero error on training vectors. It is called in the following

way:

net = newrbe(P,T,SPREAD)

The function newrbe takes matrices of input vectors P and

target vectors T, and a spread constant SPREAD for the radial

basis layer, and returns a network with weights and biases

such that the outputs are exactly T when the inputs are P.

3.2 Algorithm of RBN

STEP 1: Creating a training set of input speed error and

targets throttle command [5] and brake command.

STEP 2: Plotting of training vectors.

STEP 3: Finding a function which fits the data points [6],

done by Radial Basis network.

• Number of layers: 2

• Hidden layer-Radial Basis neurons.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.14, March 2012

3

• Output layer-Linear neurons.

STEP 4: Radial Basis transfer function is defined and plotted.

STEP 5: Three Radial Basis functions are scaled and summed

to produce a function.

STEP 6: Creating a Radial Basis network with function

newrb.

• eg=0.02

• Spread=0.1

STEP 7: Finally, simulating the network response.

4. GRNN BASED ACC

Generalized Regression networks are variant of Radial Basis

network. A GRNN is often used for function approximation.

It has a radial basis layer and a special linear layer. For

problems with small to medium size training sets, networks

are usually more accurate than RBF network’s.

4.1 Architecture of GRNN

Fig. 3 Architecture of GRNN

4.2 Algorithm of GRNN

STEP 1:Creating a training set of input speed error and

targets throttle command and brake command

STEP 2:Creating a GRNN network by newgrnn with

arguments input P, targets T, spread constant.

 Number of layers:2

 Hidden layer: Radial Basis layer

 Output layer: special linear layer

STEP 3:Finally simulating the network response.

5. SIMULATION RESULTS

The Fig. 4 describes the vehicle model used for simulation

purpose. In this model as throttle changes, gear and clutch

sequence changes and corresponding speed is obtained. The

throttle command is given by means of neural network

controller according to speed error. Three neural network

controller such as BPN,RBN,GRNN are used.

Fig. 4 Vehicle model

The architecture for the GRNN is shown above. It is similar to

the radial basis network, but has a slightly different second

layer. Here the nprod box shown above (code function

normprod) produces S2 elements in vector n2. Each element

is the dot product of a row of LW2,1 and the input vector a1,

all normalized by the sum of the elements of a1. The first

layer has many neurons as there are input/ target vectors in

P. Specifically, the first-layer weights are set to P'. The bias

b1 is set to a column vector of 0.8326/SPREAD. The user

chooses SPREAD, the distance an input vector must be from a

neuron’s weight vector to be 0.5.Each neuron’s weighted

input is the distance between the input vector and its weight

vector, calculated with dist. Each neuron’s net input is the

product of its weighted input with its bias, calculated with

netprod. Each neuron’s output is its net input passed through

radbas. If a neuron’s weight vector is equal to the input vector

(transposed), its weighted input will be 0, its net input will be

0, and its output will be 1. If a neuron’s weight vector is a

distance of spread from the input vector, its weighted input

will be spread, and its net input will be sqrt(-log(.5)) (or

0.8326). Therefore its output will be 0.5. Function newgrnn

can be used to create a GRNN. Now obtain a GRNN with

net = newgrnn(P,T)

Fig. 5 describes the subsystem of the ACC using neural

network controller.The distance between host and lead vehicle

is given to the lookup table where the expected speed of the

host vehicle corresponding to the distance is being

given.Based on this,the expected speed(speed of lead vehicle)

corresponding to the distance is obtained.This speed is then

compared with the actual speed of the host vehicle and speed

error is obtained. Thus input to the Neural Network controller

is speed error.

Serror= Slead-Sactual (1)

The neural network controller is trained in such a way that

it will produce the desired acceleration and braking

corresponding to the speed error [7]-[12]. The output of the

Neural Network controller is fed to the vehicle and

corresponding speed is obtained.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.14, March 2012

4

Fig. 5 Subsystem of ACC using neural network controller.

5.1 Calculation of throttle

0 50 100 150

0

0.2

0.4

0.6

0.8

1
Signal 1

Time (sec)

drive_vehicle1/Engine Dynamics/Signal Builder : Group 1

Fig. 6 Graph of variable throttle.

0 50 100 150
0

50

100

150

200

time(s)

s
p
e
e
d
(
k
m

/
h
r
)

SPEED RESPONSE CORRESPONDING TO THROTTLE

Fig. 7 Speed response corresponding to variable throttle.

0 50 100 150
0

20

40

60

80

100

120

time(s)

s
p
e
e
d
(
k
m

/
h
r
)

SPEED RESPONSE CORRESPONDING TO CONSTANT THROTTLE

Fig. 8 Speed response corresponding to steady throttle

Fig. 6 describes the graph of variable throttle.Based on the

variable throttle, corresponding variable speed is shown in Fig

7.Fig. 8 describes the constant speed response corresponding

to constant throttle. Based on the above study corresponding

throttle valve is obtained for different speeds.This throttle

value is used for training neural network controller.

5.2 Performance comparison of ACC using

three neural network controllers

0 5 10 15 20 25 30 35 40
-10

0

10

20

30

40

50

60

time(s)

s
p
e
e
d
(
k
m

/
h
r
)

TRACKING OF SPEED THROUGH BPN

speed of host vehicle

speed of lead vehicle

Fig. 9 Tracking of speed through BPN

0 5 10 15 20 25 30 35 40
-14

-12

-10

-8

-6

-4

-2

0

2

4

time(s)

s
p
e
e
d

e
r
r
o
r
(
k
m

/
h
r
)

DIFFERENCE OF SPEED BETWEEN LEAD VEHICLE AND VEHICLE EQUIPPED WITH ACC

Fig. 10 Speed error between lead and host vehicle while

using BPN

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.14, March 2012

5

0 5 10 15 20 25 30 35 40
-10

0

10

20

30

40

50

60

time(s)

s
p
e
e
d
(
k
m

/
h
r
)

TRACKING OF SPEED THROUGH RBN

speed of lead vehicle

speed of host vehicle

Fig. 11 Tracking of speed through RBN

0 5 10 15 20 25 30 35 40
-14

-12

-10

-8

-6

-4

-2

0

2

4

time(s)

s
p
e
e
d

e
r
r
o
r
(
k
m

/
h
r
)

SPEED ERROR BETWEEN LEAD VEHICLE AND VEHICLE EQUIPPED WITH ACC

Fig. 12 Speed error between lead and host vehicle while

using RBN

0 5 10 15 20 25 30 35 40
-10

0

10

20

30

40

50

60

70

time(s)

s
p
e
e
d
(
k
m

/
h
r
)

TRACKING OF SPEED THROUGH GRNN

speed of lead vehicle

spedd of host vehicle

Fig. 13 Tracking of speed through GRNN

0 5 10 15 20 25 30 35 40
-14

-12

-10

-8

-6

-4

-2

0

2

4

time(s)

s
p
e
e
d

e
r
r
o
r
(
k
m

/
h
r
)

SPEED ERROR BETWEEN LEAD VEHICLE AND VEHICLE EQUIPPED WITH ACC

Fig. 14 Speed error between lead and host vehicle while

using GRNN

Fig. 9,11 and 13 shows the tracking of speed through three

different controllers such as BPN, RBN and GRNN. It is

observed that during sudden acceleration and deceleration of

the lead vehicle speed, BPN is producing the best result when

compared to the other networks. i.e., during the safety

conditions of the vehicle, BPN is tracking the speed with

minimum error which is observed in Fig 10. When speed is

tracked through RBN, it is observed from Fig 12. that during

comfort conditions i.e., when the lead vehicle speed is slowly

increasing and decreasing or during the times of constant

speed, RBN is acting as the best when compared to the other

networks. i.e., during the comfort conditions of the vehicle

RBN is tracking the speed with minimum error. Table I.

shows the performance comparison of ACC using three

different controllers.

Table I. Comparative Study Of Different Controllers

Name of

controller

Speed

deviation

(km/hr)

Safety Comfort

BPN 6.8

RBN 9.9

GRNN 11.8

6. CONCLUSION

The three mentioned neural network were used with the

vehicle model for simulating the Adaptive Cruise Control

(ACC). The simulation was performed in Matlab. Among the

three network , during safety conditions (sudden increase and

decrease of speed) BPN acts as the best and during comfort

conditions (smooth driving) RBN acts as the best. In future it

is planned to implement the same in real time for validating

the simulation results.

7. REFERENCES

[1] Sakda Panwai, and Hussein Dia, “Neural Agent Car-

following Models,”IEEE Trans. Intell. Transp. Syst., vol

8,no. 1,pp. 60-70,March 2007.

[2] P.Venhovens, K.Naab and B.Adiprasito “Stop and Go

Cruise Control”,International Journal of Automotive

Technology, Vol.1, no.2, pp.61-69.2000

[3] John-Jairo Martinez and Carlos Canudas-de-Wit “A Safe

Longitudinal Control for Adaptive Cruise Control and

Stop-and-Go Scenarios” IEEE Trans.Control Systems

Technology, vol. 15, no.2, pp.246-258 March.2007

[4] Sungwoo CHOI, Brigitte d’andr’ ca-novel, Michel

FLIESS, Hugues Mounier, Jorge VILLAGRA, “Model-

free control of automotive engine and brake for Stop-

and-Go scenarios,” European control conference, 2009

[5] Luke Ng, Christopher M. Clark, and Jan P. Huissoon,

“Reinforcement Learning of Adaptive Longitudinal

Vehicle Control for Dynamic Collaborative Driving”

proceedings of the IEEE Intelligent Vehicles Symposium,

Eindhoven University of Technology Eindhoven, The

Netherlands, June 4-6,2008

[6] Yang Bin, Keqieng Li, Xiaomin Lian Hiroshi Ukawa,

Masatoshi Handa, Hideyuki Idonuma “Longitudinal

Acceleration Tracking Control of Vehicular Stop-and-go

Cruise Control System”, Proceedings of the 2004 IEEE

Int. Conf .Networking, Sensing & Control pp 607-612,

Taiwan, March 21-23,2004

[7] Kyongsu Yi, Ilki Moon and Young Do Kwon “A

Vehicle-to-Vehicle Distance Control Algorithm for stop

Stop-and-go Control”, in Conf. Rec.2001 IEEE. Conf.

Intelligent Transportation Systems, pp 478-482

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.14, March 2012

6

[8] Jose’ E. Naranjo, Carlos Gonzalez, Member, IEEE,

Ricardo Garcia, and Teresa de Pedro

“ACC+Stop&Go Maneuvers with the

Throttle and Brake Fuzzy Control”,IEEE

Trans.Intelligent Transportation Systems., vol.7, no.

2,pp 213-225,June 2006

[9] Nassaree Benalie, Worrawut Pananuruk, Somphong

Thanok, and Manukid Parnichkun “Improvement of

Adaptive Cruise Control System based on Speed

Characteristics and Time Headway” IEEE/RSJ Int. Conf

on Intelligent Robots and Systems., pp.2403-2408

October 2009.

 [10] S. Paul Sathiyan and A. Wisemin lins,”Soft Computing

Based Adaptive Cruise Control”,Indian Journal Of

Computer Science and Engineering(IJSCE),vol 2,no.

1,pp. 68-76,2011

[11] Vicente Milanes, Jorge Villagra, Jorge Godoy, and

Carlos Gonzalez, Member, IEEE,” Comparing Fuzzy and

Intelligent PI Controllers in Stop-and-Go

Manoeuvres”,IEEE Trans. On Control Systems

Technology,pp. 1-9,2011.

[12] Rudwan Abdullah,Amir Hussain,Kevin Warwick,Ali

Zayed, “Autonomous intelligent cruise control using a

novel multiple-controller framework incorporating

fuzzy-logic-based switching and

tuning”,ELSEVIER(2008),pp. 2727-2741.

