
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.10, March 2012

1

A Novel Bee Colony Approach to Distributed Systems

Scheduling

Raheleh Sarvizadeh

Young Researchers Club,
Islamshahr Branch,

Islamic Azad University,
Tehran, Iran

Mostafa
Haghi Kashani

 Department of Computer
Engineering,

Shahr-e-Qods Branch,
Islamic Azad University,

Tehran, Iran

Fahimeh Sadat
 Zakeri

Department of Electrical
and Computer

Engineering, University
of Tehran, Tehran, Iran

Seyed Mahdi Jameii
Department of Computer

Engineering,
Shahr-e-Qods Branch,
Islamic Azad University,

Tehran, Iran

ABSTRACT

The problem of task scheduling in distributed systems is

known as an NP-hard problem, and methods based on

heuristic or metaheuristic search have been proposed to obtain

optimal and suboptimal solutions. The scheduling problem is

a key factor for distributed systems to gain better

performance. In this paper, an efficient method based on

memetic algorithm is developed to solve the problem of

distributed systems scheduling. With regard to load balancing

efficiently, Bee Colony Optimization (BCO) has been applied

as local search in the proposed memetic algorithm. The

proposed method has been compared to existing GA-based

method and two memetic-Based methods in which Tabu

method and Learning Automata method have been used as

local search. The results demonstrated that the proposed

method outperform the above mentioned methods in terms of

CPU Utilization, communication cost and Makespan.

General Terms

Distributed Systems, Evolutionary Algorithms.

Keywords

scheduling, memetic algorithm, Bee Colony Optimization.

1. INTRODUCTION
Distributed system scheduling has been a source of

challenging problems for researchers in the area of computer

engineering. Task scheduling in a distributed system can be

defined as allocating tasks to processors of each computer in a

way that the optimum performance is obtained. The aim of

task scheduling is minimizing Communication Cost and

Makespan (task completion time) and also maximizing CPU

utilization.

In order to solve scheduling problem, several methods have

been proposed. The proposed methods can be generally

classified into three categories: Graph-theory-based

approaches [1], mathematical models-based methods [2] and

heuristic Techniques [3-7]. Task scheduling in distributed

systems is known as NP-hard [8]. Therefore using heuristic

Techniques can solve this problem more efficiently. Three

most well-known heuristics are the iterative improvement

algorithms [9], the probabilistic optimization algorithms, and

the constructive heuristics. In the probabilistic optimization

group, GA-based methods [10-15] are considerable. The main

distinction among them is chromosomal representation used

for a schedule. However, these approaches scan the entire

solution space without considering the techniques that can

reduce the complexity of the optimization. In other words,

their main shortcoming is spending much time doing

scheduling. This shortcoming of GA-based methods can be

reduced by combing GA with another optimization technique.

Hence, this paper proposes a new algorithm by using memetic

algorithm to cope with this shortcoming. Bee Colony

Optimization has been applied as local search in the proposed

memetic algorithm. The results demonstrated that the

proposed method outperform three existifng methods in term

of CPU Utilization, communication cost and Makespan.

There are two categories for task scheduling: static and

dynamic. In dynamic scheduling, schedules are created during

run time without having any knowledge of the task in hand

before arriving. While in static scheduling, schedules are

created before run time and do not change. Similarly, tasks

must be all known in advance. In other words, a static task

scheduling algorithm schedules a set of tasks with known

processing and communication characteristics on processors

to optimize Makespan, Communication Cost, and CPU

utilization. In this paper, the author focused on static

scheduling.

One of the crucial aspects of the scheduling problem is load

balancing. When newly created processes enter the system

randomly, some processors may be overloaded heavily while

the others are under-loaded or idle. The main objectives of

load balancing are to spread load on processors equally,

maximizing processors utilization, and minimizing total

execution time. In dynamic load balancing, processes must be

dynamically allocated to processors in arrival time and obtain

a near optimal schedule; therefore, the execution of the

dynamic load balancing algorithm should not take too long to

arrive at a rapid task assignments decision [8, 16, 17]. In this

paper scheduling algorithm considering load balancing has

been proposed.

The rest of this paper is organized as follow: In section 2 used

method as local search in the proposed memetic algorithm is

presented. Proposed method comes in section 3. Experimental

results are given in section 4. Section 5 concludes the paper.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.10, March 2012

2

2. USED METHOD AS LOCAL SEARCH

IN THE PROPOSED ALGORITHM
In this section the method which has been used as local search

in the proposed memetic algorithm has been described.

Bee Colony Optimization (BCO) is a metaheuristic for solving

combinatorial optimization problems. The BCO is inspired by

bees' behavior in the nature. In a honey bee colony forager

bees search the environment for flower paths and if they find

a good source of food, share it with other bees. While the

forager bees come back to the hive they share the found

information about food sources by a special movement named

waggle dance. The studies on this type of bee dance shows

that in the midst of this dance some information like direction,

distance, quantity and quality of the food source are shared

with respect to other bees [18-20].

The BCO is a population based algorithm. Population of the

artificial bees searches for the optimal solution. Every

artificial bee generates one solution to the problem. The

algorithm consists of two alternating phases: forward pass and

backward pass. During each forward pass, every bee is

exploring the search space. It applies a predefined number of

moves, which construct and improve the solution, yielding to

a new solution.

Having obtained new partial solutions, the bees return to the

nest and start the second phase, the so-called backward pass.

During the backward pass, all bees share information about

their solutions. In nature, bees would perform a dancing ritual,

which would inform other bees about the amount of food they

have found, and the proximity of the patch to the nest. In the

search algorithm, the bees announce the quality of the

solution, i.e. the value of objective function. During the

backward pass, every bee decides with a certain probability

whether it will advertise its solution or not. The bees with

better solutions have more chances to advertise their

solutions. The remaining bees have to decide whether to

continue to explore their own solution in the next forward

pass, or to start exploring the neighborhood of one of the

solutions being advertised. Similarly, this decision is taken

with a probability, so that better solutions have higher

probability of being chosen for exploration.

 The two phases of the search algorithm, forward and

backward pass, are performed iteratively, until a stopping

condition is met. The BCO algorithm parameters whose

values need to be set prior the algorithm execution are as

follows[18]:

B - The number of bees in the hive.

N -The number of constructive moves during one forward

pass.

At the beginning of search process, all bees are in the hive. To

continue, it is the pseudo code of the BCO algorithm:

1. Initialization: every bee is set to an empty solution;

2. For every bee do the forward pass:

a) Set k = 1; //counter for constructive moves in the

forward pass.

b) Evaluate all possible constructive moves;

c) According to evaluation, choose one move using the

roulette wheel;

d) k = k + 1; If k ≤ NC Go To step b.

3. All bees are back to the hive; // backward pass starts;

4. Sort the bees by their objective function value;

5. Every bee decides randomly whether to continue its own

exploration and become a recruiter, or to become a

follower (bees with higher objective function value have

greater chance to continue its own exploration);

6. For every follower, choose a new solution from recruiters

by the roulette wheel;

7. If the stopping condition is not met Go To step 2;

8. Output the best result.

Initial bee colony is constructed by the following algorithm:

1. At each step, a next task to be assigned is selected.

2. The processor (the selected task is going to be assigned to)

is determined.

3. Repeat these two steps until all tasks have been assigned

to a processor.

The choice is probabilistic bias to a probability function. This

function is updated at each iteration in a reinforcement way by

using the features of good solutions.

In the relation (1), after selecting a task, a randomly chosen

processor will be selected.

1

/ ()

[/ ()]

ij j

ij m

ik k

k

a Load p
pro

a Load p

 (1)

In the above , 1 , 1ija i n j m is the execution time

of task ti on processor Pj. The processor with a lower value of

the running times has greater probability to be chosen.

All bees return to the hive after generating the partial

solutions. All these solutions are then evaluated by all bees.

(The latest time point of finishing the last task at any

processor characterizes every generated partial solution).

Let us denote by Load(Pb)(b=1, 2, ..., B) the latest time point

of finishing the last task at any processor in the partial

solution generated by the b-th bee. We denote by Ob

normalized value of the time point Load(Pb), i.e.:

()b
b

Makespan Load p
O

Makespan Minspan

 (2)

In the above Makespan and Minspan are respectively the

smallest and the largest time point among all time points

produced by all bees. The probability that b-th bee (at the

beginning of the new forward pass) is loyal to its previously

generated partial solution is expressed as follows:

1 , 1,2,...,
bMakespan O

u u
bp e b B

 (3)

Which u is the ordinary number of the forward pass (e.g., u =

1 for first forward pass, u = 2 for second forward pass, etc.).

For each uncommitted bee with a certain probability it is

decided which recruiter it would follow. The probability that

b’s partial solution would be chosen by any uncommitted bee

is equal to:

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.10, March 2012

3

1

, 1,2,...,b
b R

k

k

O
pro b R

O

 (4)

Where Ok represents normalized value for the objective

function of the k-th advertised partial solution and R denotes

the number of recruiters. Using relation (4) and a random

number generator, each uncommitted follower joins one

recruiter.

3. PROPOSED MEMETIC ALGORITHM
In our model there are finite numbers of tasks, each having a

task number and an execution time. All tasks are placed in a

task pool from which tasks are assigned to processors. Figure

1 shows the proposed chromosome. In this chromosome, tasks

1,2,3,4,5,6,7 and 8 are assigned to processors 2,1,2,3,3,4,2 and

1 respectively. Both tasks 1 and 3 are assigned to processor 2

but, first task 1 is executed then task 3.

Fig 1: An example of proposed chromosome

Before describing the proposed methods, it is necessary to

state some definitions which have been stated in [21] as

follow:

 T= {t1, t2, t3, …, tn} is a set of tasks to execute.

 P= {p1, p2, p3, …,pm} is a set of processors in the distributed

system. Each processor can only execute one task at a time, in

other words, a processor completes current task before

executing a new one, and a task cannot be moved to another

processor during execution.

 R is an mm matrix, the element mvuuvr ,1 of

R, which is the communication delay rate between Pu and Pv.

 H is an mm matrix, the element 1 ,uvh u v m of

H, which is the time required to transmit a unit of data from

Pu to Pv. It is obvious that huu= 0 and ruu=0.

 A is an mn matrix, the element

mjniaij 1,1 of A, which is the execution

time of task ti on processor pj.

 D is a linear matrix, the element 1id i n of D, which

is the data volume for task ti to be transmitted when task ti is

to be executed on a remote processor.

 F is a linear matrix, the element 1if i n of F, which

is the target processor that is selected for task ti to be executed

on.

 C is a linear matrix, the element 1ic i n of C, which

is the processor that the task ti is worked on.

 The processor load for each processor is stated as follow:

iprocessor

toprocesses
AssignedNewofNo

k
ik

iprocessor
onprocesses

allocatedofNo

j
iji aapLoad

.

.

1
,

.

1
,)((5)

 The Makespan of a schedule is the maximal finishing time

of all processes or maximum load.

 () max ()

1

imakespan T Load p

i Number of processors

 (6)

 Communication Cost (CC) is computed as follow:

1

()
i i i i

number of
new processes

c f c f i

i

CC T r h d

 (7)

 The Processor utilization for each processor and the

average of processors utilization are also computed as follow:

()
() i

i

Load p
U p

makespan
 (8)

1

(())
Noof processors

i

i

AveU U p Number Of processors

 (9)

 Number of Acceptable Processor Queues (NoAPQ):

thresholds for light and heavy load on processor must be

defined. If the tasks completion time of a processor is within

the light and heavy thresholds, this processor queue will be

acceptable. If it is above the heavy threshold or below the

light-threshold, then it is unacceptable. But what is important

is the average of number of acceptable processors queues,

which is achievable by :

AveNoAPQ NoAPQ Number Of processors (10)

A Queue associated with every processor shows the tasks that

processor must execute. The execution order of tasks on each

processor is based on queues. Finally, the fitness of the

chromosome (Schedule T) can be computed as follow:

()
()

() ()

AveU AveNoAPQ
fitness T

makespan T CC T

 (11)

In the above mentioned formula, 1,,,0 are control

parameters to control effect of each part according to special

cases and their default value is one. This equation shows that

a fitter solution (Schedule) has less Makespan, less

Communication Cost, higher processor utilization and higher

Average number of acceptable processor queues.

Now the proposed method in details is described. Figure 2

depicts the proposed method.

Fig 2: Structure of the proposed method

Bee Colony Optimization (BCO) has been applied as local

search in the proposed memetic algorithm. The proposed

method works as follows:

In each step of iteration, a task in the chromosome is

randomly selected (index of the chromosome) according to

probability function, and then the selected task is allocated to

its processor. The bee colony optimization is checked to see

whether a new chromosome has been found. This function is

updated at each iteration in a reinforcing way by using the

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.10, March 2012

4

features of good solutions. The update of the probability

function is done by the bee that produced the best overall

chromosome [22].

4. EXPERIMENTAL RESULTS
In this section, regarding Communication Cost, CPU

utilization and Makespan, the proposed method has been

compared with the existent GA-based method [21], Tabu-

Based method[23] and Learning Automata-Based

methods[24].

First experiment:

In this experiment attempt has been made to increase the

number of tasks and compute average of all CPU utilization,

Communication Cost and Makespan. Figures 3 through 5

depict experimental results. As shown in figure 3, increasing

the number of tasks, BCO leads to better results compared to

three existing methods.

Fig 3: Average of CPU utilization in all methods

considering number of task

Figure 4 shows that when the number of the tasks increase,

BCO method has approximately less Communication Cost

than that of the other methods. But, as it can be seen from

figure 5, compared to other methods, BCO shows better

results related to Makespan.

Fig 4: Communication Cost in all methods considering

number of task

Fig 5: Makespan in all methods considering number of

task

Second experiment:

Similarly, regarding an increase in population size, computing

the Makespan, Communication Cost and CPU utilization of

all processors is the aim of this experiment. According to

Figure 6, when the population size increases, Makespan in

BCO method is less than that of the other methods.

Fig 6: Makespan in all methods regarding pop size

Like Figure 6, figure 7 illustrates that a rise in population size

leads to better results in average of CPU utilization in three

existing methods. As it can be seen, GA-based method has

underutilization.

Fig 7: Average of CPU utilization in all methods regarding

pop size

It can be observed from figure 8, BCO method has less

Communication Cost than that of the other methods.

Fig 8: Communication Cost in all methods regarding pop

size

Third Experiment:

The objective of this experiment is to compute the above

metrics when the numbers of generations are increased.

Figures 9 through 11 show the experimental results. Figure 9

shows the average of CPU utilization in all methods. As the

number of generations increase, average of CPU utilization in

BCO method rises, while the CPU utilization in GA-based

method, Compared with other methods, falls. In other words,

GA-based method has not scalability.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.10, March 2012

5

Fig 9: Average of CPU utilization in all methods with

respect to number of generation

Figure 10 depicts Communication Cost in all methods. As it

can be seen, Communication Cost in BCO method is less than

that of the other methods. Also, figure 11 shows that

Makespan in BCO method is less than that of the other

methods when the number of generation is increased.

Fig 10: Communication Cost in all methods with respect

to number of generation.

Fig 11: Makespan in all methods with respect to number

of generation.

5. CONCLUSION
Scheduling in distributed systems has a significant role in

overall system performance and throughput. Scheduling

problem is known as NP-complete. In this paper, Memetic

algorithm has been used for task scheduling. The author

applied Bee Colony Optimization and Ant Colony

Optimization as a local search in memetic. This algorithm

considers multi objectives in its solution evaluation and solves

the scheduling problem; it simultaneously minimizes

Makespan and Communication Cost while maximizes the

average of CPU utilization. Most existing approaches tend to

focus on one of the objectives. Extended experimental results

demonstrate that the proposed method outperforms the

existent GA-based method in terms of Communication Cost,

CPU utilization and Makespan.

6. REFERENCES

[1] Shen, C.C. and Tsai, W.H. 1985. A Graph Matching

Approach to Optimal Task Assignment in Distributed

Computing Using a Minimax Criterion. IEEE Trans. On

Computers, Vol. 34, 197-203.

[2] Ma, P.Y.R., Lee, E.Y. S. and Tsuchiya J. 1982. A Task

Allocation Model for Distributed Computing Systems.

IEEE Trans. On Computers, Vol. 31, 41-47.

[3] Park, G.L. 2004. Performance Evaluation of a List

Scheduling Algorithm In Distributed Memory

Multiprocessor Systems. International Journal of Future

Generation Computer Systems, Vol. 20, 249-256.

[4] Park, C.I. and Choe, T.Y. 2002. An optimal scheduling

algorithm based on task duplication. IEEE Trans. on

Computers, Vol. 51, 444–448.

[5] Woodside, C.M. and Monforton, G.G. 1993. Fast

Allocation of Processes in Distributed and Parallel

Systems. IEEE Trans. On Parallel and Distributed

Systems, Vol. 4, 164-174.

[6] Page, A.J., Keane, T.M. and Naughton, T.J. 2010. Multi-

heuristic dynamic task allocation using genetic

algorithms in a heterogeneous distributed system. Journal

of Parallel and Distributed Computing, Vol. 70, 758-766.

[7] Sarje, A.K. and Sagar, G. 1991. Heuristic Model for

Task Allocation in Distributed Computer Systems. Proc.

of the IEEE, Vol. 138, 313-318.

[8] Chow, Y. and Kohler, W.H. 1979. Models for Dynamic

Load Balancing in a Heterogeneous Multiple Processor

System. IEEE Transactions on Computers, Vol. 28, 354-

361.

[9] Lin, M. and Yang, L.T. 1999. Hybrid Genetic

Algorithms for Scheduling Partially Ordered Tasks in a

Multi-processor Environment. Proc. of the 6th IEEE

Conf. on Real-Time Computer Systems and

Applications, 382–387.

[10] Yao, W., Yao, J. and Li, B. 2004. Main Sequences

Genetic Scheduling For Multiprocessor Systems Using

Task Duplication,” International Journal of

Microprocessors and Microsystems, Vol. 28, 85-94.

[11] Moore, M. 2003. An Accurate and Efficient Parallel

Genetic Algorithm to Schedule Tasks on a Cluster. Proc.

of the IEEE International Parallel and Distributed

Processing Symposium.

[12] Martino, V.D. 2003. Sub Optimal Scheduling in a Grid

using Genetic Algorithms. Proc. of the IEEE

International Parallel and Distributed Processing

Symposium.

[13] Zomaya, A.Y., Ward, C. and Macey, B. 1999. Genetic

Scheduling for Parallel Processor Systems: Comparative

Studies and Performance Issues. IEEE Trans. On Parallel

and Distributed Systems, Vol. 10, 795-812.

[14] Woo, S.H., Yang, S., Kim, S. and Han, T. 1997. Task

scheduling in distributed computing systems with a

genetic algorithm. High-Performance Computing on the

Information Superhighway, HPC-Asia '97, 301-307.

[15] Hou, E.S.H., Ansari, N. and Ren, H. 1994. A Genetic

Algorithm for Multiprocessor Scheduling. IEEE Trans.

On Parallel and Distributed Systems, Vol. 5, 113-120.

http://www.minds.nuim.ie/~page/PKN2010j.pdf
http://www.minds.nuim.ie/~page/PKN2010j.pdf
http://www.minds.nuim.ie/~page/PKN2010j.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.10, March 2012

6

[16] Lan, Y. and Yu, T. 1995. A Dynamic Central Scheduler

Load-Balancing Mechanism. Proc. of the 14th IEEE

Ann. Int'l Phoenix Conf. on Computers and

Communication, 734-740.

[17] Bonomi, F. and Kumar, A. 1990. Adaptive Optimal

Load-Balancing in a Heterogeneous Multiserver System

with a Central Job Scheduler. IEEE Trans. on

Computers, Vol. 39, 1232-1250.

[18] Teodorovic, D., Davidovic, T. and Selmic, M. 2011. Bee

Colony Optimization: The Applications Survey. ACM

Transactions on Computational Logic, 1-20.

[19] Karaboga, D. and Basturk, B. 2008. On the performance

of artificial bee colony (ABC),” Algorithm. Appl. Soft

Comput, Vol. 8, 687–697.

[20] Hanani, A., Nourossana, S., Haj seyed javadi, H. and

Rahmani, A. 2010. Solving the Scheduling Problem in

Multi-Processor Systems with Communication Cost and

Precedence using Bee Colony System. in Proc. of the 3rd

International Conference on Advanced Computer Theory

and Engineering, V5-464-V5-469.

[21] Nikravan, M. and Kashani, M.H. 2007. A Genetic

Algorithm For Process Scheduling In Distributed

Operating Systems Considering Load balancing. in

Proceedings of the 21th European Conference on

Modeling and Simulation, 645-650.

[22] Kashani, M.H., Jamei, M., Akbari, M. and Moosavi

Tayebi, R. 2011. Utilizing Bee Colony to Solve Task

Scheduling Problem in Distributed Systems. in

Proceedings of the Third International Conference on

Computational Intelligence, Communication Systems

and Networks, 298-303.

[23] Jahanshahi, M., Gholipour, M., Kordafshari, M.S. and

Rahmani, A.M. 2009. A Novel Method for Task

Scheduling in Distributed Systems Using Memetic. in

proceeding of the Second International Conference on

Communication Theory, Reliability, and Quality of

Service, 58-62.

[24] Jahanshahi, M., Meybodi, M.R. and Dehghan, M. 2009.

A New Approach for Task Scheduling in Distributed

Systems Using Learning Automata. Proceedings of the

IEEE International Conference on Automation and

Logistics Shenyang, 62-67.

