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ABSTRACT 

Growing interest in the model driven approaches has largely 

increased the number of tools into the model driven 

development environment. Previous research has shown that 

the stakeholders often do not use or know all of the tools 

available in the model evolution environment that they 

regularly use. The common solution to this problem is to 

provide a means to search through passive help documents. 

However, this approach requires a stakeholder to be able to 

express their desires in a form understood by search engine. 

So, choosing the right tool for MoDSE tasks has become 

difficult because of the diverse nature of numerous tools 

available. To overcome this limitation, this paper aims to 

present a prototypical recommendation system, named 

mROSE, to provide timely and useful recommendations to 

stakeholders. Two empirical studies were conducted to 

investigate if mROSE helps or hinders the stakeholders in 

MoDSE, if so under what conditions. First one was 

longitudinal user study and the second one was a laboratory 

user study. Performance of mROSE was also evaluated by 

using some of the existing metrics. These studies confirmed 

that mROSE can help stakeholders to choose right tools more 

efficiently and users liked the idea of having a 

recommendation system for MoDSE environment, like 

mROSE. These studies also revealed future directions that 

would improve the functionality of mROSE.  

Keywords 
Model Driven Approach, Model-driven Software Evolution, 
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Software Engineering. 

1. INTRODUCTION 
Model Driven approaches have become a new software trend 

in software development process. MDE needs a new paradigm 

for software evolution which is known as MoDSE [1]. Many 

CASE tools have evolved due to wide usage of model driven 

approaches. Tools are used for different activities of model 

driven evolution such as model transformation, model 

mapping etc. So, here the question arises ―how do you choose 

the right tool?‖  

The contradictory experiences with MDA and UML tools 

appear puzzling and difficult to interpret. Tools do much work 

in model driven approaches [2]. So, it is very much essential 

to choose the tools carefully.  Basically, an MDA tool is a tool 

used to develop, interpret, compare, align, measure, verify, 

transform, models or meta models. In MDA approach we 

have essentially two kinds of models: initial models are 

created manually by human agents while derived models are 

created automatically by programs. For example, an analyst 

may create a UML initial model from its observation of some 

loose business situation while a Java model may be 

automatically derived from this UML model by a Model 

transformation operation which can be done with the help of 

automated tools. These tools perform more than one of the 

desired functions. For example, some creation tools may also 

have transformation and test capabilities. There are other tools 

that are solely for creation, solely for graphical presentation, 

solely for transformation, etc. There is an increasing need for 

more disciplined techniques and engineering tools to support a 

wide range of model evolution activities, including model-

driven software evolution, model differencing, model 

comparison, model refactoring, model consistency, model 

versioning and merging, and (co-)evolution of models. 

The research presented here suggests that by shifting the focus 

from specific outcome expectations, it may be able to make 

sense of the apparently inconsistent findings. This paper 

presents a recommendation system ‗mROSE‘ for tool 

selection which is conceptualized as a form of stakeholder1 

interests and/or concerns. Such a perspective allows users to 

anticipate, explain, and evaluate different experiences and 

consequences following the introduction and intention of the 

tools. Recommendation system is a software application that 

aims to support users in their decision-making while 

interacting with large information spaces [3]. They 

recommend items of interest to users based on preferences 

they have expressed, either explicitly or implicitly. The ever-

expanding volume and increasing complexity of information 

has therefore made such systems essential tools for users in a 

variety of information seeking activities. Recommendation 

system helps to overcome the information overload problem 

by exposing users to the most interesting items, and by 

offering novelty, surprise, and relevance. 

However, there has been no systematic formulation of MDA 

tools for stakeholder concerns in MoDSE. The stakeholder 

concerns in MoDSE are identified as model mapping, model 

merging, model integration, model transformation, model 

consistency etc, [1, 2, 4, 5]. To gain the knowledge about the 

tools stakeholders definitely explore the existing tools in the 

literature. Much of the literature on these tools has intended to 

focus on discussion forums, panels, comparison strategies and 

frameworks. Discussion forum and/or panel are where the 

users can share their ideas and answering the questions of the 

audience [7, 8]. Framework determines the comparison 

strategies for features of tools of same category under a 

uniform platform [5, 9, 10, 11, 12]. Thus, the proposed system 

is intended to provide the recommendations by bringing 

stakeholder concerns and tools together.  

The remainder of the paper is structured as follows. Section 2 

reviews the related work. Proposing a Recommendation 

                                                            
1 Stakeholder and user terms are used interchangeably in this paper. 

http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model_transformation
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System in Model-Driven Software Evolution Context is the 

primary contribution of this paper which is discussed in the 

section 3.  Evaluation of mROSE is presented in the section 4. 

Section 5 closes with conclusions and future work. 

2. RELATED WORK 
This section outlines the comparison strategies, forums, 

panels for MDA and UML tools and also about the 

recommendation systems for software engineering. Many 

more recommendation systems are available for software 

engineering. But few recommendation systems are discussed 

here. 

2.1 Tools 
Integrated constrain support in MDA tools evaluated in [13]. 

The different tools were classified in Categories like CASE 

tools, MDA specific tools, MDD methods and OCL tools. 

MDA-tools considered in the classification are closest to the 

MDA standard. Only few tools such as Poseidon, Rational 

Rose, Magic Draw, Objecteering/UML , Together ,ArcStyler, 

OptimalJ and AndroMDA  etc,  have selected for the 

comparison and evaluation purpose. The support of current 

tools regarding the automatic generation of the code required 

to enforce the Integrated Constraints specified in a PIM also 

surveyed. The main shortcomings encountered are the lack of 

expressivity and efficiency in integrated constraints. 

A short comparison of the three MDA tools was presented in 

[11].  It was focused on the concepts behind the tools as well 

as how to use them. The tools considered for comparison are 

ArchitectureWare, AndroMDA, and openMDX. The 

comparison strategy presented might be useful for evaluation 

purposes to find out about the differences in approach, 

features and concepts which are to be considered as the 

implementation of OMG‘s MDA specification. 

Computer Aided Software Engineering tool Community is an 

open access web application. In which the different categories 

of the CASE tools like MDA, UML, reverse engineering, 

agile modeling etc. are listed. The key functions, external 

links, and rating of the tools are provided.  modelbased.net 

forum [7] is dedicated to tools and information related to 

model-driven system development, aiming at supporting 

OMG‘s vision MDA are provided. This website provides the 

over view and the resource links of MDA oriented tools, 

UML, MOF, and Model transformation tools.   

MDA tools are categorized in three ways in [12]. The first, 

whether the tool is open source or commercial, will help to 

choose a tool that is right for the culture of an organization, 

among other things. The second, whether the tool offers a 

partial or complete MDA solution, will helps in such 

considerations as cost, quality, and flexibility. The final 

category, whether the tool generates code from the model or 

executes the model. It is not mentioned what are the tools that 

fits in to the specified categories. IBM Rational software has 

several products that support MDA and Model Driven 

Development (MDD) in varying capacities [11]. These tools 

fall into three basic categories such as general-purpose, 

domain-specific, and supporting. For example Rational 

Software Architect is in general-purpose category, IBM 

Rational Systems Developer in domain-specific category, and 

IBM WebSphere Business Modeler in the supporting 

category. The usage of these tools in MDA was described. 

Here only IBM products are considered for categorization.  

Above mentioned forum, panel and community are only the 

information content of the tools which do not provide the auto 

suggestions about the tools for different activities of MoDSE. 

2.2 Recommendation Systems for Software 

Engineering 
The Strathcona system [14] retrieves relevant source code 

examples to help developers use frameworks effectively. For 

example, a developer who‘s trying to figure out how to 

change the status bar in the Eclipse IDE can highlight the par-

tially complete code (the context) and ask Strathcona for 

similar examples. Strathcona extracts a set of structural facts 

from the code fragment. Strathcona uses PostgreSQL queries 

to search for occurrences of each fact in a code repository. 

Next, it uses a set of heuristics to decide on the best examples, 

which it orders according to how many heuristics select them. 

It returns the top 10 examples, displaying them in two formats 

- a structural overview diagram and highlighted source code. 

Developers can also view a rationale for a proposed example. 

A prototype is also available in. 

 
Dhruv is a Recommendation System [15] which recommends 

people and artifacts relevant to a bug report. It operates 

chiefly in the open source community, which interacts heavily 

via the Web. Using a three-layer model of community 

(developers, users, and contributors), content (code, bug 

reports, and forum messages), and interactions between these, 

Dhruv constructs a according to the similarity between a bug 

report and the terms contained in the object and its metadata.  

Finding the right software experts to consult can be difficult, 

especially when they‘re geographically distributed. Expertise 

Browser [16] is a tool that recommends people by detecting 

past changes to a given code location or document. It assumes 

that developers who changed a method have expertise in it. 

ParseWeb [17] recommends sequences of method calls 

starting from an available object type and producing a desired 

object type. ParseWeb analyzes example code found on the 

Web to identify frequently occurring call patterns that link 

available object types with desired object types. Developers 

use the tool by specifying available and desired object types 

and requesting recommendations. 

To date, most Recommendation Systems for software 

engineering (RSSE) have focused on recommendations 

related to software development artifacts, particularly source 

code. RSSEs typically recommend code—to look at, change, 

or reuse. However, recommendations could address many 

other aspects of software development such as quality 

measures, tools, project management, and people could 

support an ever-widening array of software engineering tasks. 

Recommendation system might use activity logs to deduce 

questions developers ask, and then coach them automatically 

on appropriate, possibly unfamiliar tools or features to answer 

those questions more efficiently [18]. 

 Thus, the proposed system provides the recommendations for 

tool selection in the context of Model-Driven Software 

Evolution. It is different from the above mentioned forums 

and communities. The proposed system brings tools, MoDSE 

concerns, and stakeholders together and it is described in the 

next section. 

3. PROPOSED SYSTEM 
Many stakeholders spend substantial effort in finding out 

appropriate tool among the huge number, to perform activities 

in MoDSE. The major goal of this paper is to bring 

stakeholder, tools and concerns together and assist in selecting 

appropriate tool suitable to accomplish concerns of interest. 

The following sections demonstrate the design issues and 

different components of the proposed System. 
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Recommendation System for Software Engineering (RSSE) is 

defined in as ―a software application that provides information 

items estimated to be valuable for a software engineering task 

in a given context‖.  mROSE, the proposed recommendation 

system, generates useful tool recommendations for users to 

understand evolution of the models in the Model-Driven 

Software Evolution. The design dimensions, characteristics 

and other concepts of RSSE are available in [17] and the 

design dimensions like nature of the context, recommendation 

engine, and output modes are considered for the proposed 

mROSE.  

3.1 Components of the mROSE 
mROSE consists of four major components: Basic Mode, 

Expert Mode, Tool Comparison and Knowledge Base. Based 

on the user profile two modes of interaction are provided. 

Tool Comparison is responsible for generating 

recommendations. Knowledge Base is the information space 

where user can explore detailed information about concerns 

and tools. mROSE can also be connected to the web for 

further expansion. Details of each component are provided in 

the rest of this section. 

3.1.1  Basic Mode 
This mode of operation is for a beginner who is not well 

versed with the terminology associated with MoDSE and 

MDA tools.   Basic Mode (Fig.1a) lists all the possible 

concerns of MoDSE and allows the user to select the 

interested concerns while providing an option to learn more 

about these concerns. After selecting interested concerns, user 

can click the button titled ‗Get tools for Selected Concerns’ to 

list all tools that support user‘s selection. Further user can 

select few suggested tools and use the button titled ‗Compare 

Selected Tools’ to enable Tool Comparison component that 

generates comparison summary and recommendations based 

on the number of concerns selected by the user and number of 

concerns satisfied by the tool. 

3.1.2 Expert Mode 
Expert Mode allows the user who has the knowledge about 

the MoDSE and MDA tools. Interface (Fig.1b) allows the user 

to search for interested concerns with search option and auto 

suggestions. It populates the list of the selected concerns. 

Recommendations are generated for the selected concerns. 

Comparison summary of the selected recommended tools are 

presented from which identifying the right tool becomes easy 

for a user.  

3.1.3 Tool Comparison 
This component lists the tools which are useful to understand 

the evolution of the models in MoDSE. Tools are categorized 

as MDA and UML tools, and also as Non-Commercial and 

Commercial tools. Tool Comparison generates the 

comparison summary of similarities and dissimilarities of the 

selected tools. Tool Comparison component implicitly works 

as a recommendation engine which generates the 

recommendations for the user interest. Comparison and 

Recommendation buttons (Fig 1c and Fig 1d) are used to view  

the comparison summary and the recommendations based on 

the user selected concerns, tools and the number of concerns 

satisfied by the selected tool.  

3.1.4 Knowledge Base 
Knowledge Base is an information repository where the 

complete content of the tools, description of various concerns 

of MoDSE and other related information about Models, UML 

diagrams etc. are available. User can capture and gain the 

knowledge about MoDSE from the search option (Fig. 1e). 

mROSE can be connected to web thru this component helping 

user to explore more information and also to overcome the 

limited information space of the repository.  Users can leave 

feedback about mROSE using Post Comment option and (Fig. 

1f.)  

3.1.5 Algorithm 
Recommendation engine algorithm is constructed by 

determining various tool similarities and algorithm used here 

is available in the literature as Item-Based schemas [19]. The 

following symbols are used in the algorithm. 

N = number of recommendations that need to be 

generated for a particular user 

n = number of distinct users 

m = number of distinct tools in a particular transaction, 

user selecting the concerns, selecting the appropriate 

tools considered as a transaction. 

k = number of similar tools  

Input to this algorithm is the model M, an m× 1 vector U that 

stores items that have been selected by the active user. Active 

user‘s information in vector U is encoded by setting Ui = 1 if 

the user has selected i th tool and zero otherwise. Output of 

this algorithm is an m×1 vector x whose nonzero entries 

correspond to the number of items to be recommended (N). 

Weight of these nonzero entries represents a measure of the 

recommendation strength and various recommendations can 

be ordered in non-increasing recommendation. In most cases x 

will have exactly N nonzero entries; however, actual number 

of recommendations can be less than N as it depends on the 

value of k used to build M and the number of items that have 

already been selected by active user. 

 

Algorithm : RecommndGen (M, U, N) 

x ←MU                    (1) 

for j ← 1 to m         (2) 

do 

if Ui ≠ 0 

then xi ← 0 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 42– No.1, March 2012 

49 

 

 

 

Fig 1: mROSE User Interface 

 

Fig 1a: Basic Mode with List of Selected Concerns and Actions 

 

Fig 1b: Expert mode with search and auto suggestions options and Actions 

 

Fig 1c: Comparison summary of selected tools in Tool Comparison 
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Fig 1d: Recommendations generated in Tool Comparison 

 

Fig 1e: Information capturing from Knowledge Base 

 

                      Fig 1f: Feedback Form of mROSE in the Knowledge Base 

 

for j ← 1 to m         (3) 

do 

if xi≠  among the N largest values in x 

then xi ← 0 

return (x) 
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Vector x is computed in three steps. First, vector x is 

computed by multiplying M with U (line 1). Note that the 

nonzero entries of x correspond to union of k most similar 

concerns for each tool that has already been selected by an 

active user, and weight of these entries is nothing more than 

the sum of these similarities. Second, the entries of x that 

correspond to tools that have already been selected by an 

active user are set to zero (loop at line 2). Finally, in third 

step, the algorithm sets to zero and all entries of x that have a 

value smaller than the N largest values of x (loop at line 3). 

Comparison between the tools is computed as an 

ItemSimilarity by using MapReduce [20,21] framework 

which shields the programmer from distributed processing 

issues such as synchronization, data exchange, and load 

balancing. Existing MapReduce [21] technique is used in this 

research to compute pair wise similarity between the tools. 

This technique is selected because of its efficiency in 

computing pair wise similarity for large collections. In this 

paper pair wise tool similarity can be expressed as an inner 

product of concern weights. A tool t is represented as a vector 

Wt of concern weights wc,t , which indicates the importance of 

each concern c in that tool by considering symmetric 

similarity measure, which is defined as follows: 

 

                                   (1) 

Where similarity between tools ti and tj and V is is 

the concern set. In this type of similarity measure, a concern 

will contribute to the similarity between two tools only if it 

has non-zero weights in both. Therefore, can be replaced 

with  in equation (1). For example, if a concern 

appears in tools x,y, and z, it contributes only to the similarity 

scores between (x,y),(x,z) and (y,z). The list of tools that 

contain a particular concern is exactly retrieved. Thus, 

processing all retrieves, entire pair wise similarity matrix can 

compute by summing concern contributions. 

Algorithm : Compute Tool Similarity Matrix 

1: i, j : sim[i, j] 0 

2: for all  do 

3: rc  retrieves(c) 

4: for all  rc  do 

5: sim[i, j]  sim[i, j] +  

Algorithm formalizes the idea: retrieves(c) denotes list of 

tools that contain concern c. In mROSE prototype model, 

information space of tools and concerns considered is small. 

So, this algorithm runs efficiently to compute entire similarity 

matrix in memory. For larger collections disk access 

optimization is needed, which is provided by the MapReduce 

[29, 30] runtime, without requiring explicit coordination. In 

mROSE comparison report is treated as an n×m matrix, where 

n is the total number of concerns and m is the concerns 

present in selected tools. If the concern is present in a tool, 

that is treated as a ‗YES‘ if not ‗NO‘. Increase in number of n 

and m, increases the number of iterations which in turn 

increases computation complexity. This can be reduced by 

reducing the number of iterations by assuming that number of 

concerns fixed (n) and number of tools may vary (m). 

4. mROSE EVALUATION 
This section describes the validation of the proposed mROSE 

prototype model by longitudinal and laboratory user studies. 

Standard evaluation techniques that refer directly to the 

performance metrics [22] related to time, storage requirements 

and computation complexity is used to evaluate the 

performance of mROSE.  

4.1 Longitudinal User Study 
A formal evaluation of mROSE system is needed to determine 

whether and under what conditions this system help or hinder 

the users. These evaluations can also help assess whether 

benefits of mROSE system support the users need or not. To 

evaluate the value and acceptance of prototype of mROSE, a 

longitudinal user study has conducted with 15 participants 

who are academicians and research students from diverse 

organizations. Longitudinal User Study aimed to answer nine 

different tasks which consist of questions about MoDSE 

concerns, activities, and tools. Due to the space limitation nine 

tasks are not mentioned here. Since mROSE prototype model 

could only recommend 60 tools at the moment.   

To observe the effect, efficiency and usability of mROSE, 

longitudinal study was divided into two phases: In First Phase, 

answering the nine tasks without using mROSE system; 

Second Phase, answering the nine tasks with the help of 

mROSE. During the first phase, mROSE was disabled to the 

participants, meaning that participants could not interact with 

mROSE or receive any information/knowledge to solve nine 

tasks. Participants have recorded the time taken (man hours) 

to answer each task as shown in the Table 1 and columns from 

P1 to P15 represent the participants and rows Tk1 to Tk9 

represent task1 to task9. Values in Table 1 are time taken to 

answer the each task by each participant measured in minutes 

(man hours). Average time taken to answer each task by 15 

users also computed and it is shown in Table 1. 

After completion of the first phase participants remarked that 

answering the tasks required lot of information gathering from 

distinct sources like communities, forums, social networks, 

websites, search engines etc. So, it is not only a time 

consuming and tiresome job but also information gathered 

may be accurate and may not be. Participants who do not have 

an idea about MoDSE claimed that for few questions they 

didn‘t get the answers and approaching  communities and 

forums did not worked out. From the results in the Table 1, it 

is clear that answering tasks is time consuming and the 

participants who do not have knowledge about MoDSE took 

more time compared with the participants who have 

knowledge about MoDSE.  

After each participant had finished the first phase they were 

asked to start second phase. During this phase participants 

were answering the same nine tasks with using mROSE. Time 

taken to complete each task by each participant is recorded 

and it is shown in the Table 2. Participants reported that 

answering the tasks with help of mROSE reduced the time for 

searching various sources to gather the information further 

reducing effort and difficulty in getting right information. 

From the comparison results in Table 1 and Table 2, time 

taken to complete the tasks has drastically reduced.  
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Table 1. Results During First Phase of Longitudinal Study (without using mROSE) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Table 2. Results During Second Phase of Longitudinal Study (using mROSE) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Participants 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Average 

time 

(minutes) 

Task  1 40 45 35 28 25 38 48 48 35 90 60 90 51 60 60 50.2 

Task 2 45 35 90 120 30 100 80 90 90 45 45 35 50 50 90 66.33 

Task 3 35 25 30 28 30 100 35 75 25 25 60 90 25 90 90 50.8 

Task 4 25 60 69 60 25 25 25 60 35 40 35 45 40 40 35 41.27 

Task 5 20 30 38 58 105 35 25 25 25 35 40 50 70 80 90 48.4 

Task 6 20 30 30 20 20 25 35 40 35 30 30 35 20 20 20 26.67 

Task 7 30 60 60 60 60 60 60 30 30 35 30 30 30 30 30 42.33 

Task 8 50 90 100 150 100 120 120 130 140 140 135 135 130 135 150 121.67 

Task 9 40 45 45 55 65 40 40 45 65 75 45 65 75 90 90 58.67 

Participants 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Average 

time 

(minutes) 

Task  1 5 8 9 9 9 5 7 5 7 7.5 9.5 10 10 10 10 8.07 

Task 2 7 7 10 10 12 6 7.5 7.5 8 10 12 12 12 15 15 10.07 

Task 3 10 10 10 9 15 10 9 8 10 9.5 7.5 9.5 19 15 15 11.1 

Task 4 5 5 5 15 10 10 15 9 12 10 10 10 18 19 10 10.87 

Task 5 5 5 5 5 10 10 5 8 7 10 10 10 10 10 10 8.0 

Task 6 3 3 5 3 5 2 3 5 4 5 5 5 5 5 4 4.13 

Task 7 3 3 4 4 4 3 4 5 5 5 5 4 4 4 4 4.35 

Task 8 30 30 40 40 35 35 30 45 40 40 35 30 35 30 30 35 

Task 9 15 15 20 20 25 15 18 20 25 15 15 20 20 20 20 25.53 
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4.2 Laboratory User Study 
The experimental study is essential to determine user 

perception towards prototype model of mROSE. Laboratory 

study reveals many future directions which would help the 

authors to extend and make mROSE as a complete working 

model. In this study ten participants were participated, and 

given the computer in which mROSE is installed and asked 

them to go through each menu and action buttons. All ten 

participants were asked to reply the questionnaire (which is 

not mention because of limited space)  prepared to rate 

usefulness, ease of use, recommendations, user interface, and 

action buttons, etc. 5-level Likert scale is used to rate  

mROSE (1-strongly disagree to 5-strongly agree). Table 3 

shows opinion of all the participants. During this study there 

was an interaction session with all participants personally to 

know their thoughts whether this kind of recommendation 

system should be available in MoDSE context. All 

participants agreed that it was a good idea and it would likely 

help the users to find many MDA and UML tools and also 

about MoDSE. Laboratory study also highlighted the 

difficulties of using Basic Mode and Expert Mode 

components. Tool Comparison component will appear only 

after selecting the tools for comparison and recommendations 

also generated. This was not observed by four participants and 

others have gone through the differentiation. However, many 

of the participants did not recognize where to provide the 

feedback about mROSE. Instead of using the facility to leave 

comments, suggestions and feedback, participants have sent 

the mails. 

Mean, Standard Deviation and Population Standard Deviation 

also calculated for queries L1 to L10 (questioner consists of 

queries from L1 to L10 are not mentioned due to limited 

space). Eight out of ten participants satisfied with the 

information in mROSE. (L1: mean=4, standard 

deviation=0.67, population standard deviation=0.63).  Eight 

out of ten participants felt that they gain the knowledge about 

tools and MoDSE. (L2: mean=4.1, standard deviation=1, 

population standard deviation=0.94). Nine participants liked 

the idea of mROSE (L3: mean=3.9, standard deviation=1.2, 

population standard deviation=1.14).  Nine participants 

trusted the information in mROSE (L4: mean=4.4, standard 

deviation=0.81, population standard deviation=0.77). Nine 

participants felt mROSE is useful for users who involved in 

MoDSE. (L5: mean=3.9, standard deviation=0.57, population 

standard deviation=0.54).  Eight out of ten participants felt 

that mROSE is not cumbersome to use. (L6: mean= 1.9, 

standard deviation=2.3, population standard deviation=2.21). 

All participants reported that learning is easy (L7: mean= 4.7, 

standard deviation=0.88, population standard deviation=0.83).  

All participants reported that mROSE was not often 

frustrating (L8: mean= 1.6, standard deviation=2.58, 

population standard deviation=2.44). All participants felt that 

easy to get mROSE to do what they want to do (L9: mean= 

4.4, standard deviation=0.67, population standard 

deviation=0.63). Nine participants claimed that mROSE is 

easy to remember, to perform the tasks (L10: mean=3.8, 

standard deviation=0.47, population standard deviation=0.44).    

 

Table 3. Ratings of mROSE by Participants during Laboratory Study  

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

P1 3 2 1 3 4 3 5 2 4 3 

P2 4 4 4 5 4 2 4 2 4 4 

P3 4 5 4 4 3 2 5 2 4 4 

P4 4 5 5 5 5 2 5 2 5 4 

P5 4 4 5 4 4 2 5 2 5 4 

P6 5 4 5 4 4 1 5 1 5 4 

P7 5 4 5 5 4 1 5 1 4 4 

P8 4 5 4 5 4 1 5 1 4 4 

P9 4 5 4 5 4 2 4 2 5 4 

P10 3 3 4 4 3 3 4 1 4 5 
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4.3 Metrics Evaluating Performance 

4.3.1 Response Time 
It is widely used performance metric, which is utilized for 

various purposes and in different domains. In this case it 

defines the time that elapsed between a user‘s stated request 

and system‘s response to that request. User may request for a 

recommendation from the system at time T1. mROSE will 

accept the request, process the input, and after a successful 

completion of  required task, it will provide a response at time 

T2, where necessarily T2>T1. Then the response time Tr, is 

defined as the difference between these two times i.e Tr=T2-

T1. To calculate response time of mROSE, eight different 

requests and their responses have considered and average 

response time Tr is calculated and is shown in Table 4. Total 

response time for all eight requests is 1.8 sec and the average 

is 0.225 sec which is an effective response time.  

 

                                             Table 4. Response time of mROSE 

 

 

 

 

 

 

 

 

 

 

4.3. 2 Storage Requirements 
Another way of evaluating mROSE is based on its storage 

requirements. It is natural to expect from modern 

recommendation systems to provide services that involve 

more number of users and items. So, it may be wise to 

evaluate how mROSE manipulate the space provided. Storage 

requirements are usually analyzed in two ways: by checking 

their main memory and secondary storage requirement. 

Prototype model of mROSE works offline, so the storage 

space usage including database is 97MB which is very much 

reasonable. 

4.3.3 Computation Complexity 
Typically most filtering algorithms can be divided into two 

separate steps [22]: Fist, there is a model building step, 

usually executed off-line, followed by a second execution 

step, which is always executed on-line. Preprocessing, 

representation, calculation and recommendation, prediction 

generation, which appear in most discussed filtering 

algorithms, can be as part of off-line step. Prediction or 

recommendation generation is an on-line step. 

In mROSE preprocessing is interacting with the system thru 

either Basic Mode or Expert Mode, selecting the concern, 

searching for concern, get the tools for selected concern, and 

get information about tools and concerns of MoDSE usually 

executed off-line. Tool comparison, recommendation 

generation is on-line step. Tool comparison is crucial 

performance factor in the recommendation process, since it is 

based on the number of tools selected for comparison. It is 

obvious that when number of selected tools increases, 

comparison summary becomes large and delayed. But in 

mROSE computational complexity is totally reduced and 

same time taken to generate comparison summary irrespective 

of the number of tools. And it is also observed that mROSE 

takes considerably less time for both the off-line and on-line 

steps and give faster responses. Thus, it is clear that 

computation complexity is very less in mROSE. 

 

 

 

5.  CONCLUSIONS AND FUTURE       

WORK 
mROSE is a recommendation system which is useful for tool 

selection and for understanding Model-Driven Software 

Evolution. mROSE consists of four major components: Basic 

Mode, Expert Mode, Tool Comparison and Knowledge Base. 

User profile is considered either as a beginner or expert. All 

possible stakeholder interests and/or concerns in MoDSE are 

considered in the proposed prototypical system. For each user 

interest all possible matching MDA tools are considered.  

Description of the entire content of mROSE is made available 

in the repository which is called as Knowledge Base. Tool 

Comparison implicitly works as a recommendation engine. 

An approach for recommending right tools for the right 

concerns in MoDSE is also presented. Prototype model of 

mROSE is also implemented. MROSE is useful for 

stakeholder to understand the evolution of the models, variant 

activities of MoDSE and role of the tools. mROSE is 

evaluated by longitudinal and laboratory user studies which 

conforms the desire for a system like mROSE. Evaluation of 

the proposed system reveals many future directions like 

change in user preferences, prediction generation, and ranking 

mechanism. Increase in number of concerns and tools rises the 

scalability which is the major challenge of many existing 

recommender systems is subject of future work.  
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