
International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

46

mROSE: To Determine Tool Selection and to Understand

Model-Driven Software Evolution

Madhavi Karanam

Computer Science and Engineering
Department, Nalgonda Institute of

Technology and Science, Nalgonda,
Andhra Pradesh, India

 Ananda Rao Akepogu
Computer Science and Engineering
Department, JNTUCEA, Jawaharlal

Nehru Technological University,
Anantapur, Andhra Pradesh, India

ABSTRACT

Growing interest in the model driven approaches has largely

increased the number of tools into the model driven

development environment. Previous research has shown that

the stakeholders often do not use or know all of the tools

available in the model evolution environment that they

regularly use. The common solution to this problem is to

provide a means to search through passive help documents.

However, this approach requires a stakeholder to be able to

express their desires in a form understood by search engine.

So, choosing the right tool for MoDSE tasks has become

difficult because of the diverse nature of numerous tools

available. To overcome this limitation, this paper aims to

present a prototypical recommendation system, named

mROSE, to provide timely and useful recommendations to

stakeholders. Two empirical studies were conducted to

investigate if mROSE helps or hinders the stakeholders in

MoDSE, if so under what conditions. First one was

longitudinal user study and the second one was a laboratory

user study. Performance of mROSE was also evaluated by

using some of the existing metrics. These studies confirmed

that mROSE can help stakeholders to choose right tools more

efficiently and users liked the idea of having a

recommendation system for MoDSE environment, like

mROSE. These studies also revealed future directions that

would improve the functionality of mROSE.

Keywords
Model Driven Approach, Model-driven Software Evolution,

MDA Tools, UML Tools, and Recommendation Systems for

Software Engineering.

1. INTRODUCTION
Model Driven approaches have become a new software trend

in software development process. MDE needs a new paradigm

for software evolution which is known as MoDSE [1]. Many

CASE tools have evolved due to wide usage of model driven

approaches. Tools are used for different activities of model

driven evolution such as model transformation, model

mapping etc. So, here the question arises ―how do you choose

the right tool?‖

The contradictory experiences with MDA and UML tools

appear puzzling and difficult to interpret. Tools do much work

in model driven approaches [2]. So, it is very much essential

to choose the tools carefully. Basically, an MDA tool is a tool

used to develop, interpret, compare, align, measure, verify,

transform, models or meta models. In MDA approach we

have essentially two kinds of models: initial models are

created manually by human agents while derived models are

created automatically by programs. For example, an analyst

may create a UML initial model from its observation of some

loose business situation while a Java model may be

automatically derived from this UML model by a Model

transformation operation which can be done with the help of

automated tools. These tools perform more than one of the

desired functions. For example, some creation tools may also

have transformation and test capabilities. There are other tools

that are solely for creation, solely for graphical presentation,

solely for transformation, etc. There is an increasing need for

more disciplined techniques and engineering tools to support a

wide range of model evolution activities, including model-

driven software evolution, model differencing, model

comparison, model refactoring, model consistency, model

versioning and merging, and (co-)evolution of models.

The research presented here suggests that by shifting the focus

from specific outcome expectations, it may be able to make

sense of the apparently inconsistent findings. This paper

presents a recommendation system ‗mROSE‘ for tool

selection which is conceptualized as a form of stakeholder1

interests and/or concerns. Such a perspective allows users to

anticipate, explain, and evaluate different experiences and

consequences following the introduction and intention of the

tools. Recommendation system is a software application that

aims to support users in their decision-making while

interacting with large information spaces [3]. They

recommend items of interest to users based on preferences

they have expressed, either explicitly or implicitly. The ever-

expanding volume and increasing complexity of information

has therefore made such systems essential tools for users in a

variety of information seeking activities. Recommendation

system helps to overcome the information overload problem

by exposing users to the most interesting items, and by

offering novelty, surprise, and relevance.

However, there has been no systematic formulation of MDA

tools for stakeholder concerns in MoDSE. The stakeholder

concerns in MoDSE are identified as model mapping, model

merging, model integration, model transformation, model

consistency etc, [1, 2, 4, 5]. To gain the knowledge about the

tools stakeholders definitely explore the existing tools in the

literature. Much of the literature on these tools has intended to

focus on discussion forums, panels, comparison strategies and

frameworks. Discussion forum and/or panel are where the

users can share their ideas and answering the questions of the

audience [7, 8]. Framework determines the comparison

strategies for features of tools of same category under a

uniform platform [5, 9, 10, 11, 12]. Thus, the proposed system

is intended to provide the recommendations by bringing

stakeholder concerns and tools together.

The remainder of the paper is structured as follows. Section 2

reviews the related work. Proposing a Recommendation

1 Stakeholder and user terms are used interchangeably in this paper.

http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model_transformation

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

47

System in Model-Driven Software Evolution Context is the

primary contribution of this paper which is discussed in the

section 3. Evaluation of mROSE is presented in the section 4.

Section 5 closes with conclusions and future work.

2. RELATED WORK
This section outlines the comparison strategies, forums,

panels for MDA and UML tools and also about the

recommendation systems for software engineering. Many

more recommendation systems are available for software

engineering. But few recommendation systems are discussed

here.

2.1 Tools
Integrated constrain support in MDA tools evaluated in [13].

The different tools were classified in Categories like CASE

tools, MDA specific tools, MDD methods and OCL tools.

MDA-tools considered in the classification are closest to the

MDA standard. Only few tools such as Poseidon, Rational

Rose, Magic Draw, Objecteering/UML , Together ,ArcStyler,

OptimalJ and AndroMDA etc, have selected for the

comparison and evaluation purpose. The support of current

tools regarding the automatic generation of the code required

to enforce the Integrated Constraints specified in a PIM also

surveyed. The main shortcomings encountered are the lack of

expressivity and efficiency in integrated constraints.

A short comparison of the three MDA tools was presented in

[11]. It was focused on the concepts behind the tools as well

as how to use them. The tools considered for comparison are

ArchitectureWare, AndroMDA, and openMDX. The

comparison strategy presented might be useful for evaluation

purposes to find out about the differences in approach,

features and concepts which are to be considered as the

implementation of OMG‘s MDA specification.

Computer Aided Software Engineering tool Community is an

open access web application. In which the different categories

of the CASE tools like MDA, UML, reverse engineering,

agile modeling etc. are listed. The key functions, external

links, and rating of the tools are provided. modelbased.net

forum [7] is dedicated to tools and information related to

model-driven system development, aiming at supporting

OMG‘s vision MDA are provided. This website provides the

over view and the resource links of MDA oriented tools,

UML, MOF, and Model transformation tools.

MDA tools are categorized in three ways in [12]. The first,

whether the tool is open source or commercial, will help to

choose a tool that is right for the culture of an organization,

among other things. The second, whether the tool offers a

partial or complete MDA solution, will helps in such

considerations as cost, quality, and flexibility. The final

category, whether the tool generates code from the model or

executes the model. It is not mentioned what are the tools that

fits in to the specified categories. IBM Rational software has

several products that support MDA and Model Driven

Development (MDD) in varying capacities [11]. These tools

fall into three basic categories such as general-purpose,

domain-specific, and supporting. For example Rational

Software Architect is in general-purpose category, IBM

Rational Systems Developer in domain-specific category, and

IBM WebSphere Business Modeler in the supporting

category. The usage of these tools in MDA was described.

Here only IBM products are considered for categorization.

Above mentioned forum, panel and community are only the

information content of the tools which do not provide the auto

suggestions about the tools for different activities of MoDSE.

2.2 Recommendation Systems for Software

Engineering
The Strathcona system [14] retrieves relevant source code

examples to help developers use frameworks effectively. For

example, a developer who‘s trying to figure out how to

change the status bar in the Eclipse IDE can highlight the par-

tially complete code (the context) and ask Strathcona for

similar examples. Strathcona extracts a set of structural facts

from the code fragment. Strathcona uses PostgreSQL queries

to search for occurrences of each fact in a code repository.

Next, it uses a set of heuristics to decide on the best examples,

which it orders according to how many heuristics select them.

It returns the top 10 examples, displaying them in two formats

- a structural overview diagram and highlighted source code.

Developers can also view a rationale for a proposed example.

A prototype is also available in.

Dhruv is a Recommendation System [15] which recommends

people and artifacts relevant to a bug report. It operates

chiefly in the open source community, which interacts heavily

via the Web. Using a three-layer model of community

(developers, users, and contributors), content (code, bug

reports, and forum messages), and interactions between these,

Dhruv constructs a according to the similarity between a bug

report and the terms contained in the object and its metadata.

Finding the right software experts to consult can be difficult,

especially when they‘re geographically distributed. Expertise

Browser [16] is a tool that recommends people by detecting

past changes to a given code location or document. It assumes

that developers who changed a method have expertise in it.

ParseWeb [17] recommends sequences of method calls

starting from an available object type and producing a desired

object type. ParseWeb analyzes example code found on the

Web to identify frequently occurring call patterns that link

available object types with desired object types. Developers

use the tool by specifying available and desired object types

and requesting recommendations.

To date, most Recommendation Systems for software

engineering (RSSE) have focused on recommendations

related to software development artifacts, particularly source

code. RSSEs typically recommend code—to look at, change,

or reuse. However, recommendations could address many

other aspects of software development such as quality

measures, tools, project management, and people could

support an ever-widening array of software engineering tasks.

Recommendation system might use activity logs to deduce

questions developers ask, and then coach them automatically

on appropriate, possibly unfamiliar tools or features to answer

those questions more efficiently [18].

 Thus, the proposed system provides the recommendations for

tool selection in the context of Model-Driven Software

Evolution. It is different from the above mentioned forums

and communities. The proposed system brings tools, MoDSE

concerns, and stakeholders together and it is described in the

next section.

3. PROPOSED SYSTEM
Many stakeholders spend substantial effort in finding out

appropriate tool among the huge number, to perform activities

in MoDSE. The major goal of this paper is to bring

stakeholder, tools and concerns together and assist in selecting

appropriate tool suitable to accomplish concerns of interest.

The following sections demonstrate the design issues and

different components of the proposed System.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

48

Recommendation System for Software Engineering (RSSE) is

defined in as ―a software application that provides information

items estimated to be valuable for a software engineering task

in a given context‖. mROSE, the proposed recommendation

system, generates useful tool recommendations for users to

understand evolution of the models in the Model-Driven

Software Evolution. The design dimensions, characteristics

and other concepts of RSSE are available in [17] and the

design dimensions like nature of the context, recommendation

engine, and output modes are considered for the proposed

mROSE.

3.1 Components of the mROSE
mROSE consists of four major components: Basic Mode,

Expert Mode, Tool Comparison and Knowledge Base. Based

on the user profile two modes of interaction are provided.

Tool Comparison is responsible for generating

recommendations. Knowledge Base is the information space

where user can explore detailed information about concerns

and tools. mROSE can also be connected to the web for

further expansion. Details of each component are provided in

the rest of this section.

3.1.1 Basic Mode
This mode of operation is for a beginner who is not well

versed with the terminology associated with MoDSE and

MDA tools. Basic Mode (Fig.1a) lists all the possible

concerns of MoDSE and allows the user to select the

interested concerns while providing an option to learn more

about these concerns. After selecting interested concerns, user

can click the button titled ‗Get tools for Selected Concerns’ to

list all tools that support user‘s selection. Further user can

select few suggested tools and use the button titled ‗Compare

Selected Tools’ to enable Tool Comparison component that

generates comparison summary and recommendations based

on the number of concerns selected by the user and number of

concerns satisfied by the tool.

3.1.2 Expert Mode
Expert Mode allows the user who has the knowledge about

the MoDSE and MDA tools. Interface (Fig.1b) allows the user

to search for interested concerns with search option and auto

suggestions. It populates the list of the selected concerns.

Recommendations are generated for the selected concerns.

Comparison summary of the selected recommended tools are

presented from which identifying the right tool becomes easy

for a user.

3.1.3 Tool Comparison
This component lists the tools which are useful to understand

the evolution of the models in MoDSE. Tools are categorized

as MDA and UML tools, and also as Non-Commercial and

Commercial tools. Tool Comparison generates the

comparison summary of similarities and dissimilarities of the

selected tools. Tool Comparison component implicitly works

as a recommendation engine which generates the

recommendations for the user interest. Comparison and

Recommendation buttons (Fig 1c and Fig 1d) are used to view

the comparison summary and the recommendations based on

the user selected concerns, tools and the number of concerns

satisfied by the selected tool.

3.1.4 Knowledge Base
Knowledge Base is an information repository where the

complete content of the tools, description of various concerns

of MoDSE and other related information about Models, UML

diagrams etc. are available. User can capture and gain the

knowledge about MoDSE from the search option (Fig. 1e).

mROSE can be connected to web thru this component helping

user to explore more information and also to overcome the

limited information space of the repository. Users can leave

feedback about mROSE using Post Comment option and (Fig.

1f.)

3.1.5 Algorithm
Recommendation engine algorithm is constructed by

determining various tool similarities and algorithm used here

is available in the literature as Item-Based schemas [19]. The

following symbols are used in the algorithm.

N = number of recommendations that need to be

generated for a particular user

n = number of distinct users

m = number of distinct tools in a particular transaction,

user selecting the concerns, selecting the appropriate

tools considered as a transaction.

k = number of similar tools

Input to this algorithm is the model M, an m× 1 vector U that

stores items that have been selected by the active user. Active

user‘s information in vector U is encoded by setting Ui = 1 if

the user has selected i th tool and zero otherwise. Output of

this algorithm is an m×1 vector x whose nonzero entries

correspond to the number of items to be recommended (N).

Weight of these nonzero entries represents a measure of the

recommendation strength and various recommendations can

be ordered in non-increasing recommendation. In most cases x

will have exactly N nonzero entries; however, actual number

of recommendations can be less than N as it depends on the

value of k used to build M and the number of items that have

already been selected by active user.

Algorithm : RecommndGen (M, U, N)

x ←MU (1)

for j ← 1 to m (2)

do

if Ui ≠ 0

then xi ← 0

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

49

Fig 1: mROSE User Interface

Fig 1a: Basic Mode with List of Selected Concerns and Actions

Fig 1b: Expert mode with search and auto suggestions options and Actions

Fig 1c: Comparison summary of selected tools in Tool Comparison

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

50

Fig 1d: Recommendations generated in Tool Comparison

Fig 1e: Information capturing from Knowledge Base

 Fig 1f: Feedback Form of mROSE in the Knowledge Base

for j ← 1 to m (3)

do

if xi≠ among the N largest values in x

then xi ← 0

return (x)

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

51

Vector x is computed in three steps. First, vector x is

computed by multiplying M with U (line 1). Note that the

nonzero entries of x correspond to union of k most similar

concerns for each tool that has already been selected by an

active user, and weight of these entries is nothing more than

the sum of these similarities. Second, the entries of x that

correspond to tools that have already been selected by an

active user are set to zero (loop at line 2). Finally, in third

step, the algorithm sets to zero and all entries of x that have a

value smaller than the N largest values of x (loop at line 3).

Comparison between the tools is computed as an

ItemSimilarity by using MapReduce [20,21] framework

which shields the programmer from distributed processing

issues such as synchronization, data exchange, and load

balancing. Existing MapReduce [21] technique is used in this

research to compute pair wise similarity between the tools.

This technique is selected because of its efficiency in

computing pair wise similarity for large collections. In this

paper pair wise tool similarity can be expressed as an inner

product of concern weights. A tool t is represented as a vector

Wt of concern weights wc,t , which indicates the importance of

each concern c in that tool by considering symmetric

similarity measure, which is defined as follows:

 (1)

Where similarity between tools ti and tj and V is is

the concern set. In this type of similarity measure, a concern

will contribute to the similarity between two tools only if it

has non-zero weights in both. Therefore, can be replaced

with in equation (1). For example, if a concern

appears in tools x,y, and z, it contributes only to the similarity

scores between (x,y),(x,z) and (y,z). The list of tools that

contain a particular concern is exactly retrieved. Thus,

processing all retrieves, entire pair wise similarity matrix can

compute by summing concern contributions.

Algorithm : Compute Tool Similarity Matrix

1: i, j : sim[i, j] 0

2: for all do

3: rc retrieves(c)

4: for all rc do

5: sim[i, j] sim[i, j] +

Algorithm formalizes the idea: retrieves(c) denotes list of

tools that contain concern c. In mROSE prototype model,

information space of tools and concerns considered is small.

So, this algorithm runs efficiently to compute entire similarity

matrix in memory. For larger collections disk access

optimization is needed, which is provided by the MapReduce

[29, 30] runtime, without requiring explicit coordination. In

mROSE comparison report is treated as an n×m matrix, where

n is the total number of concerns and m is the concerns

present in selected tools. If the concern is present in a tool,

that is treated as a ‗YES‘ if not ‗NO‘. Increase in number of n

and m, increases the number of iterations which in turn

increases computation complexity. This can be reduced by

reducing the number of iterations by assuming that number of

concerns fixed (n) and number of tools may vary (m).

4. mROSE EVALUATION
This section describes the validation of the proposed mROSE

prototype model by longitudinal and laboratory user studies.

Standard evaluation techniques that refer directly to the

performance metrics [22] related to time, storage requirements

and computation complexity is used to evaluate the

performance of mROSE.

4.1 Longitudinal User Study
A formal evaluation of mROSE system is needed to determine

whether and under what conditions this system help or hinder

the users. These evaluations can also help assess whether

benefits of mROSE system support the users need or not. To

evaluate the value and acceptance of prototype of mROSE, a

longitudinal user study has conducted with 15 participants

who are academicians and research students from diverse

organizations. Longitudinal User Study aimed to answer nine

different tasks which consist of questions about MoDSE

concerns, activities, and tools. Due to the space limitation nine

tasks are not mentioned here. Since mROSE prototype model

could only recommend 60 tools at the moment.

To observe the effect, efficiency and usability of mROSE,

longitudinal study was divided into two phases: In First Phase,

answering the nine tasks without using mROSE system;

Second Phase, answering the nine tasks with the help of

mROSE. During the first phase, mROSE was disabled to the

participants, meaning that participants could not interact with

mROSE or receive any information/knowledge to solve nine

tasks. Participants have recorded the time taken (man hours)

to answer each task as shown in the Table 1 and columns from

P1 to P15 represent the participants and rows Tk1 to Tk9

represent task1 to task9. Values in Table 1 are time taken to

answer the each task by each participant measured in minutes

(man hours). Average time taken to answer each task by 15

users also computed and it is shown in Table 1.

After completion of the first phase participants remarked that

answering the tasks required lot of information gathering from

distinct sources like communities, forums, social networks,

websites, search engines etc. So, it is not only a time

consuming and tiresome job but also information gathered

may be accurate and may not be. Participants who do not have

an idea about MoDSE claimed that for few questions they

didn‘t get the answers and approaching communities and

forums did not worked out. From the results in the Table 1, it

is clear that answering tasks is time consuming and the

participants who do not have knowledge about MoDSE took

more time compared with the participants who have

knowledge about MoDSE.

After each participant had finished the first phase they were

asked to start second phase. During this phase participants

were answering the same nine tasks with using mROSE. Time

taken to complete each task by each participant is recorded

and it is shown in the Table 2. Participants reported that

answering the tasks with help of mROSE reduced the time for

searching various sources to gather the information further

reducing effort and difficulty in getting right information.

From the comparison results in Table 1 and Table 2, time

taken to complete the tasks has drastically reduced.

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

52

Table 1. Results During First Phase of Longitudinal Study (without using mROSE)

 Table 2. Results During Second Phase of Longitudinal Study (using mROSE)

Participants

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Average

time

(minutes)

Task 1 40 45 35 28 25 38 48 48 35 90 60 90 51 60 60 50.2

Task 2 45 35 90 120 30 100 80 90 90 45 45 35 50 50 90 66.33

Task 3 35 25 30 28 30 100 35 75 25 25 60 90 25 90 90 50.8

Task 4 25 60 69 60 25 25 25 60 35 40 35 45 40 40 35 41.27

Task 5 20 30 38 58 105 35 25 25 25 35 40 50 70 80 90 48.4

Task 6 20 30 30 20 20 25 35 40 35 30 30 35 20 20 20 26.67

Task 7 30 60 60 60 60 60 60 30 30 35 30 30 30 30 30 42.33

Task 8 50 90 100 150 100 120 120 130 140 140 135 135 130 135 150 121.67

Task 9 40 45 45 55 65 40 40 45 65 75 45 65 75 90 90 58.67

Participants

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Average

time

(minutes)

Task 1 5 8 9 9 9 5 7 5 7 7.5 9.5 10 10 10 10 8.07

Task 2 7 7 10 10 12 6 7.5 7.5 8 10 12 12 12 15 15 10.07

Task 3 10 10 10 9 15 10 9 8 10 9.5 7.5 9.5 19 15 15 11.1

Task 4 5 5 5 15 10 10 15 9 12 10 10 10 18 19 10 10.87

Task 5 5 5 5 5 10 10 5 8 7 10 10 10 10 10 10 8.0

Task 6 3 3 5 3 5 2 3 5 4 5 5 5 5 5 4 4.13

Task 7 3 3 4 4 4 3 4 5 5 5 5 4 4 4 4 4.35

Task 8 30 30 40 40 35 35 30 45 40 40 35 30 35 30 30 35

Task 9 15 15 20 20 25 15 18 20 25 15 15 20 20 20 20 25.53

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

53

4.2 Laboratory User Study
The experimental study is essential to determine user

perception towards prototype model of mROSE. Laboratory

study reveals many future directions which would help the

authors to extend and make mROSE as a complete working

model. In this study ten participants were participated, and

given the computer in which mROSE is installed and asked

them to go through each menu and action buttons. All ten

participants were asked to reply the questionnaire (which is

not mention because of limited space) prepared to rate

usefulness, ease of use, recommendations, user interface, and

action buttons, etc. 5-level Likert scale is used to rate

mROSE (1-strongly disagree to 5-strongly agree). Table 3

shows opinion of all the participants. During this study there

was an interaction session with all participants personally to

know their thoughts whether this kind of recommendation

system should be available in MoDSE context. All

participants agreed that it was a good idea and it would likely

help the users to find many MDA and UML tools and also

about MoDSE. Laboratory study also highlighted the

difficulties of using Basic Mode and Expert Mode

components. Tool Comparison component will appear only

after selecting the tools for comparison and recommendations

also generated. This was not observed by four participants and

others have gone through the differentiation. However, many

of the participants did not recognize where to provide the

feedback about mROSE. Instead of using the facility to leave

comments, suggestions and feedback, participants have sent

the mails.

Mean, Standard Deviation and Population Standard Deviation

also calculated for queries L1 to L10 (questioner consists of

queries from L1 to L10 are not mentioned due to limited

space). Eight out of ten participants satisfied with the

information in mROSE. (L1: mean=4, standard

deviation=0.67, population standard deviation=0.63). Eight

out of ten participants felt that they gain the knowledge about

tools and MoDSE. (L2: mean=4.1, standard deviation=1,

population standard deviation=0.94). Nine participants liked

the idea of mROSE (L3: mean=3.9, standard deviation=1.2,

population standard deviation=1.14). Nine participants

trusted the information in mROSE (L4: mean=4.4, standard

deviation=0.81, population standard deviation=0.77). Nine

participants felt mROSE is useful for users who involved in

MoDSE. (L5: mean=3.9, standard deviation=0.57, population

standard deviation=0.54). Eight out of ten participants felt

that mROSE is not cumbersome to use. (L6: mean= 1.9,

standard deviation=2.3, population standard deviation=2.21).

All participants reported that learning is easy (L7: mean= 4.7,

standard deviation=0.88, population standard deviation=0.83).

All participants reported that mROSE was not often

frustrating (L8: mean= 1.6, standard deviation=2.58,

population standard deviation=2.44). All participants felt that

easy to get mROSE to do what they want to do (L9: mean=

4.4, standard deviation=0.67, population standard

deviation=0.63). Nine participants claimed that mROSE is

easy to remember, to perform the tasks (L10: mean=3.8,

standard deviation=0.47, population standard deviation=0.44).

Table 3. Ratings of mROSE by Participants during Laboratory Study

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

P1 3 2 1 3 4 3 5 2 4 3

P2 4 4 4 5 4 2 4 2 4 4

P3 4 5 4 4 3 2 5 2 4 4

P4 4 5 5 5 5 2 5 2 5 4

P5 4 4 5 4 4 2 5 2 5 4

P6 5 4 5 4 4 1 5 1 5 4

P7 5 4 5 5 4 1 5 1 4 4

P8 4 5 4 5 4 1 5 1 4 4

P9 4 5 4 5 4 2 4 2 5 4

P10 3 3 4 4 3 3 4 1 4 5

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

54

4.3 Metrics Evaluating Performance

4.3.1 Response Time
It is widely used performance metric, which is utilized for

various purposes and in different domains. In this case it

defines the time that elapsed between a user‘s stated request

and system‘s response to that request. User may request for a

recommendation from the system at time T1. mROSE will

accept the request, process the input, and after a successful

completion of required task, it will provide a response at time

T2, where necessarily T2>T1. Then the response time Tr, is

defined as the difference between these two times i.e Tr=T2-

T1. To calculate response time of mROSE, eight different

requests and their responses have considered and average

response time Tr is calculated and is shown in Table 4. Total

response time for all eight requests is 1.8 sec and the average

is 0.225 sec which is an effective response time.

 Table 4. Response time of mROSE

4.3. 2 Storage Requirements
Another way of evaluating mROSE is based on its storage

requirements. It is natural to expect from modern

recommendation systems to provide services that involve

more number of users and items. So, it may be wise to

evaluate how mROSE manipulate the space provided. Storage

requirements are usually analyzed in two ways: by checking

their main memory and secondary storage requirement.

Prototype model of mROSE works offline, so the storage

space usage including database is 97MB which is very much

reasonable.

4.3.3 Computation Complexity
Typically most filtering algorithms can be divided into two

separate steps [22]: Fist, there is a model building step,

usually executed off-line, followed by a second execution

step, which is always executed on-line. Preprocessing,

representation, calculation and recommendation, prediction

generation, which appear in most discussed filtering

algorithms, can be as part of off-line step. Prediction or

recommendation generation is an on-line step.

In mROSE preprocessing is interacting with the system thru

either Basic Mode or Expert Mode, selecting the concern,

searching for concern, get the tools for selected concern, and

get information about tools and concerns of MoDSE usually

executed off-line. Tool comparison, recommendation

generation is on-line step. Tool comparison is crucial

performance factor in the recommendation process, since it is

based on the number of tools selected for comparison. It is

obvious that when number of selected tools increases,

comparison summary becomes large and delayed. But in

mROSE computational complexity is totally reduced and

same time taken to generate comparison summary irrespective

of the number of tools. And it is also observed that mROSE

takes considerably less time for both the off-line and on-line

steps and give faster responses. Thus, it is clear that

computation complexity is very less in mROSE.

5. CONCLUSIONS AND FUTURE

WORK
mROSE is a recommendation system which is useful for tool

selection and for understanding Model-Driven Software

Evolution. mROSE consists of four major components: Basic

Mode, Expert Mode, Tool Comparison and Knowledge Base.

User profile is considered either as a beginner or expert. All

possible stakeholder interests and/or concerns in MoDSE are

considered in the proposed prototypical system. For each user

interest all possible matching MDA tools are considered.

Description of the entire content of mROSE is made available

in the repository which is called as Knowledge Base. Tool

Comparison implicitly works as a recommendation engine.

An approach for recommending right tools for the right

concerns in MoDSE is also presented. Prototype model of

mROSE is also implemented. MROSE is useful for

stakeholder to understand the evolution of the models, variant

activities of MoDSE and role of the tools. mROSE is

evaluated by longitudinal and laboratory user studies which

conforms the desire for a system like mROSE. Evaluation of

the proposed system reveals many future directions like

change in user preferences, prediction generation, and ranking

mechanism. Increase in number of concerns and tools rises the

scalability which is the major challenge of many existing

recommender systems is subject of future work.

6. REFERENCES
[1] Arie van Deursen, Eelco Visser, and Jos Warmer.

Model-Driven Software Evolution: A Research

Agenda‖,In Dalila Tamzalit (Eds.). Proceedings 1st

International Workshop on Model-Driven Software

Evolution, University of Nantes, 2007. pp. 41-49.

[2] Michel Hoste, Jorge Pinna Puissant, Tom mens,2008.

Challenges In Model_ Driven Software Evolution,

Technical report of BENEVOL Workshop, Technische

University Eindhoven.

Request R1 R2 R3 R4 R5 R6 R7 R8

T1sec 0.1 0.2 0.01 0.09 11.5 1.5 2 2.3

T2 sec 0.6 0.4 0.1 0.02 11.5 2 2.3 2.4

Tr=T2-T1 sec 0.5 0.2 0.09 0.11 0 0.5 0.3 0.1

International Journal of Computer Applications (0975 – 8887)

Volume 42– No.1, March 2012

55

[3] Martin Robillard, Robert J. Walker, Thomas

Zimmermann. Recommendation Systems for Software

Engineering. IEEE Software, Vol.27, No.4, pp 80-86,

July/Aug 2010.

[4] A. Anand Rao, K.Madhavi, 2010. A Framework for

Visualizing Model-Driven Software Evolution- Its

Application, International Journal of Computer Science

Issues (IJCSI), Vol.7,Issue 1, No.3, pp 47-53.

[5] K.Madhavi, A.Anand Rao,2009.A Framework for

Visualizing Model-Driven Software Evolution,

Proceedings of IEEE International Advance Computing

Conference, Patiala, Punjab, India, pp 1785-1790.

[6] Rational Product Support for MDA, Model Driven

Architecture(MDA) Information Center, IBM,

[7] modelbased.net, www. modelbased. Net

[8] Objects by Design Forum, Jelsoft Enterprises Limited.

http://forums.objectsbydesign.com

[9] Behrouz H. Far, Mari Ohmori, Takeshi Baba, Yasukiyo

Yamasaki, Zenya Koono, 1996. Merging CASE tools

with knowkedge-based technology for automatic

software design, Decision Support Systems, Volume 18,

issue 1, September, pp 73-82.

[10] Mikko Konito, 2005. Architectural manifesto:choosing

MDA tools, Three categories for evaluation, Model

Driven Architecture(MDA) Information Center, IBM,

[11] Peter Wittmann. Comparison of MDA tools.

www.wittmannclan.com

[12] Philip Liew, Kostas Kontogiannis, Tack Tong, 2004. A

Framework for Business Model Driven Development,

Proceedings of the International Workshop on Software

Technology and Engineering Practice.

[13] Jordi Cabot, Ernest Teniente, 2006. Constraint Support in

MDA tools: A Survey, Proceedings of 2nd European

Conference on Model Driven Architecture, LNCS, pp

256-267.

[14] R. Holmes, R.J. Walker, and G.C. Murphy. Approximate

Structural Context Matching: An Approach for

Recommending Relevant Examples. IEEE Trans.

Software Eng., vol. 32, no. 1, 2006, pp. 952–970.

[15] A. Ankolekar et al. Supporting Online Problem-Solving

Communities with the Semantic Web. Proc. Int‘l Conf.

World Wide Web, ACM Press, 2006, pp. 575–584.

[16] A. Mockus and J.D. Herbsleb,. Expertise Browser: A

Quantitative Approach to Identifying Expertise. Proc.

Int‘l Conf. Software Eng. (ICSE 02), IEEE CS Press,

2002, pp. 503–512

[17] S. Thummalapenta and T. Xie, PARSEWeb: A

Programming Assistant for Reusing Open Source Code

on the Web. Proc. IEEE/ACM Int‘l Conf. Automated

Software Eng. (ASE 07), ACM Press, 2007, pp. 204–

213. RSSE community website at http://rsse.org.

[18] Emmanouil Vozalis, Konstantinos G. Margaritis,.

Analysis of Recommender Systems‘ Algorithms. In

Proceedings of the Ninth Panhellenic Conference in

Informatics,2003.

[19] Mulund Deshpande and Geroge karypis. Item-Based

Top-N Recommendation Algorithms, ACM Transactions

on information system, Vol.22, No.1, January 2004,

Pages 143-177.

[20] Tamer Elsaved, Jimmy Lin and Douglas W.Oard.

Pairwise Documents Similarity in Large Collections with

MapReduce. Proceedings of ACL-08:HLT, pp 265-268.

[21] Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on Large Cluste

rs. OSDI'04: Sixth Symposium on Operating System

Design and Implementation, San Francisco, CA,

December, 2004.

[22] Marcel Bruch, Thorsten Schafer, and mira Mezini. On

Evaluating Recommender Systems for API sages. RSSE

‘08, November 10, Atlanta, Georgia, USA pp16-29.

http://labs.google.com/people/jeff/
http://labs.google.com/people/sanjay/

