
International Journal of Computer Applications (0975 – 8887) 

Volume 42– No.12, March 2012 

1 

Adaptive Backstepping Synchronization for Networked 

Lagrangian Systems 

 
Yassine  Bouteraa  Jawhar Ghommam  Gérard Poisson   

 

 

 

ABSTRACT 

A decentralized control law using a backstepping scheme is 

proposed to deal with a leader follower multiple robots 

structure.  Based  on graph theory and  Laplacian, the  

coordination strategy combines  the  leader  follower  control  

with  the  decentralized  control.    In  fact,  in  the  proposed 

approach, each  follower robot  only  needs  the  information 

exchange  with its connected neighbors and  does not  assume  

the  existence  of direct  communication  channel  with  the  

leader,  which  mitigate the  implementation cost,  mainly  

when  the  cooperative  robots  number  increases.   The  

objective of the  designed  control  law is to synchronize 

positions and  velocities of multiple followers interconnected 

via  the  neighbor-based rule  with  respect  to the  leader’s  

state. The proposed strategy is further extended to adaptive 

neural network coordination.  The performance of 

synchronization control system and the nonlinear stability are 

derived by Lyapunov method.  Simulations were performed to 

demonstrate the effectiveness of the proposed synchronization 

control approach. 

General Terms 

Synchronization and cooperative robot control. 

Keywords 

Cooperative control,  adaptive mutual  synchronization, robots 

coordination, graph theory, backstepping control. 

1. INTRODUCTION 
Recently, coordination control and consensus problems have 

been extensively studied in the area of distributed and 

decentralized networked systems.  As one of the research 

topics, the coordination control of multiple robots has 

attracted much attention with applications in mobile robots 

[2], [21], robot manipulators [27], [6], [28], unmanned aerial 

vehicles [23], autonomous underwater vehicles [9], aircraft 

[30], Lagrangian systems in general [3], [1]. Multi-agent 

systems based on first-order consensus algorithms have 

attracted intensive attention in the literature [11], [17]. 

However, due to the broad class of agents should be described 

by second-order dynamic, the consensus problem modeled by 

double integrator is more challenging [15], [10]. The 

coordination of multi-robot systems  and consensus  problems  

are related  with the  synchronization problem  which uses a 

graph  theory  [26]. According  to Rodriguez [27], based  on 

the  type of interconnections in the system, different kinds of 

synchronization can be defined:  mutual synchronization, 

when all agents occur on equal term,  cooperative systems 

case [27], and  external  synchronization, when one object  is 

more powerful than  the others  and  its  motion  can  be 

considered  as independent of the  motion  of the other  

objects,  master-slave systems  case [31]. It is noted that there 

have been numerous investigations in multi-agent networks 

with leader-follower structure [29], [18], [14], [25], [19], [11], 

[20]. An event-based motion reference is designed to drive the 

multi-robot system to achieve the best possible coordination 

[34]. However, the used approach in [34] is classified as 

centralized control.  Most of earlier works in leader-follower 

multi-agent coordination approach require each follower to 

have the information access to the leader [31], [32], [33]. As a 

result, the network implementation becomes more 

complicated: costly and less robust. Notable  studies  

demonstrate that the  nearest  neighbor  can cause all agents  

to eventually  move in the same direction  despite the absence 

of centralized  coordination  [29], [7]. Recent researches 

propose approaches which each agent follower is solely based 

in the information of connected neighbors [4], [8]. To 

combine the leader-follower control with the decentralized 

control is the most practical model that benefits in the same 

time of the simplicity, efficiency and robustness. 

This  paper  focuses on  designing  decentralized law to  

control  a team  of fully actuated manipulators in order to 

synchronize  their  movements  while following a common  

desired  trajectory, under  a leader-follower  structure.  The  

proposed approach,  based  on combination of backstepping 

technique  and  graph  theory control,  works to synchronize  

positions  and  velocities  of multiple  followers 

interconnected via the neighbor-based rule with respect  to the 

leader’s state  (see Fig.1). 

In contrast of most  previous  works which  deal  with  the  

first  simple  dynamic models such as linear systems and first- 

or second-order  dynamics  without non- linearly inertia  

matrices,  the proposed strategy deals with highly nonlinear  

systems such as lagrangian  systems. 

Likewise, earlier  works  in the  field of consensus  and  multi-

agent cooperation using graph  theory  and laplacien  [29], 

[15], [20] do not address  the  multi-agent systems where there 

is a desired path  to follow and they have been just to settle for 

reach the weighted  average of initial  conditions. 

A simple comparative with [27], [31] and [5], we note that the 

proposed contribution  managed  to eliminate  the  all-to-all  

coupling  and  consequently  decrease the number  of 

variables  to manage  in network. 

Compared  with classical leader follower structure [31], [22] 

our contributed work benefits  of the  neighbor-based  rule  to  

design  a  decentralized  leader-follower structure such as the  

network  do not  requires  direct  communication channels 

between  the  leader  and  all followers.   Also,  the  proposed  

topology  permits  a follower-follower data  exchange.  As 

result, network design less costly and more robust. 

To meet the practical constraints, the case of the uncertainty 

parameters is studied.    Compared  with  all the  cited  

references  that deal  with  the  standard adaptive  
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synchronization [28], [3] the  proposed  control  law uses the  

adaptive neural  network  that essentially  avoids  the  

computation of regression  matrices and the tedium  of the 

analysis. 

This paper is organized as follows: In Section 2, the modeling 

multi-robot network is presented an overview of multi-agent 

communication and the problem formulation are discussed.  

In section 3, non-adaptive algorithm for trajectory tracking 

and synchronization control based on backstepping technique 

and graph theory is presented.  Then,  in order  to  deal  with  

the  presence  of parametric  modeling  uncertainties, the  

control  law has  been extended  to adaptive controller  based  

on neural  network  algorithm .  Finally, the simulation result 

section and the conclusion section follow, respectively. 

2. PROBLEM STATEMENT AND 

PRELIMINARIES 

2.1 Robot Modeling 
This  section  describes  a dynamic  model of fully actuated  

Lagrangian systems that represents  a typical class of robotic  

systems,  such as ground  vehicles, aircrafts,  and  robot  arms.   

Following  [16], the  n degree-of-freedom  robot  manipulator  

composed  of rigid  bodies  is expressed  based  on  Newton’s  

and  Euler’s equations  as follows: 

Mi  qi  q i  +  Ci  qi , q i  q i  +  gi  qi  =  τi      (1) 

Where, qi  ∈  Rn , denotes the joint angles of the ith 

manipulator, q i  ∈  Rn  and q i  ∈  Rnare the vectors of joint 

velocity and joint acceleration, respectively.  

Mi (qi )  ∈  ℜn×nrepresents inertia matrix which is symmetric 

uniformly bounded and positive definite Ci (qi , q i )q i ∈
 ℜn×n  is a vector function containing coriolis and centrifugal  

forces, gi (qi )  ∈   ℜn×n  is a vector  function  consisting  of 

gravitational forces and τi  is the vector  function  consisting  

of applied  generalized  torques. 

2.2 Problem formulation 
Each robot manipulator hence forth called agent has a 

complete knowledge of its state and the states of some other 

neighbors through sensors communication. In this regard and 

in order to simplify the intercommunication process, we 

consider each robot as a node and the communication between 

all nodes is represented by an indirected graph. Let G =

 (V, E)  is a digraph with N nodes, the set nodes V =

 1, 2, . . , m and edges E ⊆  V ×  V . Each node is labeled by 

vi   ∈  V and each edge is denoted by
 eij   =  ( vi  , vj  ).  

The neighbors of agent vi   are denoted by   N  =  {vj  ∈

 V /(vi , vj )  ∈  E}.  The adjacency matrix  A =   aij  ∈ ℝm×m   

of a weighted digraph is defined as: 

 
aij  >    𝑖𝑓  vi , vj ∈ E

aij = 0        elsewhere
  

Agent i communicates with agent j if j is a neighbor of i or 

if aij = 0.  Note that an edge eij in a directed graph means that 

robot j can reach information from robot i, but not necessarily 

vice versa.  In contrast, in an undirected graph, pairs of node 

are unordered and an edge eij implies that robots i and j can 

get information from one another.  The adjacency matrix of an 

undirected graph has the same meaning as that of the directed 

graph except that  aij  =  aji .  The degree matrix of the 

digraph G = (V, E) is a diagonal matrix defined as: 

dij =  
degout   vi    if  i = j ∈ E

0              otherwise
  

where degout (vi )  =  aij
n
j=1  

The graph laplacian of G is defined as: L =  D −  A, where 

D =  [dii] the degree matrix of G. In the undirected graph 

case, L is symmetric positive semidefinite. 

In the  proposed  strategy, we consider  a multi-robot system  

formed  by m + 1 rigid joint robot manipulators, such that the 

motion  of one of the manipulators is independent  of the  

other  ones.   This dominant agent will be referred to as the 

leader manipulator. The leader will be indexed by 0 and the 

follower set will be indexed by 1, 2, . . . , m. In contrast of the  

leader  independent  motion, the  follower manipulator motion  

is influenced  by the  leader  and  the  other  fol- lowers.  To 

study the leader follower cooperation we define a graph 

topology G consisting of m robot manipulators as followers 

and one robot manipulator as a network leader.  We define 

bi (i =  1, 2, . . . , m)  as positive coefficients that give insight 

into the communication between the ith follower and the 

leader.  In the case where we have not  an active  data  

exchange  between  the  ith  follower and the  network  leader,  

a zero will be assigned  to  the  value  of bi .  In the present 

topology, the edge represents bidirectional communication 

links.  This consists on a group of m manipulators 

interchanging information that can be viewed as an undirected 

graph (see Fig.1 and Fig.2). 

 

Figure 1: Leader-follower network topology. 

3. CONTROL DESIGN 

3.1 Non-adaptive backstepping approach 
Starting with the state-space representation of the ith robot 

dynamic system (1): 

 

Figure 2: Leader-follower network graph. 
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q 1i = q2i

Mq 2i = τ −  C (q1 , q2 )q2  +  g(q1 )
   

The philosophy in the backstepping method is to set q2i as a 

virtual controller, which is responsible to synchronize the 

state q1i with the leader state q0. Based in the multi-agent 

theory we define the following form: 

ui  =   A ij (q1j   −  q1i  )  +  Bi (q0  − q 1i)j≠i                 (2) 

where Aij   =  diag(aij  )m×m  ; aij  defines the ith row and the 

jth  column element in the  graph adjacency matrix A; 

B  i = diag(bi  )m×m  .  Suppose that  q2i   is the control to 

synchronize the state  q1i   with the leader and k is positive 

scalar, we choose 

q2i = k ui + q 0                                (3) 

Considering equation 6, equation 7 can be written in the 

compact form as: (3) considering equation 6, equation 7 can 

be written in the compact form as:  

q 1  −  q 01 = −k[(L +  B) ⊗ In ](q1  − q0  1)                  (4)                 

Or  

q 1  −  q 01 = −k[(L +  B) ⊗ In ](q1  − q0  1)                  (5)  

Where q 1 =  q 11
T , . . , q 1i

T , . . , q 1m
T  

T
∈ ℝm×n ; q2 =

 q21
T , . . , q2i

T , . . , q2m
T  

T
∈ ℝm×n ; 1 =  1,1,… ,1 T ∈ ℝn ; ⊗ 

denotes  the  Kronecker  product  and  In  denotes  the  n ×
n  identity matrix. 

The  objective  is to  design  a  torque  controller  τi   which  

derives  q1i    to  q0      for 1 ≤  i ≤  m,  i.e, lim q1i  →  q0   

for t →  ∞.  To this  end, we define the  error  signal for the 

ith robot  as: 

ei =  q1i   −  q0      (6) 

Since q2i  is not the real control for q1i  , we consider it as a 

virtual control and we propose the following error variable as: 

zi  =  q2i   −  αi                                                                     (7) 

with αi   being the virtual control  for q1i  such that 

αi   =  kui + q 0         (8)   

Design the torque inputs for the ith robot manipulator in 

network comprised of m robots (m ≥  2). 

τi = Ci q1i , q2i q2i + g q1i −
1

2
kzi − pei    

    +Mi   
∂α i

∂qij
 q2i − q2j +

∂α i

∂q1i
q2i    +

∂α i

∂q0
q 0j≠i            (9) 

where 𝑘 and p are positive scalars. 

Remark 1:  It is noted that the proposed controller needs the 

velocity q˙0   and acceleration q¨0   of the leader manipulator. 

Therefore, this information can be accessible to each follower 

manipulator in the controller design phase.  It is also a 

common requirement in the existing literature [13] and [29]. 

Remark 2:  With  quick look in the  controller  expression,  

we can distinguish that the  proposed  control  law only uses 

the  information from those  neighbors with  which  is 

connected.    This aspect that reflects the decentralized control 

limits the communication flow.  As result, an efficient and 

optimized network with a low cost. 

Theorem 3.1 (Synchronized Trajectory Tracking Law) 

Consider a multi-robot system formed by (m +  1) rigid joint 

robot manipulators coupled under leader-followers topology 

(Fig.1).  The proposed nonlinear control law (9) synchronizes 

all the follower manipulators’ joints to the joint trajectory of 

the leader manipulator. 

Proof Starting with equation 4, form [13] (L +  B) is a 

nonsingular M-matrix, then, for P >  0 and Q >  0 we have 

Q =  P (L +  B)  + (L +  B)T  P                                     (10)                                                                  

To show that for each 1 ≤  i ≤  m, qi  →  q0, we consider  

the  global system  and we propose the following lyapunov  

function  as: 

V =  eT  (P ⊗ In  )e                                                          (11) 

with e =  q1  −  q0 1 is the error signal in the compact form. 

The time derivative of V with respect to time gives 

V  =  [eT (p ⊗  In  )𝑒  +  𝑒 𝑇  (p ⊗ In  )e]                         (12) 

Taking into account equation 5, then equation 12 can 

be written 

V =  −eT (p ⊗ In  )[(L +  B)  ⊗ In   ]e +  −eT  [(L +
 B) ⊗  In ]T (P ⊗  In )e]  

    =  −eT  [(p ⊗ In  )[(L +  B) ⊗ In  ]  + [(L +  B)  ⊗
In ]T (P ⊗ In )]e                                                               (13) 

This yields that 

V =  −eT (Q ⊗ In  )e                     (14) 

This  shows that V  is negative  semi definite  and  therefore  

the  origin  e =  0 is asymptotically stable  and  e →  0 as 

t →  0 i,e, qi   →  q0   ∀i ∈  [1, m].  Since q2  is not  the  real 

control  for q1 , we consider  it as a virtual  control  and  we 

propose the following error variable  z as defined in (7).  In a 

compact form the equation (7) can be written as: 

z =  q2   −  α                                                                      (15) 

with z =  z1
T , … , zm

T  
T

, q2 =  q21
T , … . , q2m

T   T , α =

 α1
T , … , αm

T  
T

, therefore representation in the compact form of 

(8) such as  

α =  ku + q0  1                   (16) 

To find the real control input, we proceed by two steps of 

backstepping design procedure: 

First step: Let the first control lyapunov function be: 

V1   =  eT  P                                                                          (17) 

The time derivative of V1   becomes 

V 1   =  2eT  P z + [eT  P (α −  q 0)  +  (α − q 0)T   P e]   (18) 

A straightforward computation gives us: 

V 1   =  2eT  P z −  eT  kQ ⊗ In  e                                 (19) The 

first term of V1 will be dealt in the next step of the 

backstepping procedure. 

Second step:  Differentiating z with respect to time gives 

z =  q 2   −  α                                                                        (20)  

Post multiplying by M both sides gives  

Mz  = Mq 2 − Mα                                                                     
Taking  into  account  of the  representation state  of the ith  

robot  dynamic system,  the previous  equation  can be written 

as 
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M z  =  τ −  C (q1  , q2  )q2  −  g(q1 ) 

−M   
∂α

∂q1ij
q 1ijj≠i +

∂α

∂q1i
q 1i +

∂α

∂q0
q 0                              (21) 

Further calculation, will result in 

M z  =  τ −  C (q1  , q2  )q2  −  g q1           

−M   
∂α

∂q1ij
 q2i − q2j j≠i +

∂α

∂q1i
q2 +

∂α

∂q0
q 0                    (22) 

Select the control for τ as equation   (9).  Let the second 

control lyapunov function 

V2   =  V1   +  zT  M z                                                           (23) 

The time derivative of V2   with respect to time gives 

V 2   =  −eTQe +  2eTP z +  2zTM z  

=  −eT  Qe − zTkz +  2eTP z −  2zTpe 

=  −eTQe − zTkz                    (24) 

This proves that V2 is negative definite.  Consequently we 

show the asymptotic convergence to zero of both errors e 

as z. 

3.2 Adaptive neural network approach 
 

In the  first  proposed  study,  the  aforementioned schemes  

are  based  on the  ex- act  knowledge  of the  system,  i.e,  

𝑀 (𝑞),  𝐶 (𝑞, 𝑞 )  and  𝑔(𝑞) are  supposed  to  be known.  

However for practical applications the robot network 

system are confronted with parameter uncertainties.  Thus, 

if these matrices where unknown the control input (9) 

wouldn’t be implementable. Therefore, in this section, we 

discuss the challenge of uncertainty in physical 

parameters of robots.   To deal with this hypothesis, we 

can proceed in two ways.  The first approach is to use the 

standard (conventional) adaptive control. While the second 

approach is to use a Radial Basis Function Neural 

Networks (RBFNN). What  is motivating for the  second 

approach  is that it prevents  the  tedium  of the  analysis  

and  computation of regression  matrices  in which their  

complexities  depend mainly  on the complexity of 

the system studied.  Thus, in the proposed work, the 

RBFNN are proposed to model the unknown 
nonlinear dynamics of the networked system. 

3.2.1 Neural Network background 
Consider the multilayer neural network architecture presented 

in F ig.3. The output of the multilayer perception is as 

follows: 

𝑌𝑖 =   𝑤𝑖𝑗𝜎  𝑣𝑖𝑘𝑥𝑘 + 𝜃𝑣𝑗

𝑁𝑖

𝑘=1

 + 𝜃𝑤𝑖                       (25)

𝑁𝑕

𝑗=1..𝑁0

 

Where σ .   the activation is function; Nh is the number of 

hidden-layer neurons. Ni  and N0   are regarded as the number 

of input-layer and output-layer neurons, successively. vik   
represents the first-to-second-layer interconnections weights 

,wij    represents the  second-to-third-layer interconnection 

weights  and xk   is the kth input  to the neural  network.  

θvj  and θwi   denote the threshold offsets. Collecting all the 

neural network vik  and wij  into matrices VT   and WT  . 

Then equation (25) can be written in terms of vector as: 

Y  =   WTσ( VT  x)                                                              (26) 

Y (x) is considered a general smooth function from ℝN i  to 

ℝN0   that represent the unstructured uncertainties and it can be 

written as: 

Y  =   WT  ϕ(x)  + ϵ                                                            (27) 

where ϕ is the  basis functions  and ϵ is a reconstruction error  

vector  such that 

 𝜖 < 𝜖𝑀  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

 

Figure 3: Schematic diagram of RBF Neural Network. 

3.2.2  Neural Network Controller Design 
The objective is to develop an adaptive neural network 

trajectory-tracking control law to synchronize multiple robot 

manipulators. Thus, assume that: 

𝐻 = C (q1 , q2 )q2  −  g(q1 ) + M   
∂α

∂q1ij
q 1ijj≠i +

∂α

∂q1i
q 1i +

∂α∂q0q0                                                                 (28) 

is unknown.  According to the general approximation 

property of the RBFNNs, the global node nonlinearity for H 

can be written as: 

H =  θT  φ + ϵ                                                                    (29) 

where θ ∈  ℝNh ×N0     is a vector  of the output layer weights 

as a collection of NN 

weights; φ ∈  ℝNh     is the  vector  of output of hidden  layer  

nodes  called  Radial 

Basis Functions (RBF); ϵ is the neural network approximation 

error and Nh   is the number of nodes in the hidden layer. The 

estimate of this nonlinear function is obtained as the output of 

the RBFNN and given by: 

H   =  θ T  φ(q1  , q2  , q0 , qij  )                                                     (30) 

where θ  is a current estimate  of the neural network weights 

for which we propose to determine an update  law. 

Therefore, taking into account (28) − (29) − (30), the 

developed controller (9) takes the following adaptive version: 

τ =  θ Tφ −  P e − 
KZ

2
z  (31) 

Theorem 3.2 (Adaptive Synchronized Trajectory Tracking 

Law) 

The developed adaptive control law (31) solves position 

synchronization to trajectory tracking of multiple robot-

manipulators under leader-followers topology in presence of 

parametric uncertainties. 

 

Proof let the new Lyapunov function will be of the form: 

V3 = V2 +
1

2
trace θ TΓ−1θ     (32) 

where θ =  𝜃 − θ ; 𝛤 is a diagonal  positive-definite 
control  gain. The time derivative of V3   is: 

 

V 3 = −eTQe +  2eTP z +  2zTM z + trace  θ TΓ−1θ   (33) 
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= 2zT  τ − C  q1  , q2   q2  −  g q1   

− M   
∂α

∂q1ij
 q2i − q2j 

j≠i

+
∂α

∂q1i
q2 +

∂α

∂q0
q 0  − eTQe 

+  2eTP z + trace  θ TΓ−1θ    

= 2zT τ − 𝐻 − eTQe +  2eTP z + trace  θ TΓ−1θ    

= 2zT τ − θT  φ q1 , q2  , q0 , qij   − ϵ − eTQe +  2eTP z +

trace  θ TΓ−1θ                                                                      (33) 

Let  

τ = θ Tφ −  P e − 
KZ

2
z 

 

Therefore  

 v 3 = 2zT −θ Tφ −  P e − ϵ − eTQe +  2eTP z +

trace  θ TΓ−1θ   −  zTKZz  

       = −eTQe − 2zTϵ − 2zTθ Tφ 

          −zTkZz + trace  θ TΓ−1θ                                          (35) 

Then, we can written that                                                                                                                                                                                                                                         

v 3 ≤ −eTQe − 2zTϵ 

−zTkZ + trace  θ T(Γ−1θ  + 2φzT)                         (36) 

Choose 

θ  =  −Γ(2φzT  −  kθ )    (37) 

Results in 

v 3 ≤ −eTQe − 2zTϵ − zTkZ + trace θ T(Γ−1 −2ΓφzT +
 kΓθ)+2φzT)                                                                (36) 

This yield 

v 3 ≤ −eTQe − 2zTϵ − zTkZ + 𝑘trace θ T(θ − θ )   

For ϵ >  0, the Neural Network approximation error is 

bounded by  ϵ ≤ ϵM . This gives 

 

 

𝑣 3 ≤ −𝜆𝑚𝑖𝑛  𝑄  𝑒 2 − 2 𝑧 𝜖𝑀 − 𝑘𝜃𝑀 𝜃  
𝐹
− 𝑘 𝜃  

𝐹

2
−

𝜆𝑚𝑖𝑛  𝑘𝑧  𝑧 
2                                                                      (40) 

Where  𝜃  
𝐹

=  𝑡𝑟𝑎𝑐𝑒 θ Tθ . 

The equation (40) can be written in a more compact form as : 

𝑣 3 ≤  
 𝑒 

 𝜃  
𝐹

 

𝑇

 

𝜆𝑚𝑖𝑛  𝑄 

2
−

1

2
𝑘𝜃𝑀

−
1

2
𝑘𝜃𝑀

𝜆𝑚𝑖𝑛  𝑄 

2

  
 𝑒 

 𝜃  
𝐹

 −

𝜆𝑚𝑖𝑛  𝑘𝑧  𝑧 
2 − 2 𝑧 𝜖𝑀                                                    (41) 

This proves that V 3 is negative deflnite. 

4. SIMULATION RESULTS 
 
To show the feasibility and performance  of the proposed 

adaptive neural network based on backstepping design, a 

simulation study has been performed for a group of two-

link full actuated robot  manipulators. 

The dynamic equations of the two-link manipulator 

system, used extensively in the literature, are: 

 
𝑀11 𝑀12

𝑀21 𝑀22
  

𝑞 11

𝑞 12
 +  

𝐶11 𝐶12

𝐶21 𝐶22
  

𝑞 11

𝑞 12
 +  

𝑔1

𝑔2
 =  

𝜏1

𝜏2
   (42) 

where 

 𝑀11 = 𝑚2𝑙2
2 + 𝑚2𝑙1𝑙2 cos 𝑞2 

𝑀12 =  𝑚1 + 𝑚2 𝑙1
2 + 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2 cos 𝑞2 

𝑀21 = 𝑀12 

𝑀22 = 𝑚2𝑙2
2
 

The robot  physical parameters are chosen as follows: 

𝑙1   =  1𝑚, length of the first link; 𝑙2   =  0.8𝑚, length 

of the second link; 𝑚1   =  1𝑘𝑔, mass of the  first link; 

𝑚2    =  0.8𝑘𝑔, mass of the  second link.  In the 

simulation, we assume that the network is homogeneous.  

The aforementioned tracking control is proposed for a 

network of 4 robot manipulators interconnected under a 

leader-follower scheme as shown in fig.4. 

 

Figure 4: Leader-follower scheme. 

One is the network leader , the other are three identical  

followers robots.  Define the initial joint coordinations of 

follower robots as following: robot1:(q11  , q12) =
(20, 20)degree, robot2:  (q21  , q22) = (10, 10)degree, 

robot3:(q31  , q32)  =  −10,−10 degree.Where (q11  , q12 ), 

(q31  , q32  ) and (q31  , q32) denote two joint coordinations of 

each robot.  Consider that the common trajectory to be 

tracked is a periodic form like:𝑞𝑑  =  𝑠𝑖𝑛(𝑡)𝑠𝑖𝑛(2𝑐𝑜𝑠(𝑡)). 

To specify to which robots each robot is connected, we 

propose the adjacency matrix 

𝐴 =  
0 0 0.8
0 0 0.7

0.8 0.7 0
                                                         (43) 

The data exchange among network is reflected by the 

following Laplacian matrix 

 

𝐿 =  
1 0 −0.8
0 1 −0.7

−0.8 −0.7 2
                                                 (44) 

4.1 Case 1:  Non-adaptive Control 
 

Let us first study  the synchronized  tracking  controller  when 

the neural  network adaptation law is not activated. The 

control gains used for simulation  are shown below: 

 

Table 1: Control gains for adaptive simulation 

Control  Gains Follower1 Follower2 Follower3 

k 50 40 40 

p 100 100 200 

b 0.5 0.4 0 

The movement of each follower robot is shown in Fig.  5 that 

illustrate the robots synchronization tracking a common 

trajectory. According to the simulation result, it can be 

obtained that all the follower robots can track the trajectory of 
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the leader.   This proves that the tracking and synchronization 

objectives are attained by the proposed controller.   Fig.6 

show the synchronization of the robots velocities.  Here it is 

interesting to note  that the  robots  begin their  actions from 

different starting points and thus achieve a speed of 

synchronization in the  various  robots  in the  network  will 

be a requirement of robustness  of the coordination task  .  

The tracking error and synchronization error are depicted in 

Fig.7 and Fig8, respectively. 

 

Figure  5: Trajectory Tracking  and Synchronization 

 

Figure  6: Velocity synchronization. 

 

Figure 7: Trajectory Tracking  error. 

 

Figure 8: Synchronization error. 

4.2 Case 2: Adaptive Control 
In this case, we assume that the physical parameters of robots 

are unknown. Thus, a neural network adaptation is used to 

estimate on-line the uncertain parameters. The control gains 

used for simulation are shown below: 

 

Table 2: Control gains for adaptive simulation 

Control  Gains Follower1 Follower2 Follower3 

k 50 40 40 

p 200 200 250 

b 0.5 0.4 0 

Γ 0.002 0.002 0.002 

The proposed network architecture uses two Gaussian 

function of the form: 

𝜙𝑖 = 𝑒𝑥𝑝  
− 𝑥 − 𝑐𝑖 

2

2𝛾𝑖
2   

where, 𝑥 =  [𝑞𝑖
𝑇 , 𝑞 𝑖

𝑇  , 𝑞0
𝑇  ]𝑇    is the  input  vector  of the  

RBF;  𝑐𝑖 ∈ ℝ2  is the  center vector  and  𝛾2 ∈ ℝis the  

variance.   The value of 𝑐𝑖    and  𝛾2  are fixed for the robots at 

[100, 100, 100]𝑇  and 50, respectively. 

 

Figure 9: Synchronization of networked robots: 

adaptive case. 

 

 

Figure 10: Velocity synchronization: adaptive case 
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. Figure 11: Trajectory Tracking error: adaptive 

case. 

 

Figure 12: Synchronization error: adaptive case. 

The behavior evolution of each robot in the proposed 

network is seen in Fig.9. An overview of this result clearly 

shows a synchronization of movement between robots and  

a perfect  trajectory tracking  who proves  that the  

synchronization and the trajectory tracking were achieved.  

Since the robots have different starting points, moreover 

they can not face the same external disturbances , 

velocity synchronization remains a  challenge to achieve.   

In this context ,   the velocity synchronization is shown 

in Fig.10.  Tracking e r ro r  and synchronization error are 

presented in  Fig.11 and Fig.12, respectively. 

5. CONCLUSIONS 
A decentralized control law to trajectory tracking and 

motion synchronization of networked lagrangian 

sys t e ms  has been developed.  First, using the combina- 

tion of backstepping technique and graph theory control, 

the proposed approach works to synchronize positions and 

velocities of multiple followers interconnected via the 

neighbor-based rule with respect to the leader’s state.   In 

contrast with previous work in the literature dealing with 

linear system and single or double integrator models with a 

constant inertia matrix, the proposed strategy permits 

highly nonlinear systems.   Second,  to  deal  with  

parameter uncertainty problems, specially in practical 

applications, the  proposed  approach  is extended  to an 

adaptive  neural  network  control  law.  The  control  

performance  is analyzed by the  lyapunov  method  and  

it’s shown that the  developed controller  guarantees 

asymptotic convergence of both  synchronization errors 

and position errors. Simulation results obtained from a 

multi-manipulators motion demonstrate the effectiveness 

of the leader-follower coordination strategy.  In a 

prospective research work we are interested to extend this 

methodology in order to take into account communication 

delays. 
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