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ABSTRACT 

The problem of task scheduling in distributed systems is 

known as an NP-hard problem, and methods based on 

heuristic or metaheuristic search have been proposed to obtain 

optimal and suboptimal solutions. The scheduling problem is 

a key factor for distributed systems to gain better 

performance. In this paper, an efficient method based on 

memetic algorithm is developed to solve the problem of 

distributed systems scheduling. With regard to load balancing 

efficiently, Bee Colony Optimization (BCO) has been applied 

as local search in the proposed memetic algorithm. The 

proposed method has been compared to existing GA-based 

method and two memetic-Based methods in which Tabu 

method and Learning Automata method have been used as 

local search. The results demonstrated that the proposed 

method outperform the above mentioned methods in terms of 

CPU Utilization, communication cost and Makespan.   

General Terms 

Distributed Systems, Evolutionary Algorithms. 
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1. INTRODUCTION 
Distributed system scheduling has been a source of 

challenging problems for researchers in the area of computer 

engineering. Task scheduling in a distributed system can be 

defined as allocating tasks to processors of each computer in a 

way that the optimum performance is obtained. The aim of 

task scheduling is minimizing Communication Cost and 

Makespan (task completion time) and also maximizing CPU 

utilization.  

In order to solve scheduling problem, several methods have 

been proposed. The proposed methods can be generally 

classified into three categories: Graph-theory-based 

approaches [1], mathematical models-based methods [2] and 

heuristic Techniques [3-7]. Task scheduling in distributed 

systems is known as NP-hard [8]. Therefore using heuristic 

Techniques can solve this problem more efficiently. Three 

most well-known heuristics are the iterative improvement 

algorithms [9], the probabilistic optimization algorithms, and 

the constructive heuristics. In the probabilistic optimization 

group, GA-based methods [10-15] are considerable. The main 

distinction among them is chromosomal representation used 

for a schedule. However, these approaches scan the entire 

solution space without considering the techniques that can 

reduce the complexity of the optimization. In other words, 

their main shortcoming is spending much time doing 

scheduling. This shortcoming of GA-based methods can be 

reduced by combing GA with another optimization technique. 

Hence, this paper proposes a new algorithm by using memetic 

algorithm to cope with this shortcoming. Bee Colony 

Optimization has been applied as local search in the proposed 

memetic algorithm. The results demonstrated that the 

proposed method outperform three existifng methods in term 

of CPU Utilization, communication cost and Makespan. 

There are two categories for task scheduling: static and 

dynamic. In dynamic scheduling, schedules are created during 

run time without having any knowledge of the task in hand 

before arriving. While in static scheduling, schedules are 

created before run time and do not change. Similarly, tasks 

must be all known in advance. In other words, a static task 

scheduling algorithm schedules a set of tasks with known 

processing and communication characteristics on processors 

to optimize Makespan, Communication Cost, and CPU 

utilization. In this paper, the author focused on static 

scheduling. 

One of the crucial aspects of the scheduling problem is load 

balancing. When newly created processes enter the system 

randomly, some processors may be overloaded heavily while 

the others are under-loaded or idle. The main objectives of 

load balancing are to spread load on processors equally, 

maximizing processors utilization, and minimizing total 

execution time. In dynamic load balancing, processes must be 

dynamically allocated to processors in arrival time and obtain 

a near optimal schedule; therefore, the execution of the 

dynamic load balancing algorithm should not take too long to 

arrive at a rapid task assignments decision [8, 16, 17]. In this 

paper scheduling algorithm considering load balancing has 

been proposed. 

The rest of this paper is organized as follow: In section 2 used 

method as local search in the proposed memetic algorithm is 

presented. Proposed method comes in section 3. Experimental 

results are given in section 4. Section 5 concludes the paper.  
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2. USED METHOD AS LOCAL SEARCH 

IN THE PROPOSED ALGORITHM 
In this section the method which has been used as local search 

in the proposed memetic algorithm has been described. 

Bee Colony Optimization (BCO) is a metaheuristic for solving 

combinatorial optimization problems. The BCO is inspired by 

bees' behavior in the nature. In a honey bee colony forager 

bees search the environment for flower paths and if they find 

a good source of food, share it with other bees. While the 

forager bees come back to the hive they share the found 

information about food sources by a special movement named 

waggle dance. The studies on this type of bee dance shows 

that in the midst of this dance some information like direction, 

distance, quantity and quality of the food source are shared 

with respect to other bees [18-20]. 

The BCO is a population based algorithm. Population of the 

artificial bees searches for the optimal solution. Every 

artificial bee generates one solution to the problem. The 

algorithm consists of two alternating phases: forward pass and 

backward pass. During each forward pass, every bee is 

exploring the search space. It applies a predefined number of 

moves, which construct and improve the solution, yielding to 

a new solution. 

Having obtained new partial solutions, the bees return to the 

nest and start the second phase, the so-called backward pass. 

During the backward pass, all bees share information about 

their solutions. In nature, bees would perform a dancing ritual, 

which would inform other bees about the amount of food they 

have found, and the proximity of the patch to the nest. In the 

search algorithm, the bees announce the quality of the 

solution, i.e. the value of objective function. During the 

backward pass, every bee decides with a certain probability 

whether it will advertise its solution or not. The bees with 

better solutions have more chances to advertise their 

solutions. The remaining bees have to decide whether to 

continue to explore their own solution in the next forward 

pass, or to start exploring the neighborhood of one of the 

solutions being advertised. Similarly, this decision is taken 

with a  probability, so that better solutions have higher 

probability of being chosen for exploration. 

 The two phases of the search algorithm, forward and 

backward pass, are performed iteratively, until a stopping 

condition is met. The BCO algorithm parameters whose 

values need to be set prior the algorithm execution are as 

follows[18]: 

B - The number of bees in the hive. 

N -The number of constructive moves during one forward 

pass. 

At the beginning of search process, all bees are in the hive. To 

continue, it is the pseudo code of the BCO algorithm: 

1. Initialization: every bee is set to an empty solution; 

2. For every bee do the forward pass: 

a)  Set k = 1; //counter for constructive moves in the 

forward pass. 

b) Evaluate all possible constructive moves; 

c) According to evaluation, choose one move using the 

roulette wheel; 

d) k = k + 1; If k ≤ NC Go To step b. 

3. All bees are back to the hive; // backward pass starts; 

4. Sort the bees by their objective function value; 

5. Every bee decides randomly whether to continue its own 

exploration and become a recruiter, or to become a 

follower (bees with higher objective function value have 

greater chance to continue its own exploration); 

6. For every follower, choose a new solution from recruiters 

by the roulette wheel; 

7. If the stopping condition is not met Go To step 2; 

8. Output the best result. 

Initial bee colony is constructed by the following algorithm: 

1. At each step, a next task to be assigned is selected. 

2. The processor (the selected task is going to be assigned to) 

is determined. 

3. Repeat these two steps until all tasks have been assigned 

to a processor. 

The choice is probabilistic bias to a probability function. This 

function is updated at each iteration in a reinforcement way by 

using the features of good solutions.  

In the relation (1), after selecting a task, a randomly chosen 

processor will be selected. 

1
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In the above , 1 , 1ija i n j m    is the execution time 

of task ti on processor Pj. The processor with a lower value of 

the running times has greater probability to be chosen. 

All bees return to the hive after generating the partial 

solutions. All these solutions are then evaluated by all bees. 

(The latest time point of finishing the last task at any 

processor characterizes every generated partial solution). 

Let us denote by Load(Pb)(b=1, 2, ..., B) the latest time point 

of finishing the last task at any processor in the partial 

solution generated by the b-th bee. We denote by Ob 

normalized value of the time point Load(Pb), i.e.: 

( )b
b

Makespan Load p
O

Makespan Minspan





             (2) 

In the above Makespan and Minspan are respectively the 

smallest and the largest time point among all time points 

produced by all bees. The probability that b-th bee (at the 

beginning of the new forward pass) is loyal to its previously 

generated partial solution is expressed as follows: 

1 , 1,2,...,
bMakespan O

u u
bp e b B




              (3) 

Which u is the ordinary number of the forward pass (e.g., u = 

1 for first forward pass, u = 2 for second forward pass, etc.). 

For each uncommitted bee with a certain probability it is 

decided which recruiter it would follow. The probability that 

b’s partial solution would be chosen by any uncommitted bee 

is equal to: 
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Where Ok represents normalized value for the objective 

function of the k-th advertised partial solution and R denotes 

the number of recruiters. Using relation (4) and a random 

number generator, each uncommitted follower joins one 

recruiter. 

3. PROPOSED MEMETIC ALGORITHM 
In our model there are finite numbers of tasks, each having a 

task number and an execution time. All tasks are placed in a 

task pool from which tasks are assigned to processors. Figure 

1 shows the proposed chromosome. In this chromosome, tasks 

1,2,3,4,5,6,7 and 8 are assigned to processors 2,1,2,3,3,4,2 and 

1 respectively. Both tasks 1 and 3 are assigned to processor 2 

but, first task 1 is executed then task 3.  

 
Fig 1: An example of proposed chromosome 

 

Before describing the proposed methods, it is necessary to 

state some definitions which have been stated in [21] as 

follow: 

 T= {t1, t2, t3, …, tn} is a set of tasks to execute.  

 P= {p1, p2, p3, …,pm}  is a set of processors in the distributed 

system. Each processor can only execute one task at a time, in 

other words, a processor completes current task before 

executing a new one, and a task cannot be moved to another 

processor during execution.  

 R is an  mm  matrix, the element  mvuuvr  ,1  of 

R, which is the communication delay rate between Pu and Pv.  

 H is an  mm   matrix, the element 1 ,uvh u v m  of 

H, which is the time required to transmit a unit of data from 

Pu to Pv. It is obvious that  huu= 0 and   ruu=0. 

 A is an  mn   matrix, the element   

mjniaij  1,1  of A, which is the execution 

time of task ti on processor pj.  

 D is a linear  matrix, the element 1id i n  of D, which 

is the data volume for task ti to be transmitted when task ti is 

to be executed on a remote processor. 

 F is a linear matrix, the element 1if i n  of F, which 

is the target processor that is selected for task ti to be executed 

on.  

 C is a linear matrix, the element  1ic i n   of C, which 

is the processor that the task ti is worked on. 

 The processor load for each processor is stated as follow: 
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 The Makespan of a schedule is the maximal finishing time 

of all processes or maximum load. 

 ( ) max ( )

1

imakespan T Load p

i Number of processors



  
           (6) 

 Communication Cost (CC) is computed as follow: 
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             (7)      

 The Processor utilization for each processor and  the 

average of  processors utilization are also computed as follow: 

( )
( ) i

i
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     (9) 

 Number of Acceptable Processor Queues (NoAPQ): 

thresholds for light and heavy load on processor must be 

defined. If the tasks completion time of a processor is within 

the light and heavy thresholds, this processor queue will be 

acceptable. If it is above the heavy threshold or below the 

light-threshold, then it is unacceptable. But what is important 

is the average of number of acceptable processors queues, 

which is achievable by : 

AveNoAPQ NoAPQ Number Of processors          (10) 

A Queue associated with every processor shows the tasks that 

processor must execute. The execution order of tasks on each 

processor is based on queues. Finally, the fitness of the 

chromosome (Schedule T) can be computed as follow:  

 

   

( )
( )

( ) ( )

AveU AveNoAPQ
fitness T

makespan T CC T

 

 

  


  
      (11) 

In the above mentioned formula, 1,,,0    are control 

parameters to control effect of each part according to special 

cases and their default value is one. This equation shows that 

a fitter solution (Schedule) has less Makespan, less 

Communication Cost, higher processor utilization and higher 

Average number of acceptable processor queues. 

Now the proposed method in details is described. Figure 2 

depicts the proposed method.  

 
Fig 2: Structure of the proposed method 

 

Bee Colony Optimization (BCO) has been applied as local 

search in the proposed memetic algorithm. The proposed 

method works as follows: 

In each step of iteration, a task in the chromosome is 

randomly selected (index of the chromosome) according to 

probability function, and then the selected task is allocated to 

its processor. The bee colony optimization is checked to see 

whether a new chromosome has been found. This function is 

updated at each iteration in a reinforcing way by using the 
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features of good solutions. The update of the probability 

function is done by the bee that produced the best overall 

chromosome [22]. 

4. EXPERIMENTAL RESULTS 
In this section, regarding Communication Cost, CPU 

utilization and Makespan, the proposed method has been 

compared with the existent GA-based method [21], Tabu-

Based method[23] and Learning Automata-Based 

methods[24].  

First experiment: 

In this experiment attempt has been made to increase the 

number of tasks and compute average of all CPU utilization, 

Communication Cost and Makespan. Figures 3 through 5 

depict experimental results. As shown in figure 3, increasing 

the number of tasks, BCO leads to better results compared to 

three existing methods. 

 
Fig 3: Average of CPU utilization in all methods 

considering number of task 

 

Figure 4 shows that when the number of the tasks increase, 

BCO method has approximately less Communication Cost 

than that of the other methods. But, as it can be seen from 

figure 5, compared to other methods, BCO shows better 

results related to Makespan. 

 
Fig 4: Communication Cost in all methods considering 

number of task 

 

 

Fig 5: Makespan in all methods considering number of 

task 

Second experiment: 

Similarly, regarding an increase in population size, computing 

the Makespan, Communication Cost and CPU utilization of 

all processors is the aim of this experiment. According to 

Figure 6, when the population size increases, Makespan in 

BCO method is less than that of the other methods.  

 
Fig 6: Makespan in all methods regarding pop size 

Like Figure 6, figure 7 illustrates that a rise in population size 

leads to better results in average of CPU utilization in three 

existing methods. As it can be seen, GA-based method has 

underutilization.  

 
Fig 7: Average of CPU utilization in all methods regarding 

pop size 

It can be observed from figure 8, BCO method has less 

Communication Cost than that of the other methods. 

 
Fig 8: Communication Cost in all methods regarding pop 

size 

Third Experiment: 

The objective of this experiment is to compute the above 

metrics when the numbers of generations are increased. 

Figures 9 through 11 show the experimental results. Figure 9 

shows the average of CPU utilization in all methods. As the 

number of generations increase, average of CPU utilization in 

BCO method rises, while the CPU utilization in GA-based 

method, Compared with other methods, falls. In other words, 

GA-based method has not scalability. 
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Fig 9: Average of CPU utilization in all methods with 

respect to number of generation 

Figure 10 depicts Communication Cost in all methods. As it 

can be seen, Communication Cost in BCO method is less than 

that of the other methods. Also, figure 11 shows that 

Makespan in BCO method is less than that of the other 

methods when the number of generation is increased. 

 
Fig 10: Communication Cost in all methods with respect 

to number of generation. 

 

 
Fig 11: Makespan in all methods with respect to number 

of generation. 

5. CONCLUSION 
Scheduling in distributed systems has a significant role in 

overall system performance and throughput. Scheduling 

problem is known as NP-complete. In this paper, Memetic 

algorithm has been used for task scheduling. The author 

applied Bee Colony Optimization and Ant Colony 

Optimization as a local search in memetic. This algorithm 

considers multi objectives in its solution evaluation and solves 

the scheduling problem; it simultaneously minimizes 

Makespan and Communication Cost while maximizes the 

average of CPU utilization. Most existing approaches tend to 

focus on one of the objectives. Extended experimental results 

demonstrate that the proposed method outperforms the 

existent GA-based method in terms of Communication Cost, 

CPU utilization and Makespan. 
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