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ABSTRACT 

In this paper, the authors have compared the efficiency of the 

Karatsuba multiplier using polynomial multiplication with the 

multiplier implementing Vedic mathematics formulae 

(sutras), specifically the Nikhilam sutra. The multipliers have 

been implemented using Spartan 2 xc2s200 pq208 FPGA 

device having speed grade of -6. The proposed Karatsuba 

multiplier has been found to have better efficiency than the 

multipliers involving Vedic mathematics formulae. 
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1. INTRODUCTION 
WThe efficiency of multiplication and multipliers is a very 

basis for implementation in devices like the Arithmetic and 

Logic Units (A.L.U.), modulators, cryptosystems and many 

other systems involving digital signal processing. This 

document presents the comparison of three multiplication 

techniques with respect to the area requirement and speed of 

operation. More emphasis has been given to the Karatsuba 

multiplier using polynomial multiplication as it has been 

found to have better efficiency than the other two multipliers. 

Karatsuba’s multiplication algorithm uses three single digit 

multiplications to perform one two-digit multiplication. In 

their paper [1], the authors have used tensor products to 

express the Karatsuba algorithm in both recursive and 

iterative form. They have used tensor products for 

implementation of the recursive algorithm.  

The authors Gang Zhou et al. have presented complexity 

analysis, in application-specific integrated circuits as well as 

on field-programmable gate arrays (F.P.G.A.s) and efficient 

implementations of bit parallel mixed Karatsuba–Ofman 

multipliers in [2]. By introducing the common expression 

sharing and the complexity analysis on odd-term polynomials, 

they have achieved a lower gate bound than previous ASIC 

discussions. They have evaluated the LUT complexity and 

area-time product tradeoffs on F.P.G.A.s with different 

computer-aided design tools. They claim that their bit parallel 

multipliers consume the least resources among known FPGA 

implementations. 

Many cryptographic techniques like elliptic curve 

cryptography [3] and RSA algorithm [4] can be implemented 

very effectively using the Karatsuba algorithm. 

There are Vedic mathematical techniques that can also be 

used for efficient multiplications in many applications. One 

such Vedic mathematical technique, that is, the “Nikhilam 

Sutra” has been compared with the proposed Karatsuba 

multiplier. 

The authors in [4] have proposed a 16×16 multiplier using the 

Nikhilam Sutra and have compared its characteristics with 

that of another 16×16 multiplier implemented using another 

Vedic mathematics algorithm called the UrdhvaTiryagbhyam 

Sutra. They have used a carry-save adder architecture, which, 

as per their claim, reduces the propagation delay significantly. 

They have also proposed a multiplier-accumulator (MAC) 

unit using Vedic mathematics algorithm, the 

UrdhvaTiryagbhyam Sutra in [5].  

2. BASICS OF KARATSUBA 

ALGORITHM 
The basic step of Karatsuba algorithm can be used to compute 

the product of two large numbers a and b using three 

multiplications of smaller numbers, each with about half as 

many digits as a or b along with some additions and digit 

shifts. 

Let a and b represent n-digit strings in some radix R. For any 

positive integer m less than n, the two numbers can be divided 

as follows: 

 𝑎 = 𝑎𝑖𝑅
𝑚 + 𝑎0.  

 𝑏 = 𝑏𝑖𝑅
𝑚 + 𝑏0.  

where a0 and b0 are less than Rm.  

 

The product is then 

 𝑎𝑏 = (𝑎1𝑅
𝑚 + 𝑎0)(𝑏1𝑅

𝑚 + 𝑏0).  

or,  𝑎𝑏 = 𝑎1𝑏1𝑅
2𝑚 + 𝑎1𝑏0 + 𝑎0𝑏1𝑅

𝑚 + 𝑎0𝑏0.   

or,  𝑎𝑏 = 𝑢2𝑅
2𝑚 + 𝑢1𝑅

𝑚 + 𝑢0.  

Where, 

 𝑢2 = 𝑎1𝑏1,   

 𝑢1 = 𝑎1𝑏0 + 𝑎0𝑏1,   
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and 𝑢0 = 𝑎0𝑏0.   

These formulae require four numbers of multiplications. But, 

it can be observed that the value of the product abcan be 

determined using only three numbers of multiplications, at the 

cost of a few more number of additions in the following 

manner: 

After obtaining,  

 𝑢2 = 𝑎1𝑏1and  𝑢0 = 𝑎0𝑏0,  

the value of  u1 can be determined as: 

 𝑢1 =  𝑎1 + 𝑎0  𝑏1 + 𝑏0 − 𝑢2 − 𝑢0.  

since 

𝑢1 =  𝑎1𝑏0 + 𝑎0𝑏1 

=  𝑎1𝑏1 + 𝑎1𝑏0 + 𝑎0𝑏1 + 𝑎0𝑏0 − 𝑎1𝑏1

− 𝑎0𝑏0 

or, 𝑢1 =  𝑎1 + 𝑎0  𝑏1 + 𝑏0 − 𝑎1𝑏1 − 𝑎0𝑏0. 

2.1 Example 
Let the product of numbers, 7654 and 6789, be determined 

using Karatsuba algorithm. For calculating the product of 

7654 and 6789, the values of R and m can be chosen as 10 and 

2 respectively. 

𝑅 = 10and 𝑚 = 2 

 2178 = 21 × 102 + 78 

 5423 = 54 × 102 + 23 

 𝑢2 = 21 × 54 = 1134 

 𝑢0 = 78 × 23 = 1794 

 𝑢1 =  21 + 78  54 + 23 − 𝑢2 − 𝑢0 

or,   𝑢1 = (99 × 77) − 1134 − 1794 

or, 𝑢1 = 7623 − 1134 − 1794 = 4695 

Therefore, the product of 2178and 5423 can be calculated as: 

2178 × 5423 = (1134 × 10000) + (4695 × 100) + 1794 

or, 2178 × 5423 = 11340000 + 469500 + 1794 =
11811294 

3. GENERAL METHOD OF 

POLYNOMIAL MULTIPLICATION 
Usually multiplication of polynomials is done in the following 

manner: 

Let there be two degree-d polynomials with n = d+ 1 

coefficients: 

 
𝐴(𝑥) =  𝑎𝑖

𝑑

𝑖=0

𝑥𝑖   

and 

 
𝐵(𝑥) =  𝑏𝑖

𝑑

𝑖=0

𝑥𝑖   

Then the product of A(x) and B(x) can be written as 

 
𝐶 𝑥 = 𝐴 𝑥 𝐵 𝑥 =   𝑎𝑖 

𝑑

𝑗=0

𝑑

𝑖=0

𝑏𝑗   

The polynomial C(x) can be obtained with n2 multiplications 

and (n − 1)2 additions. 

4. KARATSUBA ALGORITHM 
This section describes the general technique for multiplication 

of two polynomials of any arbitrary degree with n number of 

coefficients using the Karatsuba algorithm: 

Let there be two degree-d polynomials with n number of 

coefficients such that n = d + 1 given by: 

 𝐴(𝑥) =  𝑎𝑖
𝑑
𝑖=0 𝑥𝑖  (1) 

and 

 𝐵(𝑥) =  𝑏𝑖
𝑑
𝑖=0 𝑥𝑖 (2) 

Then a set of auxiliary variables can be defined as: 

 𝐷𝑖 = 𝑎𝑖𝑏𝑖 , ∀ 𝑖 = 0, 1,2,… , 𝑛 − 1 (3) 

and 

 𝐷𝑝,𝑞  =   𝑎𝑝  +  𝑎𝑞  𝑏𝑝  +  𝑏𝑞 , ∀ 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝 +  𝑞 =

 𝑖 𝑎𝑛𝑑 𝑞 >  𝑝 ≥  0  (4) 

The product of A(x) and B(x), that is, C(x) can be given as: 

 𝐴(𝑥) 𝐵(𝑥) =  𝑐𝑖 
2𝑛−2
𝑖=0 𝑥𝑖 . (5) 

Where the values of ci can be given as: 

 𝑐0 = 𝐷0, 

 𝑐2𝑛−2 = 𝐷𝑛−1,  

and 

𝑐𝑖 =

 
 
 

 
  𝐷𝑝,𝑞 −   𝐷𝑝 +  𝐷𝑞 𝑝+ 𝑞=𝑖,𝑞>𝑝≥0𝑝+ 𝑞=𝑖,𝑞>𝑝≥0 ,

 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑖, 0 < 𝑖 < 2𝑛 − 2

 𝐷𝑝,𝑞 −   𝐷𝑝 +  𝐷𝑞 𝑝+ 𝑞=𝑖,𝑞>𝑝≥0𝑝+ 𝑞=𝑖,𝑞>𝑝≥0 +  𝐷 𝑖

2

,

𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑖, 𝑂 < 𝑖 < 2𝑛 − 2

   

Therefore for multiplying one-degree polynomials, that is, d = 

1, n = d +1=2, using the equations (1), (2) and (3), 

 

 𝐴(𝑥)  =  𝑎1𝑥 +  𝑎0 [from eq. (1)] 

 𝐵(𝑥)  =  𝑏1𝑥 + 𝑏0 [from eq. (2)] 

Then the product, C(x) = A(x) B(x) can be determined in the 

following manner: 

The auxiliary variables are: 

 𝐷0 = 𝑎0𝑏0 

 𝐷1 = 𝑎1𝑏1 

and 𝐷0,1 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1) 

  

Now, 𝑐0 = 𝐷0 = 𝑎0𝑏0 

 𝑐2𝑛−2 = 𝑐2 = 𝐷1 = 𝑎1𝑏1  

and 

 𝑐1 = 𝐷0,1 −  𝐷0 + 𝐷1 =  𝑎0 + 𝑎1  𝑏0 + 𝑏1 −
 𝑎0𝑏0 + 𝑎1𝑏1  

 = (𝑎0𝑏1 + 𝑎1𝑏0)  

Therefore, the polynomial (product) C(x) can be written as:  
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 𝐶(𝑥)  =  𝐷1𝑥
2  +  (𝐷0,1  – (𝐷0 + 𝐷1)) 𝑥 + 𝐷0 (6) 

The above equation when expanded becomes: 

𝐶(𝑥)  = (𝑎1𝑏1)𝑥2  +  (𝑎0𝑏1 + 𝑎1𝑏0) 𝑥 + 𝑎0𝑏0 

which is the product of A(x) and B(x). 

Similarly, for multiplication of two - degree polynomials that 

is, d = 1, n = d +1=2, using the equations (1), (2) and (3), 

 𝐴 𝑥 = 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0  [from eq. (1)] 

 𝐵 𝑥 = 𝑏2𝑥
2 + 𝑏1𝑥 +  𝑏 [from eq. (2)] 

The auxiliary variables are: 

 𝐷0 = 𝑎0𝑏0 

 𝐷1 = 𝑎1𝑏1 

 𝐷2 = 𝑎2𝑏2 

 𝐷0,1 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1) 

 𝐷0,2 = (𝑎0 + 𝑎2)(𝑏0 + 𝑏2) 

and 𝐷1,2 = (𝑎1 + 𝑎2)(𝑏1 + 𝑏2) 

Now, 𝑐0 = 𝐷0 = 𝑎0𝑏0 

 𝑐2𝑛−2 = 𝑐4 = 𝐷1 = 𝑎1𝑏1 

 𝑐1 = 𝐷0,1 −  𝐷1 + 𝐷0 =  𝑎0𝑏1 + 𝑎1𝑏0  

 𝑐2 = 𝐷0,2 −  𝐷2 + 𝐷0 + 𝐷1 =  𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1  

and 𝑐2 = 𝐷1,2 −  𝐷1 + 𝐷2 =  𝑎1𝑏2 + 𝑎2𝑏1  

Hence, the polynomial (product) C(x) can be written as: 

 

𝐶 𝑥 =  𝐷2𝑥
4  +   𝐷1,2 –  𝐷1 + 𝐷2  𝑥

3 +  𝐷0,2 –  𝐷2 +

𝐷0 + 𝐷1 𝑥
2 + (𝐷0,1  – (𝐷1 + 𝐷0)) 𝑥 +  𝐷0 (7) 

The above equation can be expanded as: 

𝐶 𝑥 =  𝑎2𝑏2 𝑥
4  +   𝑎1𝑏2 + 𝑎2𝑏1 𝑥

3

+  𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1 𝑥
2

+  𝑎0𝑏1 + 𝑎1𝑏0 𝑥 + 𝑎0𝑏0 

which is the product of the polynomials  A(x) and B(x). 

In their paper [6], Weimerskirch and Paar have presented a 

detailed analysis of the Karatsuba algorithm using recursive as 

well as iterative approach. 

5. VEDIC MULTIPLIER (NIKHILAM 

SUTRA) 
The literal meaning of Nikhilam Sutra is “all from 9 and last 

from 10”. This algorithm is more efficient for multiplication 

of large numbers. It finds out the complement of the large 

number from its nearest base to perform the multiplication. 

The Nikhilam Sutra is explained by considering the 

multiplication of two decimal numbers (8 × 9) where the base 

is 10 which is nearest to as well as greater than these two 

numbers. 

 

 

 

 

 

Table 1: Multiplication of two decimal numbers (8 × 9) 

using ‘Nikhilam’ Sutra 

Column 1 Column 2 

8 10 - 8 = 2 

9 10 - 9 =1 

(8-1) or ( 9-2)  = 7 2×1 = 2 

Table 1 shows the multiplication of two one digit decimal 

numbers using the Nikhilam sutra. The first two rows of 

column 1 show the multiplier and multiplicand. The first two 

rows of the second column display the complements of the 

multiplier and multiplicand (i.e. base 10). The third row of 

first column represents the left-hand side (L.H.S.) of the 

product and that of the second column represents the right-

hand side (R.H.S.) of the product. The R.H.S. of the product 

can be obtained by multiplying the numbers of the Column 2 

(2 × 1= 2 ). However the surplus portion on the R.H.S. is 

carried over to Left. The left hand side (L.H.S.) of the product 

can be found by cross subtracting the second number of 

Column 2 from the first number of Column 1 or vice versa, 

i.e., 8 – 1 = 7 or  9 – 2 = 7. The final result is obtained by 

concatenating the digits in R.H.S. and L.H.S. (Answer = 72). 

6. SYNTHESIS RESULTS AND 

COMPARISONS 
The multipliers, namely, Karatsuba multiplier, Vedic 

multiplier and a classical multiplier were implemented using 

Spartan 2s200pq208 FPGA device having a speed grade of -6. 

The codes were written in VHDL and they were simulated 

and synthesised using Xilinx ISE 10.1 simulator. The 

observations have been tabulated in Table 2. 

Table 2 shows the statistics of device usage and 

combinational path delay for 8×8 Karatsuba multiplier, 

classical Multiplier and Vedic multiplier. For Karatsuba 

multiplier the number of slices is the least, i.e. 26 as compared 

to that of the classical multiplier and the Vedic multiplier 

which are 38 and 62 respectively. Also, the number of four 

input LUTs and number of bonded IOBs are less for the 

proposed Karatsuba multiplier than the other two multipliers. 

These observations prove that area requirement for the 

Karatsuba multiplier is least. The maximum combinational 

path delay for the Karatsuba multiplier is least as well, that is 

12.338ns as compared to 15.656ns and 27.340ns for the 

classical multiplier and the Vedic multiplier respectively. This 

proves that the time delay is also least for the Karatsuba 

multiplier as compared to the other two multipliers. 

Table 2.Comparison of device utilization and 

combinational path delay of 8×8 Karatsuba multiplier, 

classical multiplier, and Vedic multiplier 

device 

(Spartan 2 

xc2s200 

pq208) 

number 

of 

slices 

number 

of 4 

input 

LUTs 

number 

of 

bonded 

IOBs 

maximum 

combinational 

path delay 

8×8 

(Karatsuba 

Multiplier) 

26 out 

of   

2352     

45 out 

of 4704     

(0%) 

31 out 

of 140    

(22%) 

12.338ns 
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(1%) 

8×8 

(Classical 

Multiplier) 

38 out 

of   

2352     

(1%) 

73 out 

of 4704     

(1%) 

32 out 

of 140    

(22%) 

15.656ns 

8×8 (Vedic 

Multiplier) 

62 out 

of   

2352     

(2%) 

113 out 

of 4704     

(2%) 

32 out 

of 140    

(22%) 

27.340ns 

 

The figure 1 exhibits the histogram representation of the 

performance of the three multipliers with respect to device 

utilization and time requirements (path delay). It can be 

remarked from the figure that the proposed Karatsuba 

multiplier requires less space for its implementation and 

simultaneously it requires less time for its execution. 

Thus, from figure 1 and table 2, it can be concluded that the 

proposed Karatsuba multiplier is more efficient in terms of 

both space and time requirements than the Vedic multiplier 

(using Nikhilam Sutra) and the classical multiplier. 

 

 
Figure 1: Histogram showing the comparison of device utilization and combinational path delay of different multipliers

7. CONCLUSION 
The combinational path delay and device utilization of 

8×8 Karatsuba multiplier, Vedic multiplier and a classical 

multiplier has been compared. The proposed Karatsuba 

multiplier shows speed improvement as compared to Vedic 

multiplier and the classical multiplier. This may be useful for 

applications involving high speed multiplication. 
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