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ABSTRACT 
In recent years many studies on intelligent vehicles have been 

devoted to solve problem such as accident prevention, traffic 

flow smoothing. Adaptive Cruise Control (ACC) is used to 

maintain a constant safe distance between the host vehicle and 

the leading vehicle to avoid rear end collisions.It is an 

automotive feature that allows the speed of the vehicle to 

adapt to the traffic environment. ACC operates in distance 

control mode and velocity control mode. The method by 

which the ACC vehicle’s speed is controlled is via engine 

throttle control and limited brake operation. The  inter 

vehicular distance between the vehicle is measured. Desired 

speed is obtained from the distance measured. Neural 

Network Controller is trained to produce the desired 

acceleration and braking. In this paper, ACC is implemented 

using three types of Neural Network such as Back 

Propagation Network (BPN),Radial Basis Network (RBN) 

and Generalized Regression Neural Network (GRNN). 

Among the three it is observed that during safety conditions 

BPN tracks the speed better and during comfort conditions 

RBN acts best. 
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1. INTRODUCTION 
The Adaptive Cruise Control (ACC) System is an extension 

of the conventional Cruise Control System which is also 

known as Intelligent Cruise Control or Autonomous 

Intelligent Cruise Control (AICC) System. It overcomes the 

disadvantage of Conventional Cruise Control. This AICC 

system not only keeps the speed constant at a desired value 

but it adapts the speed according to the vehicle moving in 

front [1]. Hence, the system can be used in dense traffic with 

repeated start and stop situations [2]. The ACC automatically 

adjust the speed of the host vehicle to match the speed of the 

leading vehicle, which subsequently adjusts the distance 

between the two vehicles. If the preceding vehicle increases 

its speed, the ACC system of the host vehicle automatically 

increases its speed as well. A radar system attached to the 

front of the vehicle is used to detect whether slower moving 

vehicles are in the ACC vehicle's path. If a slower moving 

vehicle is detected, the ACC system will slow the host vehicle 

down and control the clearance, or time gap between the host 

vehicle and the forward vehicle. If the system detects no 

vehicle in the front, then the ACC system will accelerate the 

vehicle to its set speed. This operation allows the ACC  

 

vehicle to autonomously slow down and speed up with traffic 

without intervention from the driver. The method by which 

the ACC vehicle's speed is controlled is via engine throttle 

control and limited brake operation. The distance and speed of 

the vehicle is measured. Desired speed is obtained from the 

distance measured [3]. Based on the desired speed and actual 

speed, speed error is calculated. In this paper ACC is 

implemented in the vehicle model using three Neural 

Networks. They are Back Propagation Network (BPN), Radial 

Basis Network (RBN) , Generalized Regression Neural 

Network (GRNN) and performance analysis is done among 

the three. 

2. BPN BASED ACC 
Neural networks are composed of simple elements operating 

in parallel. These elements are inspired by biological nervous 

systems. As in nature, the network function is determined 

largely by the connections between elements. You can train a 

neural network to perform a particular function by adjusting 

the values of the connections (weights) between elements. 

Commonly neural networks are adjusted, or trained, so that a 

particular input leads to a specific target output.Back 

Propagation Network is a feed forward neural network. It was 

created by generalizing the Widrow-Hoff learning rule to 

multiple-layer networks and nonlinear differentiable transfer 

functions. Input vectors and the corresponding target vectors 

are used to train a network until it can approximate a function, 

associate input vectors with specific output vectors, or classify 

input vectors in an appropriate way as defined. Networks with 

biases, a sigmoid layer, and a linear output layer are capable 

of approximating any function with a finite number of 

discontinuities. Standard back propagation is a gradient 

descent algorithm, as is the Widrow-Hoff learning rule, in 

which the network weights are moved along the negative of 

the gradient of the performance function. The term back 

propagation refers to the manner in which the gradient is 

computed for nonlinear multilayer networks. There are a 

number of variations on the basic algorithm that are based on 

other standard optimization techniques, such as conjugate 

gradient and Newton methods. Neural network toolbox 

implements a number of these variations. 
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2.1     Architecture of BPN 

 

Fig 1: Architecture of BPN 

Feedforward networks often have one or more hidden layers 

of sigmoid neurons followed by an output layer of linear 

neurons. Multiple layers of neurons with nonlinear transfer 

functions allow the network to learn nonlinear and linear 

relationships between input and output vectors. The linear 

output layer lets the network produce values outside the range 

–1 to +1. On the other hand, if you want to constrain the 

outputs of a network (such as between 0 and 1), then the 

output layer should use a sigmoid transfer function (such as 

logsig). Multilayer networks often use the log-sigmoid 

transfer function logsig or tan-sigmoid function tansig. 

2.2 Algorithm of BPN 

STEP 1: Creating a training set of input speed error and 

targets throttle command and brake command [4]. 

STEP 2: Creating a feedforward network, with 2 layers. 

              Hidden layer-3 Neurons, Tansig transfer function 

              Output layer-1 Neuron, Purelin transfer function  

STEP 3: Training function: Levenberg-Marquardt  

STEP 4: Setting of training parameters 

               Learning rate=0.05 

               Error goal=0 

STEP 5: Training the network. 

STEP 6: Finally, outputs are simulated. 

3. RBN BASED ACC 
Radial basis networks can require more neurons than standard 

feedforward backpropagation networks, but often they can be 

designed in a fraction of the time it takes to train standard 

feedforward networks. They work best when many training 

vectors are available. A Radial Basis Function (RBF) neural 

network has an input layer, a hidden layer and an output layer. 

The neurons in the hidden layer contain Gaussian transfer 

functions whose outputs are inversely proportional to the 

distance from the center of the neuron. 

3.1 Architecture of RBN 

 

Fig 2: Architecture of RBN 

The || dist || box in this figure accepts the input vector p and 

the input weight matrix IW1,1, and produces a vector having 

S1 elements. The elements are the distances between the input 

vector and vectors IW1,1 formed from the rows of the input 

weight matrix. The bias vector b1 and the output of || dist || 

are combined with the MATLAB operation .*, which does 

element-by-element multiplication. The function newrb 

iteratively creates a radial basis network one neuron at a time. 

Neurons are added to the network until the sum-squared error 

falls beneath an error goal or a maximum number of neurons 

have been reached. The call for this function is 

net = newrb(P,T,GOAL,SPREAD) 

The function newrb takes matrices of input and target 

vectors P and T, and design parameters GOAL and SPREAD, 

and returns the desired network. The design method of newrb 

is similar to that of newrbe. The difference is that newrb 

creates neurons one at a time. At each iteration, the input 

vector those results in lowering the network error the most is 

used to create a radbas neuron. The error of the new network 

is checked, and if low enough newrb is finished. Otherwise 

the next neuron is added. This procedure is repeated until the 

error goal is met or the maximum number of neurons is 

reached. We can design radial basis networks with the 

function newrbe. This function can produce a network with 

zero error on training vectors. It is called in the following 

way: 

net = newrbe(P,T,SPREAD) 

The function newrbe takes matrices of input vectors P and 

target vectors T, and a spread constant SPREAD for the radial 

basis layer, and returns a network with weights and biases 

such that the outputs are exactly T when the inputs are P. 

3.2 Algorithm of RBN 

STEP 1: Creating a training set of input speed error and 

targets throttle command [5] and brake command. 

STEP 2: Plotting of training vectors. 

STEP 3: Finding a function which fits the data points [6], 

done by Radial Basis network. 

• Number of layers: 2 

• Hidden layer-Radial Basis neurons. 
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• Output layer-Linear neurons. 

STEP 4: Radial Basis transfer function is defined and plotted. 

STEP 5: Three Radial Basis functions are scaled and summed 

to produce a function. 

STEP 6: Creating a Radial Basis network with function 

newrb. 

• eg=0.02 

• Spread=0.1 

STEP 7: Finally, simulating the network response. 

4.  GRNN BASED ACC 

Generalized Regression networks are variant of Radial Basis 

network. A GRNN is often used for function approximation. 

It has a radial basis layer and a special linear layer. For 

problems with small to medium size training sets, networks 

are usually more accurate than RBF network’s. 

4.1 Architecture of GRNN 

 

Fig. 3 Architecture of GRNN 

4.2  Algorithm of  GRNN 

STEP 1:Creating a training set of input speed error  and 

targets throttle command and brake command  

STEP 2:Creating a GRNN network by newgrnn with 

arguments input P, targets T, spread constant. 

 Number of layers:2 

 Hidden layer: Radial Basis layer 

 Output layer: special linear layer  

STEP 3:Finally simulating the network response.   

5. SIMULATION RESULTS 

The Fig. 4 describes the vehicle model used for simulation 

purpose. In this model as throttle changes, gear and clutch 

sequence changes and corresponding speed is obtained. The 

throttle command is given by means of neural network 

controller according to speed error. Three neural network 

controller such as BPN,RBN,GRNN are used.  

Fig. 4  Vehicle model 

The architecture for the GRNN is shown above. It is similar to 

the radial basis network, but has a slightly different second 

layer. Here the nprod box shown above (code function 

normprod) produces S2 elements in vector n2.  Each element 

is the dot product of a row of LW2,1 and the input vector a1, 

all normalized by the sum of the elements of a1. The first 

layer  has  many neurons as there are input/ target vectors in 

P. Specifically, the first-layer weights are set to P'. The bias 

b1 is set to a column vector of 0.8326/SPREAD. The user 

chooses SPREAD, the distance an input vector must be from a 

neuron’s weight vector to be 0.5.Each neuron’s weighted 

input is the distance between the input vector and its weight 

vector, calculated with dist. Each neuron’s net input is the 

product of its weighted input with its bias, calculated with 

netprod. Each neuron’s output is its net input passed through 

radbas. If a neuron’s weight vector is equal to the input vector 

(transposed), its weighted input will be 0, its net input will be 

0, and its output will be 1. If a neuron’s weight vector is a 

distance of spread from the input vector, its weighted input 

will be spread, and its net input will be sqrt(-log(.5)) (or  

0.8326). Therefore its output will be 0.5. Function newgrnn 

can be used to create a GRNN. Now obtain a GRNN with 

net = newgrnn(P,T) 

Fig. 5 describes the subsystem of the ACC using neural 

network controller.The distance between host and lead vehicle 

is given to the lookup table where the expected speed of the 

host vehicle corresponding to the distance is being 

given.Based on this,the expected speed(speed of lead vehicle) 

corresponding to the distance is obtained.This speed is then 

compared with the actual speed of the host vehicle and speed 

error is obtained. Thus input to the Neural Network controller 

is speed error. 

Serror= Slead-Sactual                             (1) 

The neural network controller is trained in such a way that 

it will produce the desired acceleration and braking 

corresponding to the speed error [7]-[12]. The output of the 

Neural Network controller is fed to the vehicle and 

corresponding speed is obtained. 
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Fig. 5  Subsystem of ACC using neural network controller. 

5.1 Calculation of throttle 
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Fig. 6  Graph of variable throttle. 
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Fig. 7  Speed response corresponding to variable throttle. 
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Fig. 8  Speed response corresponding to steady throttle 

Fig. 6 describes the graph of variable throttle.Based on the 

variable throttle, corresponding variable speed is shown in Fig 

7.Fig. 8 describes the constant speed response corresponding 

to constant throttle. Based on the above study corresponding 

throttle valve is obtained for different speeds.This throttle 

value is used for training neural network controller. 

5.2 Performance comparison of ACC using 

three neural network controllers 
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Fig. 9  Tracking of speed through BPN 
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Fig. 10  Speed error between lead and host vehicle while 

using BPN 
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Fig. 11  Tracking of speed through RBN 
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Fig. 12  Speed error between lead and host vehicle while 

using RBN 
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Fig. 13  Tracking of speed through GRNN 
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Fig. 14  Speed error between lead and host vehicle while 

using GRNN 

Fig. 9,11 and 13 shows the tracking of speed through three 

different controllers such as BPN, RBN and GRNN. It is 

observed that during sudden acceleration and deceleration of 

the lead vehicle speed, BPN is producing the best result when 

compared to the other networks. i.e., during the safety 

conditions of the vehicle, BPN is tracking the speed with 

minimum error which is observed in Fig 10. When speed is 

tracked through RBN, it is observed from Fig 12. that during 

comfort conditions i.e., when the lead vehicle speed is slowly 

increasing and decreasing or during the times of constant 

speed, RBN is acting as the best when compared to the other 

networks. i.e., during the comfort conditions of the vehicle 

RBN is tracking the speed with minimum error. Table I. 

shows the performance comparison of ACC using three 

different controllers. 

Table I.  Comparative Study Of Different Controllers 

Name of 

controller 

Speed 

deviation 

(km/hr) 

Safety Comfort 

BPN 6.8 
 

 

RBN 9.9  
 

GRNN 11.8   

6.  CONCLUSION 

The three mentioned neural network were used with the 

vehicle model for simulating the Adaptive Cruise Control 

(ACC). The simulation was performed in Matlab. Among the 

three network , during safety conditions (sudden increase and 

decrease of speed) BPN acts as the best and during comfort 

conditions (smooth driving) RBN acts as the best. In future it 

is planned to implement the same in real time for validating 

the simulation results. 
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