
 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.9, March 2012

13

Synthesis Comparison of Karatsuba Multiplierusing

Polynomial Multiplication, Vedic Multiplier and Classical
Multiplier

Sudhanshu Mishra
Department of Electronics and Telecommunication

Veer SurendraSai University of Technology, Burla
Sambalpur– 768018, Odisha, India

Manoranjan Pradhan
Department of Electronics and Telecommunication

Veer SurendraSai University of Technology, Burla
Sambalpur– 768018, Odisha, India

ABSTRACT

In this paper, the authors have compared the efficiency of the

Karatsuba multiplier using polynomial multiplication with the

multiplier implementing Vedic mathematics formulae

(sutras), specifically the Nikhilam sutra. The multipliers have

been implemented using Spartan 2 xc2s200 pq208 FPGA

device having speed grade of -6. The proposed Karatsuba

multiplier has been found to have better efficiency than the

multipliers involving Vedic mathematics formulae.

General Terms

Karatsuba algorithm, Vedic multiplier, classical

multiplication.

Keywords

Karatsuba multiplier, Vedic Mathematics, Polynomial

multiplication, FPGA, Nikhilam sutra.

1. INTRODUCTION
WThe efficiency of multiplication and multipliers is a very

basis for implementation in devices like the Arithmetic and

Logic Units (A.L.U.), modulators, cryptosystems and many

other systems involving digital signal processing. This

document presents the comparison of three multiplication

techniques with respect to the area requirement and speed of

operation. More emphasis has been given to the Karatsuba

multiplier using polynomial multiplication as it has been

found to have better efficiency than the other two multipliers.

Karatsuba’s multiplication algorithm uses three single digit

multiplications to perform one two-digit multiplication. In

their paper [1], the authors have used tensor products to

express the Karatsuba algorithm in both recursive and

iterative form. They have used tensor products for

implementation of the recursive algorithm.

The authors Gang Zhou et al. have presented complexity

analysis, in application-specific integrated circuits as well as

on field-programmable gate arrays (F.P.G.A.s) and efficient

implementations of bit parallel mixed Karatsuba–Ofman

multipliers in [2]. By introducing the common expression

sharing and the complexity analysis on odd-term polynomials,

they have achieved a lower gate bound than previous ASIC

discussions. They have evaluated the LUT complexity and

area-time product tradeoffs on F.P.G.A.s with different

computer-aided design tools. They claim that their bit parallel

multipliers consume the least resources among known FPGA

implementations.

Many cryptographic techniques like elliptic curve

cryptography [3] and RSA algorithm [4] can be implemented

very effectively using the Karatsuba algorithm.

There are Vedic mathematical techniques that can also be

used for efficient multiplications in many applications. One

such Vedic mathematical technique, that is, the “Nikhilam

Sutra” has been compared with the proposed Karatsuba

multiplier.

The authors in [4] have proposed a 16×16 multiplier using the

Nikhilam Sutra and have compared its characteristics with

that of another 16×16 multiplier implemented using another

Vedic mathematics algorithm called the UrdhvaTiryagbhyam

Sutra. They have used a carry-save adder architecture, which,

as per their claim, reduces the propagation delay significantly.

They have also proposed a multiplier-accumulator (MAC)

unit using Vedic mathematics algorithm, the

UrdhvaTiryagbhyam Sutra in [5].

2. BASICS OF KARATSUBA

ALGORITHM
The basic step of Karatsuba algorithm can be used to compute

the product of two large numbers a and b using three

multiplications of smaller numbers, each with about half as

many digits as a or b along with some additions and digit

shifts.

Let a and b represent n-digit strings in some radix R. For any

positive integer m less than n, the two numbers can be divided

as follows:

 𝑎 = 𝑎𝑖𝑅
𝑚 + 𝑎0.

 𝑏 = 𝑏𝑖𝑅
𝑚 + 𝑏0.

where a0 and b0 are less than Rm.

The product is then

 𝑎𝑏 = (𝑎1𝑅
𝑚 + 𝑎0)(𝑏1𝑅

𝑚 + 𝑏0).

or, 𝑎𝑏 = 𝑎1𝑏1𝑅
2𝑚 + 𝑎1𝑏0 + 𝑎0𝑏1𝑅

𝑚 + 𝑎0𝑏0.

or, 𝑎𝑏 = 𝑢2𝑅
2𝑚 + 𝑢1𝑅

𝑚 + 𝑢0.

Where,

 𝑢2 = 𝑎1𝑏1,

 𝑢1 = 𝑎1𝑏0 + 𝑎0𝑏1,

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.9, March 2012

14

and 𝑢0 = 𝑎0𝑏0.

These formulae require four numbers of multiplications. But,

it can be observed that the value of the product abcan be

determined using only three numbers of multiplications, at the

cost of a few more number of additions in the following

manner:

After obtaining,

 𝑢2 = 𝑎1𝑏1and 𝑢0 = 𝑎0𝑏0,

the value of u1 can be determined as:

 𝑢1 = 𝑎1 + 𝑎0 𝑏1 + 𝑏0 − 𝑢2 − 𝑢0.

since

𝑢1 = 𝑎1𝑏0 + 𝑎0𝑏1

= 𝑎1𝑏1 + 𝑎1𝑏0 + 𝑎0𝑏1 + 𝑎0𝑏0 − 𝑎1𝑏1

− 𝑎0𝑏0

or, 𝑢1 = 𝑎1 + 𝑎0 𝑏1 + 𝑏0 − 𝑎1𝑏1 − 𝑎0𝑏0.

2.1 Example
Let the product of numbers, 7654 and 6789, be determined

using Karatsuba algorithm. For calculating the product of

7654 and 6789, the values of R and m can be chosen as 10 and

2 respectively.

𝑅 = 10and 𝑚 = 2

 2178 = 21 × 102 + 78

 5423 = 54 × 102 + 23

 𝑢2 = 21 × 54 = 1134

 𝑢0 = 78 × 23 = 1794

 𝑢1 = 21 + 78 54 + 23 − 𝑢2 − 𝑢0

or, 𝑢1 = (99 × 77) − 1134 − 1794

or, 𝑢1 = 7623 − 1134 − 1794 = 4695

Therefore, the product of 2178and 5423 can be calculated as:

2178 × 5423 = (1134 × 10000) + (4695 × 100) + 1794

or, 2178 × 5423 = 11340000 + 469500 + 1794 =
11811294

3. GENERAL METHOD OF

POLYNOMIAL MULTIPLICATION
Usually multiplication of polynomials is done in the following

manner:

Let there be two degree-d polynomials with n = d+ 1

coefficients:

𝐴(𝑥) = 𝑎𝑖

𝑑

𝑖=0

𝑥𝑖

and

𝐵(𝑥) = 𝑏𝑖

𝑑

𝑖=0

𝑥𝑖

Then the product of A(x) and B(x) can be written as

𝐶 𝑥 = 𝐴 𝑥 𝐵 𝑥 = 𝑎𝑖

𝑑

𝑗=0

𝑑

𝑖=0

𝑏𝑗

The polynomial C(x) can be obtained with n2 multiplications

and (n − 1)2 additions.

4. KARATSUBA ALGORITHM
This section describes the general technique for multiplication

of two polynomials of any arbitrary degree with n number of

coefficients using the Karatsuba algorithm:

Let there be two degree-d polynomials with n number of

coefficients such that n = d + 1 given by:

 𝐴(𝑥) = 𝑎𝑖
𝑑
𝑖=0 𝑥𝑖 (1)

and

 𝐵(𝑥) = 𝑏𝑖
𝑑
𝑖=0 𝑥𝑖 (2)

Then a set of auxiliary variables can be defined as:

 𝐷𝑖 = 𝑎𝑖𝑏𝑖 , ∀ 𝑖 = 0, 1,2,… , 𝑛 − 1 (3)

and

 𝐷𝑝,𝑞 = 𝑎𝑝 + 𝑎𝑞 𝑏𝑝 + 𝑏𝑞 , ∀ 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝 + 𝑞 =

 𝑖 𝑎𝑛𝑑 𝑞 > 𝑝 ≥ 0 (4)

The product of A(x) and B(x), that is, C(x) can be given as:

 𝐴(𝑥) 𝐵(𝑥) = 𝑐𝑖
2𝑛−2
𝑖=0 𝑥𝑖 . (5)

Where the values of ci can be given as:

 𝑐0 = 𝐷0,

 𝑐2𝑛−2 = 𝐷𝑛−1,

and

𝑐𝑖 =

 𝐷𝑝,𝑞 − 𝐷𝑝 + 𝐷𝑞 𝑝+ 𝑞=𝑖,𝑞>𝑝≥0𝑝+ 𝑞=𝑖,𝑞>𝑝≥0 ,

 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑖, 0 < 𝑖 < 2𝑛 − 2

 𝐷𝑝,𝑞 − 𝐷𝑝 + 𝐷𝑞 𝑝+ 𝑞=𝑖,𝑞>𝑝≥0𝑝+ 𝑞=𝑖,𝑞>𝑝≥0 + 𝐷 𝑖

2

,

𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑖, 𝑂 < 𝑖 < 2𝑛 − 2

Therefore for multiplying one-degree polynomials, that is, d =

1, n = d +1=2, using the equations (1), (2) and (3),

 𝐴(𝑥) = 𝑎1𝑥 + 𝑎0 [from eq. (1)]

 𝐵(𝑥) = 𝑏1𝑥 + 𝑏0 [from eq. (2)]

Then the product, C(x) = A(x) B(x) can be determined in the

following manner:

The auxiliary variables are:

 𝐷0 = 𝑎0𝑏0

 𝐷1 = 𝑎1𝑏1

and 𝐷0,1 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

Now, 𝑐0 = 𝐷0 = 𝑎0𝑏0

 𝑐2𝑛−2 = 𝑐2 = 𝐷1 = 𝑎1𝑏1

and

 𝑐1 = 𝐷0,1 − 𝐷0 + 𝐷1 = 𝑎0 + 𝑎1 𝑏0 + 𝑏1 −
 𝑎0𝑏0 + 𝑎1𝑏1

 = (𝑎0𝑏1 + 𝑎1𝑏0)

Therefore, the polynomial (product) C(x) can be written as:

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.9, March 2012

15

 𝐶(𝑥) = 𝐷1𝑥
2 + (𝐷0,1 – (𝐷0 + 𝐷1)) 𝑥 + 𝐷0 (6)

The above equation when expanded becomes:

𝐶(𝑥) = (𝑎1𝑏1)𝑥2 + (𝑎0𝑏1 + 𝑎1𝑏0) 𝑥 + 𝑎0𝑏0

which is the product of A(x) and B(x).

Similarly, for multiplication of two - degree polynomials that

is, d = 1, n = d +1=2, using the equations (1), (2) and (3),

 𝐴 𝑥 = 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 [from eq. (1)]

 𝐵 𝑥 = 𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏 [from eq. (2)]

The auxiliary variables are:

 𝐷0 = 𝑎0𝑏0

 𝐷1 = 𝑎1𝑏1

 𝐷2 = 𝑎2𝑏2

 𝐷0,1 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

 𝐷0,2 = (𝑎0 + 𝑎2)(𝑏0 + 𝑏2)

and 𝐷1,2 = (𝑎1 + 𝑎2)(𝑏1 + 𝑏2)

Now, 𝑐0 = 𝐷0 = 𝑎0𝑏0

 𝑐2𝑛−2 = 𝑐4 = 𝐷1 = 𝑎1𝑏1

 𝑐1 = 𝐷0,1 − 𝐷1 + 𝐷0 = 𝑎0𝑏1 + 𝑎1𝑏0

 𝑐2 = 𝐷0,2 − 𝐷2 + 𝐷0 + 𝐷1 = 𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1

and 𝑐2 = 𝐷1,2 − 𝐷1 + 𝐷2 = 𝑎1𝑏2 + 𝑎2𝑏1

Hence, the polynomial (product) C(x) can be written as:

𝐶 𝑥 = 𝐷2𝑥
4 + 𝐷1,2 – 𝐷1 + 𝐷2 𝑥

3 + 𝐷0,2 – 𝐷2 +

𝐷0 + 𝐷1 𝑥
2 + (𝐷0,1 – (𝐷1 + 𝐷0)) 𝑥 + 𝐷0 (7)

The above equation can be expanded as:

𝐶 𝑥 = 𝑎2𝑏2 𝑥
4 + 𝑎1𝑏2 + 𝑎2𝑏1 𝑥

3

+ 𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1 𝑥
2

+ 𝑎0𝑏1 + 𝑎1𝑏0 𝑥 + 𝑎0𝑏0

which is the product of the polynomials A(x) and B(x).

In their paper [6], Weimerskirch and Paar have presented a

detailed analysis of the Karatsuba algorithm using recursive as

well as iterative approach.

5. VEDIC MULTIPLIER (NIKHILAM

SUTRA)
The literal meaning of Nikhilam Sutra is “all from 9 and last

from 10”. This algorithm is more efficient for multiplication

of large numbers. It finds out the complement of the large

number from its nearest base to perform the multiplication.

The Nikhilam Sutra is explained by considering the

multiplication of two decimal numbers (8 × 9) where the base

is 10 which is nearest to as well as greater than these two

numbers.

Table 1: Multiplication of two decimal numbers (8 × 9)

using ‘Nikhilam’ Sutra

Column 1 Column 2

8 10 - 8 = 2

9 10 - 9 =1

(8-1) or (9-2) = 7 2×1 = 2

Table 1 shows the multiplication of two one digit decimal

numbers using the Nikhilam sutra. The first two rows of

column 1 show the multiplier and multiplicand. The first two

rows of the second column display the complements of the

multiplier and multiplicand (i.e. base 10). The third row of

first column represents the left-hand side (L.H.S.) of the

product and that of the second column represents the right-

hand side (R.H.S.) of the product. The R.H.S. of the product

can be obtained by multiplying the numbers of the Column 2

(2 × 1= 2). However the surplus portion on the R.H.S. is

carried over to Left. The left hand side (L.H.S.) of the product

can be found by cross subtracting the second number of

Column 2 from the first number of Column 1 or vice versa,

i.e., 8 – 1 = 7 or 9 – 2 = 7. The final result is obtained by

concatenating the digits in R.H.S. and L.H.S. (Answer = 72).

6. SYNTHESIS RESULTS AND

COMPARISONS
The multipliers, namely, Karatsuba multiplier, Vedic

multiplier and a classical multiplier were implemented using

Spartan 2s200pq208 FPGA device having a speed grade of -6.

The codes were written in VHDL and they were simulated

and synthesised using Xilinx ISE 10.1 simulator. The

observations have been tabulated in Table 2.

Table 2 shows the statistics of device usage and

combinational path delay for 8×8 Karatsuba multiplier,

classical Multiplier and Vedic multiplier. For Karatsuba

multiplier the number of slices is the least, i.e. 26 as compared

to that of the classical multiplier and the Vedic multiplier

which are 38 and 62 respectively. Also, the number of four

input LUTs and number of bonded IOBs are less for the

proposed Karatsuba multiplier than the other two multipliers.

These observations prove that area requirement for the

Karatsuba multiplier is least. The maximum combinational

path delay for the Karatsuba multiplier is least as well, that is

12.338ns as compared to 15.656ns and 27.340ns for the

classical multiplier and the Vedic multiplier respectively. This

proves that the time delay is also least for the Karatsuba

multiplier as compared to the other two multipliers.

Table 2.Comparison of device utilization and

combinational path delay of 8×8 Karatsuba multiplier,

classical multiplier, and Vedic multiplier

device

(Spartan 2

xc2s200

pq208)

number

of

slices

number

of 4

input

LUTs

number

of

bonded

IOBs

maximum

combinational

path delay

8×8

(Karatsuba

Multiplier)

26 out

of

2352

45 out

of 4704

(0%)

31 out

of 140

(22%)

12.338ns

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.9, March 2012

16

(1%)

8×8

(Classical

Multiplier)

38 out

of

2352

(1%)

73 out

of 4704

(1%)

32 out

of 140

(22%)

15.656ns

8×8 (Vedic

Multiplier)

62 out

of

2352

(2%)

113 out

of 4704

(2%)

32 out

of 140

(22%)

27.340ns

The figure 1 exhibits the histogram representation of the

performance of the three multipliers with respect to device

utilization and time requirements (path delay). It can be

remarked from the figure that the proposed Karatsuba

multiplier requires less space for its implementation and

simultaneously it requires less time for its execution.

Thus, from figure 1 and table 2, it can be concluded that the

proposed Karatsuba multiplier is more efficient in terms of

both space and time requirements than the Vedic multiplier

(using Nikhilam Sutra) and the classical multiplier.

Figure 1: Histogram showing the comparison of device utilization and combinational path delay of different multipliers

7. CONCLUSION
The combinational path delay and device utilization of

8×8 Karatsuba multiplier, Vedic multiplier and a classical

multiplier has been compared. The proposed Karatsuba

multiplier shows speed improvement as compared to Vedic

multiplier and the classical multiplier. This may be useful for

applications involving high speed multiplication.

8. REFERENCES
[1] Chin-Bou Liu, Chua-Huang Huang, and Chin-Laung.

Lei, “Design and Implementation of long-digit

Karatsuba’s multiplication algorithm using tensor

product formulation”, in Ninth workshop on compiler

techniques for high performance computing, 2003, pp. 1-

8.

[2] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity

Analysis and Efficient Implementations of Bit Parallel

Finite Field Multipliers Based on Karatsuba-Ofman

Algorithm on FPGAs”, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 18, No.7,

2010, pp.1057-1066.

[3] Z. Dyka and P. Langendoerfer, “Area Efficient Hardware

Implementation of Elliptic Curve Cryptography by

Iteratively Applying Karatsuba’s Method”, in

Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition (IEEE Computer

Society), 2005,1530-1591/05.

[4] M. Pradhan , R. Panda and S.K. Sahu, “Speed

Comparison of 16×16 Vedic Multipliers”, International

Journal of Computer Applications, Vol. 21, No. 6, 2011,

pp. 16-19.

[5] M. Pradhan , R. Panda and S.K. Sahu, “MAC

Implementation using Vedic Multiplication Algorithm”,

International Journal of Computer Applications, Vol. 21,

No. 7, 2011, pp. 26-28.

[6] A. Weimerskirch and C. Paar, “Generalizations of the

Karatsuba algorithm for efficient implementations,”

2006. [Online]. Available: http://

eprint.iacr.org/2006/224.pdf

[7] C. Rebeiro and D. Mukhopadhyay, “Power attack

resistant efficient FPGA architecture for Karatsuba

multiplier,” in 21st International Conference on VLSI

Design, 2008, pp. 706–711.

[8] M. Markovic, T. Unkasevic, and G. Dordevic, “RSA

Algorithm Optimization On Assembler Of Ti

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.9, March 2012

17

Tms320c54x Signal Processors”, in proceedings of

European Association for Signal Processing, 2002.

Available at:

http://www.eurasip.org/Proceedings/Eusipco/2002/article

s/paper189.pdf.

[9] S.R. Vaidya and D.R. Dandekar, “Performance

Comparison of Multipliers for Power-Speed Trade-off in

VLSI Design”, in 12th International Conference on

Networking, VLSI and Signal Processing ,2010, 262-

266.

[10] Leonard Gibson Moses S and Thilagar M, “VLSI

Implementation of High Speed DSP algorithms using

Vedic Mathematics”, International Journal of Computer

Communication and Information System, 2010,Vol. 2,

No. 1, pp. 119-122.

[11] Duif, N. 2011 Smart card implementation of a digital

signature scheme for Twisted Edwards curves. Master

thesis. Student number: 0554878. Department of

Mathematics and Computer Science.

TechnischeUniversiteit Eindhoven.

[12] BogdanPasca. 2011. High-performance floating-point

computing on reconfigurable circuits. Doctoral thesis.

Superior Normal School Of Lyon

(ÉcoleNormaleSupérieure De Lyon). Laboratory of

Parallel Computing (Laboratoire de l’Informatique du

Parallélisme). Graduate School of Mathematics and

Computer Science from Lyon.

