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ABSTRACT 

Risk assessment is an important and significant aid in the 

decision making process. Risk assessment is performed using 

‘model’ and a model is a function of parameters which are 

usually affected by uncertainty. Some model parameters are 

affected by aleatory uncertainty and some others are affected 

by epistemic uncertainty. In this paper we propose a hybrid 

method to deal with propagation of both kinds of uncertainty 

within the same computation of risk. 
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1. Introduction  

Risk assessment is an important and popular aid in the 

decision making process. The aim of risk assessment [10] is to 

estimate the severity and likelihood of harm to human health 

from exposure to a substance or activity that under plausible 

circumstances can cause to human health. The assessment is 

performed using model and a model is a function of 

parameters which are usually affected by aleatory and 

epistemic uncertainty. Uncertainties have different 

representations viz. probabilistic and possibilistic. Many 

researchers have addressed uncertainty in risk assessment 

using probability theory. For example Labieniec , Dzombak 

and Siegris [15], Maxwell, Pelmulder, Tompson, and 

Kastenberg [17], Maxwell and Kastenberg [18], Prado, 

Draper, Saltelli, Pereira, Mendes, Eguilior, Cheal and 

Tarantola [16], Ma, Wu and Ton [12, 13] presented 

application of probability theory to human health risk 

assessment. But probability theory intended only for aleatory 

uncertainty and it is inappropriate to represent epistemic 

uncertainty. To overcome this limitation of probability theory 

Zadeh in 1965 introduced fuzzy set theory. Dou, Woldt, 

Bogardi, Dahab [7], Bardossy, Bronstert and Merz [1] and 

different researchers presented applications of possibility 

theory to the environment problems. Aleatory uncertainty 

arises due to inherent variability, natural stochasticity, 

environmental or structural variation across space or through 

time, manufacturing or genetic heterogeneity among 

components or individuals, and Varity of others sources of 

randomness. On the other hand epistemic uncertainty arises 

due to the insufficient knowledge about the world, which 

includes small sample sizes, detection limits, imperfections in 

scientific understanding etc. In risk assessment model 

parameters are usually affected either by aleatory uncertainty 

or by epistemic uncertainty. A few researchers have addressed 

the issue of combining probabilistic and possibilistic 

representation of aleatory and epistemic uncertainty 

respectively within the same computation of risk. For 

example, Baudrit, Dubois, Fargier [2], [3], Baudrit, Dubois 

[4], Guyonnet, Bourgine, Dubois, Fargier, Côme and Chilès 

[8], Guyonnet, Côme, Perrochet, Parriaux  [9], kentel and Aral 

[10] have proposed hybrid method for join handling of 

probability and possibility distributions. The hybrid method 

proposed in [8] combines the random sampling of probability 

distribution functions (PDFs) with fuzzy interval analysis on 

the α-cuts. In order to compare random fuzzy set to a 

tolerance threshold Guyonnet, Bourgine, Dubois, Fargier, 

Côme and Chilès [8] performed a post-processing of this 

result. Baudrit, Dubois, Guyonnet and Fargier [5] laid bare a 

shortcoming of this post-processing method. In [5] authors 

showed how the theory of evidence, also called theory of 

Dempster-Shafer (or theory of belief functions; Shafer, 1976) 

could provide a simple and rigorous answer to the problem of 

summarizing the results of the hybrid computation for 

comparison with a tolerance threshold. In the hybrid approach 

proposed in [10] combined utilization of fuzzy and random 

variables produces membership functions of risk to 

individuals at different fractiles of risk as well as probability 

distributions of risk for various alpha-cut levels of the 

membership function. 

In this paper we propose a hybrid approach for combining 

probability and possibility distribution functions within the 

same computation of risk. We used both Monte Carlo 

simulation and possibility theory in our method in which the 

interval arithmetic proposed by Ganesan and Veeramani [14] 

is taken to perform interval operation. Further we assume 

independency between the parameters.  

2. PROBABILITY THEORY 

Probability theory frequently used in uncertainty analysis. If 

parameters used in prescribed models are random in nature 

and followed well define distribution, then probabilistic 

methods are most suitable and well accepted approach for risk 

assessment. 

A random variable is a variable in a study in which subjects 

are randomly selected. Let X be a discrete random variable.  

A probability mass function is a function such that 

(i) f(xi)  0,  (ii)

1

n

i

f


 (xi) = 1,   (iii) f(xi) = p(x = xi) 

The cumulative distribution function of a discrete random 

variable X, denoted as F(x) is 

( ) ( ) )(
i

i
F x P X x f

x x

x


     
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Let X be a continuous random variable. A probability density 

function of X is a non-negative function f, which satisfies 

( ) ( )
B

P X B f x dx  
 

for every subset B of the real line. 

As X must assume some value, f must satisfy  

( ( , ) ( ) 1P X f x dx



      

This means the entire area under the graph of the PDF must be 

equal to unit. 

In particular, the probability that the value of X falls within an 

interval [a, b] is 

( ) ( )
b

a
p a X b f x dx     

The CDF of a continuous random variable X is 

( ) ( ) ( )
x

F x P X x f x dx


     

 A, B we have, P(A B) = P(A) + P(B) – P(P B) 

3. POSSIBILITY THEORY 

Possibility theory normally associated with some fuzziness, 

either in the background knowledge on which possibility is 

based or in the set for which possibility is asserted. This 

constitute a method of formalizing non- probabilistic 

uncertainties on events i.e., a mean of assessing to what extent 

the occurrence of an event is possible and to what extent we 

are certain of its occurrence, without knowing the evaluation 

of the possibility of its occurrence. 

A possibility distribution [6], denoted by , here is a 

mapping from the real line to the unit interval, unimodal and 

upper semicontinuous. A possibility distribution describe the 

more or less plausible values of some uncertain variable X. 

Possibility theory provides two evaluations of the likelihood 

of an event, for instance that the value of a real variable X 

should lie within a certain interval: possibility ∏ and the 

necessity N. Possibility measure ∏ and necessity measure N 

are define 

 

, 

Ac is the complement of A. 

 Satisfies the following conditions 

 

 

For triangular (trapezoidal) fuzzy numbers, possibility and 

necessity measures are straight lines. For example, if a 

continuous possibility distribution is a triangular fuzzy 

number say, [a, b, c] then possibility measure is given by 

,
x a

a x b
b a


 


 and necessity measure is given 

by ,
x b

b x c
c b


 


. 

 

In particular, consider a fuzzy number A = [10, 20, 30]. Then 

the possibility measure of the fuzzy number A is 

10
,10 20

10

x
x


   and necessity measure of the fuzzy 

number A is 20
,20 30

10

x
x


   . Which are depicted 

below:   

                Figure 1: Possibility and necessity measure of the 

fuzzy number A 

3.1: Sampling Technique for Possibility 

Theory: 

Sampling technique to generate random numbers generally 

used in probabilistic method can also be used for possibility 

theory. Here, uniformly distributed random numbers between 

0 and 1 are generated. Random variables of given uncertainty 

are generated by equating these numbers to necessity function 

and possibility function. Two numbers are generated in this 

process, one corresponding to necessity function and the other 

corresponding to the possibility function. This process is 

repeated for all the uncertainty variables present in the model. 

 For a uniformly distributed random number u the 

uncertain variable xn having necessity function Nec(xn) and 

uncertainty variable xp having possibility function Pos(xp) are 

obtained as 

xn = Nec-1(u) and xp = Pos-1(u). 

For example, for the fuzzy number A= [10, 20, 30] the 

possibility measure and necessity measure are depicted in 

figure 1. Now, for the uniformly generated random number 

say 0.6, the value of the random variable is 26 for the 

necessity measure and 16 for the possibility measure. 

 

Let M = g (F1, F2 . . ., Fm) be a model having m fuzzy 

numbers F1, F2 . . ., Fm. Each fuzzy number Fi will give a 

necessity measure Fin and a possibility measure Fip.  Let Mn 

and Mp will be the values of M for a particular simulation, i.e., 

M n= g (F/
1n, F

/
2n . . ., F

/
mn) and M p= g(F/

1p, F
/
2p . . ., F

/
mp) 

,where F/
1n, F

/
2n . . ., F

/
mn  (F

/
1p, F

/
2p . . ., F

/
mp ) denote values 

for a particular simulation of F1n, F2n . . ., Fmn (F1p, F2p . . ., 

Fmp). 

4. INTERVAL ARITHMETIC-A NEW 

APPROACH: 

In [14], Ganesan and Veeramani proposed a new interval 

arithmetic approach on R based on mid-point of interval. The 

approach is summarized below: 
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For 
1 2[ , ],x x x 1 2[ , ]y y y R   and for 

 , , , ,     they define a new type of binary operation 

as: 

[ ( ) ( ) , ( ) ( ) ],x y m x m y k m x m y k      where 

( )m x and ( )m y are the mid-point of the intervals x and 

y respectively. Also where 

 min ( ( ) ( )) , ( ( ) ( )) ,k m x m y m x m y     

  and  are the end points of the interval x y under 

the existing interval arithmetic. In particular 

(i) Addition: 

1 2 1 2[ , ] [ , ] [ ( ) ( ) , ( ) ( ) ],x y x x y y m x m y k m x m y k       

where  2 2 1 1( ) ( ) / 2.k y x y x     

 

(ii) Subtraction: 

1 2 1 2[ , ] [ , ] [ ( ) ( ) , ( ) ( ) ],x y x x y y m x m y k m x m y k       

 where  2 2 1 1( ) ( ) / 2.k y x y x     

(iii)  Multiplication: 

1 2 1 2. [ , ][ , ] [ ( ) ( ) , ( ) ( ) ],x y xy x x y y m x m y k m x m y k    

 

where 

 min ( ( ) ( )) , ( ( ) ( )) ,k m x m y m x m y     

1 1 1 2 2 1 2 2min{ , , , }x y x y x y x y  and 

1 1 1 2 2 1 2 2max{ , , , }x y x y x y x y  . 

(iv) Division:  

1 21 1/ 1/[ , ] 1/ ( ) ,1/ ( ) ,x x x x m x k m x k      
 

 

where 

 2 2 1 2 1 1 2 1 2 1min 1/ (( ) /( )), 1/ (( ) /( ))k x x x x x x x x x x    

and 
1 20 [ , ]x x . 

From (iii) it is clear that 

1 2[ , ], 0x x x for     and 

2 1[ , ], 0x x for    . 

5. PROPOSED HYBRID APPROACH:  

Consider a model  

M = g (P1, P2 . . . Pm, F1, F2 . . ., Fn) 

which is a function of parameters where representations of 

some parameters are probabilistic and some parameters are 

possibilistic (Fuzzy number). Suppose P1, P2 . . . Pm are m 

parameters presented by probabilistic distributions and F1, F2 . 

. ., Fn are n parameters presented by possibilistic distributions 

(Fuzzy numbers). 

 

The approach is explained below: 

1. Generate m number of uniformly distributed random 

numbers from [0, 1] and perform Monte Carlo simulation to 

obtain random numbers by sampling probability distribution. 

2. Consider the possibility distribution f: X→ [0, 1] (i.e., fuzzy 

numbers). Then, we use possibility measure and necessity 

measure defined as  

( ) sup ( )
x A

pos A f x


  and 

( ) 1 ( )cNec A pos A   

to obtain upper and lower probability.  

3. Possibilistic Sampling: Generate n numbers of uniformly 

distributed random numbers from [0, 1] and perform Monte 

Carlo simulation to obtain random numbers by sampling 

possibility distribution. Here we will get n numbers of close 

intervals i.e., 2n numbers of random numbers will be 

generated (n for possibility measure and n for necessity 

measure). 

4. Assign all m random numbers and n closed intervals in the 

model M and perform (whatever) arithmetic operation 

between random numbers and closed intervals. It will produce 

n numbers of closed intervals and thereafter perform 

arithmetic operation between the close intervals using K. 

Ganesan et al Interval Arithmetic. Output will be a single 

closed interval. 

5. Repeat step 1 to step 4 N times. So, we will have N 

numbers of close intervals. 

6. Consider M1 and M2, the collections of all initial and end 

points of the resulting intervals respectively. 

7. Cdf plot of M1 and M2, which will give the upper 

probability and lower probability respectively. 

6. CASE STUDY: 

To demonstrate and make use of the proposed hybrid method 

a hypothetical case study for non-cancer risk assessment is 

presented here. As due to the discharge of produce water into 

the sea a lot of organic and inorganic pollutants (however, in 

this example we consider only the heavy metal arsenic (As) 

because of its toxicity and high concentration in produced 

water.) release into the water and which are harmful to the 

aquatic organism. Therefore human being may be affected by 

ingestion of such contaminated aquatic organism. An 

evaluation is necessary to determine the possible impact such 

substances may have on human health and ecology. For this 

purpose, risk assessment is performed to quantify the potential 

detriment to human and evaluate the effectiveness of proposed 

remediation measures. 

The general form of a comprehensive food chain risk 

assessment model as provided by EPA, 2001 [11] is follows 

..........(1)
fC FIR FR EF ED CF

CDI
BW AT

    




 

Where CID = Chronic daily intake (mg/kg-day), FIR = fish 

ingestion rate (g/day), FR = fraction of fish from 

contaminated source, EF = exposure frequency (day/year), ED 

= exposure duration (years), CF = conversion factor (= 10-9), 

BW = body weight (kg), AT = averaging time (days) and Cf = 
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chemical concentration of fish tissue (mg/kg). The chemical 

concentration in fish tissue (Cf) can be computed as 

..........(2)fC PEC BCF 
 

Where PEC = predicted environmental concentration (mg/l) 

and BCF is the chemical bioaccumulation factor in fish (l/kg). 

The non-cancer risk model for fish ingestion is expressed as:
 

............(3)non cancer

CDI
Risk

Rfd
   

Where, Rfd is the reference dose.  

Here, we will consider three fuzzy scenarios.  

6.1 Scenario1:  

In this scenario, representation of the parameters predicted 

environmental concentration (PEC), chemical 

bioaccumulation factors (BCF) are considered to be fuzzy 

number while body weight (BW) and fish ingestion rate (FIR) 

are taken as normal probability distribution and other 

parameters are taken to be constant. Values of the parameters 

for the calculation of non-cancer risk are given in the table 1.

  

Table 1: Parameters used in the risk assessment 

Parameter Units 
Type of 

Variable 
Value/distribution 

Average 
Time (AT) 

Days Constant 25550 

Body Weight 

(BW) 
Kg Probabilistic Normal(70, 1.945) 

Exposure 

Duration 

(ED) 

Years Constant 30 

Exposure 
frequency 

(EF) 

Days/year Constant 350 

Fraction of 

contaminated 

Fish (FR) 

- Constant 0.5 

Fish 

Ingestion 
Rate (FIR) 

g/day Probabilistic Normal(170, 1.941) 

Conversion 

Factor (CF) 
- Constant 1E-09 

PEC for As ug/l Fuzzy [1, 5, 9] 

BCF for As l/kg Fuzzy [25, 45, 65] 

Oral Rfd for 

As 
mg/(kg.day) Constant 3.0E-04 

The results of the non-cancer human health risk assessment 

using equation (3) of scenario1 are depicted in figure (2).  

 

6.2 Scenario 2:  

In this scenario, representation of the parameters chemical 

bioaccumulation factor (BCF) and reference dose (Rfd) are 

considered to be fuzzy number while the representation of the 

parameters body weight (BW) and fish ingestion rate (FIR) 

are taken as probabilistic and other parameters are taken to be 

constant. Values of the parameters for the calculation of non-

cancer risk are given in the table 2. 

Table2: Parameter values used in the risk assessment 

Parameter Units 
Type of 

variable 
Value/distribution 

Average 
Time (AT) 

Days constant 25550 

Body Weight 

(BW) 
Kg Probabilistic 

Normal(70, 

1.945) 

Exposure 

Duration 

(ED) 

Years constant 30 

Exposure 

frequency 
(EF) 

Days/year constant 350 

Fraction of 

contaminated 

Fish (FR) 

- constant 0.5 

Fish 

Ingestion 

Rate (FIR) 

g/day Probabilistic 
Normal(170, 

1.941) 

Conversion 

Factor (CF) 
- constant 1E-09 

PEC for As ug/l constant 5 

BCF for As l/kg Fuzzy [25, 45, 65] 

Oral Rfd for 

As 
mg/(kg.day) Fuzzy 

[1.0E-04, 3.0E-

04, 5.0E-04] 
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The results of the non-cancer human risk assessment using (3) 

of scenario 2 is depicted in figure (3). 

 

6.3 Scenario 3:  

In this scenario, representation of the parameters predicted 

environmental concentration (PEC), chemical 

bioaccumulation factor (BCF) and reference dose (Rfd) are 

considered to be fuzzy number and other parameters are taken 

to be constant. Values of the parameters for the calculation of 

non-cancer human health risk are given in the table 3. 

Table3: Parameter values used in the risk assessment 

Parameter Units 
Type of 

variable 
Value/distribution 

Average 

Time (AT) 
Days constant 25550 

Body Weight 
(BW) 

Kg Probabilistic 
Normal(70, 

1.945) 

Exposure 

Duration 
(ED) 

Years constant 30 

Exposure 

frequency 
EF) 

Days/year constant 350 

Fraction of 

contaminated 

Fish (FR) 

- constant 0.5 

Fish 

Ingestion 

Rate FIR) 

g/day Probabilistic 
Normal(170, 

1.941) 

Conversion 
Factor (CF) 

- constant 1E-09 

PEC for As ug/l constant [1, 5, 9] 

BCF for As l/kg Fuzzy [35, 45, 65] 

Oral Rfd for 
As 

mg/(kg.day) Fuzzy 
[1.0E-04, 3.0E-

04, 5.0E-04] 

 

The results of the non-cancer human risk assessment using (3) 

of scenario 3 is depicted in figure (4).  

 

In this study, in each scenario representation of some 

parameters are aleatory nature and some are epistemic nature. 

Using our proposed method to deal with both type uncertainty 

natures in the risk assessment we have the result in the form of 

belief and plausibility. From these two belief and plausibility, 

risk at different fractiles ([17], [10]) can be calculated and 

which are obtained in the form of close intervals.  For 

instance, for scenario1, at 95th fractile, the risk value lies 

between 0.3098e-03 and 0.8047e-03; at 85th fractile, the risk 

value lies between 0.2624e-03 and 0.7247e-03; at 80th fractile, 

the risk value belongs to [0.2464e-03, 0.6938e-03]. Similarly 

for scenario2, at 95th, 85th and 80th fractiles, risk values belong 

to [0.3145e-03, 0.8142e-03], [0.2803e-03, 0.7182e-03] and 

[0.2665e-03, 0.679e-03] respectively. Also risk at those 

fractiles for scenario 3 will be respectively [0.2539e-03, 

1.084e-03], [0.207e-03, 0.8947e-03] and [0.1878e-03, 

0.8209e-03]. 

Instead of interval arithmetic [14] if we consider vertex 

method to combine intervals in the proposed hybrid method 

the results contains more imprecision than the proposed 

method and also results tally with [6]. The results of the non-

cancer human risk assessment, applying vertex method in the 

proposed hybrid method and the superimposition of both the 

methods of scenario1, 2 and 3 are depicted in figure 5-figure 

10.  
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 Here, for scenario1, at 95th fractile, the risk value ranges 

from 0.3098e-03 and 0.8716e-03; at 85th fractile, the risk 

value lies between 0.2624e-03 and 0.7919e-03; at 80th fractile, 

the risk value belongs to [0.2464e-03, 0.7600e-03]. Similarly 

for scenario2, at 95th, 85th and 80th fractiles, risk values belong 

to [0.3145e-03, 1.289e-03], [0.2803e-03, 1.086e-03] and 

[0.2665e-03, 0.9687e-03] respectively. Also risk at those 

fractiles for scenario 3 will be respectively [0.2539e-03, 

1.892e-03], [0.207e-03, 1.514 e-03] and [0.1878e-03, 1.375e-

03]. In this study, we have seen that our proposed approach 

gives more precise result than the other. Also graphical 

representations of the results reflect the same situation. 

7. CONCLUSION  

In risk assessment, it is most important to know the nature of 

all available information, data or model parameters. More 

often, it is seen that available information is interpreted in 

probabilistic sense because probability theory is a very strong 

and well established mathematical tool to deal with aleatory 

uncertainty. However, it is clear that not all available 

information, data or model parameters are affected by aleatory 

uncertainty (i.e., nature of the data, information or parameters 

are random) and can be handled by traditional probability 

theory. Imprecision may occur due to scarce or incomplete 

information or data, measurement error or data obtain from 

expert judgment or subjective interpretation of available data 

or information. Thus, model parameters, data may be affected 

by epistemic uncertainty. Fuzzy set theory or possibility 

theory should be explored to handle this type of uncertainty. 

Sometimes, it is also seen that some model parameters are 

affected by aleatory uncertainty and some parameters are 

affected by epistemic uncertainty. For this purpose, in this 

study, we proposed a hybrid approach to combine both modes 

of representations of uncertainty by considering independency 

between the parameters. In our approach first uniformly 

distributed random numbers are generated and Monte Carlo 

simulation is performed for probability distribution to obtain 

random numbers. Then we consider the possibility 

distributions i.e., fuzzy numbers and use the possibility and 

necessity measures to obtain upper and lower probability 

distributions. After that uniformly distributed random 

numbers are generated and Monte Carlo simulation is 

performed for possibility distribution to obtain random 

numbers which gives closed interval and thereafter random 

numbers and close intervals are assigned in the model. This 

gives close intervals and we performed arithmetic of intervals 

using Ganesan interval arithmetic [14]. The process is 

repeated N times and cumulative probability distribution for 

initial and final values are plotted. Using our proposed hybrid 

method, we have demonstrated a hypothetical case study by 
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considering three scenarios. Also we have compared the 

results obtained by applying vertex method to combine 

intervals in the proposed hybrid method instead of Ganesan 

interval arithmetic. Our proposed method comparatively gives 

better result.  
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