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ABSTRACT 
In this paper we propose computationally efficient denoising 

algorithm that thresholds the wavelet coefficient considering 

its neighbors in deciding whether it is noisy or noise free. The 

proposed algorithm select a suboptimal threshold and 

neighboring window size for every subband that minimized 

Mean Square Error(MSE) in the denoised image using Stein's 

Unbiased Risk Estimate(SURE). In this paper, we 

demonstrate the efficiency of the proposed denoising 

algorithm as compared with two other state-of-the art 

denoising algorithms. 

General Terms 
Image processing. 
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1.  INTRODUCTION 
Digital images are generally affected by different types of 

noise. A noise is introduced in the transmission medium due 

to a noisy channel, imperfect instruments used in image 

processing, errors during the measurement process, noise due 

to degradation such in films, image compression and during 

quantization of the data for digital storage. Each element in 

the imaging chain such as lenses, film, digitizer, etc. 

contributes to the degradation. Thus, image denoising is a 

necessary and primary step in any further image processing 

tasks like segmentation, object recognition, computer vision, 

…etc. To overcome image data corruption, we need to know 

something about the degradation process in order to develop a 

model for it. When we have a model for the degradation 

process, the inverse process can be applied to the image to 

restore it back to the original form. Noise modeling in images 

is greatly affected by capturing instruments, image 

quantization, data transmission channels, …etc. Among 

several denoising algorithms, denoising that based on wavelet 

transform for cancelling white Gaussian noise finds wide 

range of applications since the pioneer work by Donoho and 

Johnstone[1]. VisuShrink[1], SureShrink[2], BayesShrink[3], 

SURE-LET[4], NUP/Wavelet transform[5], and Neural 

Network based thresholding[6] are examples of thresholding 

the wavelet detail coefficients term by term based on their 

individual magnitudes. Thereafter, several alternative 

denoising algorithms have been proposed by many authors 

that based on utilizing the information about the neighbor 

wavelet coefficients (block of coefficients) rather than 

individually. Including wavelet coefficient neighbors 

increases the estimation precision in deciding whether the 

coefficient is noisy or noise free. Cai and Silverman[7], 

proposed NeighCoeff for 1-D signals. Chen et al[8], proposed 

NeighShrink that extend NeighCoeff to image denoising. The 

main drawbacks of NeighShrink is that it uses a fixed large 

(due to its dependence on the number of image samples)  

 

 

 

 

universal threshold value and identical neighboring window 

size in all wavelet subbands which may result in overly 

smooth images. To overcome NeighShrink weakness, Z. 

Dngwen, and C. Wengang[9] proposed SURENeighShrink 

that search for optimum threshold value and neighboring 

window size for every subband according to Stein's Unbiased 

Risk Estimate(SURE) method. It has been shown that the 

denoising performance of SURENeighShrink is considerably 

superior to NeighShrink and also outperforms SURE-LET[4] 

which is one of the best term-wise denoising algorithm that 

also based on SURE. The main drawback of the  

SURENeighShrink is its high computation cost when 

searching for optimum threshold value and neighboring 

window size for every wavelet subband. In this paper, we 

proposed an efficient implementation of SURENeighShrink 

that overcomes its computation complexity. The experimental 

results show that the proposed denoising algorithm achieves 

comparable denoising performance over the wide range of 

images and noise levels. Results also show that the proposed 

method outperforms NeighShrink considerably.  

The rest of the paper is organized as follows. In section 2, we 

explain the proposed image denoising algorithm. The results 

of our proposed denoising algorithm will be compared with 

NeighShrink[8] and SURENeighShrink[9] in section 3. 

Finally, the concluding remarks are given in section 4.  

2. PROPOSED ALGORITHM 
The SURENeighShrink[9] denoising algorithm produces both 

higher PSNRs and better visual quality than some published 

best denoising algorithms. The main drawback of this 

denoising algorithm is its computation overhead when 

searching for optimum threshold value and neighboring 

window size for every wavelet subband . To overcome the 

computation overhead, we have experimented with 

SURENeighShrink denoising algorithm using various 

standard images over a wide range of noise levels including 

the effect of both wavelet name and number of decomposition 

levels. The results are reported which include the optimum 

threshold value and neighboring window size for the different 

standard images under test, different wavelet names, and 

different wavelet decomposition numbers. Results of 

extensive statistical work show that:- 

1. The neighboring window size is directly 

proportional with the noise level. That is, 

L ∝ σn                                                          (1) 

This means that larger neighboring window size is required 

to gather more information about the neighbors of the 

wavelet coefficient which in turn enables deciding whether 

the coefficient is noisy or noise free. This point explains the 

weakness of NeighShrink when denoising highly corrupted 

images because it uses fix window size for all noise levels.   
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2. For low noise levels, σn ≤ 10 , single wavelet 

decomposition is quite enough. The window size 

ranges from 3 to 11. 

3. Larger window size is required for the diagonal 

subbands mostly for the first and second wavelet 

decomposition. 

4. The optimum window size for the third and fourth 

decomposition levels ranges from 1 to 3. 

5. Over a wide range of images sizes corrupted with 

high noise levels, the optimal window size rarely 

exceeds 13. 

6. Extensive experiments have been carried out to 

study, statistically, the relation between the optimal 

threshold value and the corresponding optimal 

window size for every wavelet subband. Results 

show that, there is a direct relationship between 

them. That is, 

T ∝ L                                                           (2) 

From this statistical study, we create a set of arrays that 

contain the optimal window size for each decomposition level 

and for each orientation in each subband namely HL, LH, and 

HH (Horizontal, Vertical, and Diagonal). These arrays cover 

the noise levels ranges from 10 to 100. We named each array 

as window size kernel. Table[1], shows these suggested 

window kernels for different orientation and noise levels. The 

selection  mechanism for neighboring window size in each 

orientation for every wavelet subband can be state 

Select L from

 
  
 

  
 

 
Window Kernel1 if 0 < σ n ≤ 10

 Window Kernel2 if 10 < σ n ≤ 20
Window Kernel3 if 20 < σ n ≤ 30
Window Kernel4  if 30 < σ n ≤ 50
Window Kernel5 if 50 < σ n ≤ 75
Window Kernel6 if 75 < σ n ≤ 100 

  
 

  
 

         (3) 

Regarding threshold value in each subband, we suggest to use 

the following empirical formula, 

T = 2 × L + 1                                           (4) 
7. The  wavelet coefficient is shrinked or suppressed 

according to  

v i,j = vi,j × max 1 −  𝑇
2

 vx,y
2

x,y∈B i ,j
  , 0  (5) 

Where B is a window of size L × L in subband S centered at  

(i , j), vi,j is the wavelet coefficient  to be shrinked or 

suppressed , T is a threshold value for subband S, and v i,j is 

the estimated noise free wavelet coefficient. According to the 

above steps, the proposed denoising algorithm, select from a 

predefined data base the suboptimal neighboring window size 

and threshold value for each orientation in each subband 

depending upon the level of estimated noise. Figure(1), shows 

the flow chart that describes the implementation steps of the 

newly proposed denoising algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

                       

                      

 

 

 

 

 

 

 

 

 

 

 Fig 1: The Flowchart of The DBNeighShrink

Assign wavelet filter bank 

used for image decomposition                          

and  reconstruction 

Add White Gaussian Noise 

 

Estimate Noise level 𝜎 𝑛  using Median Absolute 

Deviation(MAD) from 𝐻𝐻1 Subband 

 

Assign threshold value 𝑇 for each subband in each 

scale according to Eq(4). 

Threshold the detail subbands 𝐿𝐻𝑖 , 𝐻𝐿𝑖 , 𝑎𝑛𝑑 𝐻𝐻𝑖  

𝑓𝑜𝑟 𝑖 = 1,2, …  𝑁 using Eq(5) 

 

Input An image 

Apply 𝑁 level 2-D DWT, decompose the 

image into its four subbands namely 𝐿𝐿𝑁 , 

𝐿𝐻𝑖 , 𝐻𝐿𝑖 , and 𝐻𝐻𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, …  𝑁 

 

Assign the number of wavelet 

decomposition Levels 𝑁 

 

Assign the neighboring window size 𝐿 according to 

Eq(3) for each decomposition level in each 

orientation 𝐿𝐻𝑖 , 𝐻𝐿𝑖 , and 𝐻𝐻𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, …  𝑁 

Apply N-level 2-D Inverse DWT 

 
Display Image 

     End 

     Start 
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Table 1. Window size kernels for different noise levels 

                           

4. RESULTS AND DISCUSIONS 
An experiment was conducted to assess the performance of 

the proposed Data Based NeighShrink (we shall call it 

DBNeighShrink) denoising algorithm for denoising images 

corrupted with Gaussian noise with zero mean and standard 

deviations 10, 20, 30, 50, 75, and 100. The wavelet transform 

employs Daubechies least asymmetric compactly supported 

wavelet with eight vanishing moments at four scales of 

decomposition. The noise standard deviation is estimated 

using robust Median Absolute Deviation (MAD) using the 

highest level wavelet coefficients. We shall use the Peak 

Signal to Noise Ratio(PSNR) as our measure of the relative 

denoising algorithms performance.  

In this experiment, we have compared our proposed denoising 

algorithm with the conventional NeighShrink[8], and  

SURENeighShrink[9]. NeighShrink uses the universal 

threshold T = σn 2log⁡(M)  where M is the image size with 

fixed 3 × 3 neighboring window size for all subbands as 

recommended by [8].  SURENeighShrink uses an optimal 

threshold and neighboring window size for every subband that 

minimize MSE in denoised image using Stein’s Unbiased 

Risk Estimate (SURE). 

The PSNR from various denoising algorithms are compared in 

Table(2). The data are collected from an average of ten runs. 

The best denoising algorithm among others in terms of PSNR 

value is highlighted in bold font for each test image. 

As can be seen from these tables, the average output PSNR of 

SURENeighShrink and DBNeighShrink are close to each 

other for almost all images under test. Thus, Both 

SURENeighShrink and DBNeighShrink are robust, they 

achieve nearly equivalent performance in terms of average 

PSNR over all noise levels for various images under test. 

The NeighShrink isn’t robust  in terms of both average PSNR 

value and visual quality as compared with others. Its results 

become worse when the noise level is increased. This denotes 

that it isn’t appropriate for high noise level for NeighShrink to 

use the fixed window size and single universal threshold in all 

wavelet subbands. It produces overly smoothed images with 

no sufficient edge preservation which in turn makes the image 

get blurry and loses much of its resolution. 

The proposed DBNeighShrink outperforms NeighShrink over 

all noise levels and for all test images. This is due to the fact 

that DBNeighShrink overcomes the drawbacks of 

NeighShrink which uses fix universal threshold value and 

neighboring window size for all subbands. While, 

DBNeighShrink uses different neighboring window size and 

threshold value for each subband in each scale. As an example 

for Lena Image, DBNeighShrink, achieves an average PSNR 

gain of 1.476 dB as compared with NeighShrink. While, 

SURENeighShrink achieves an average PSNR gain of just 

0.112 dB as compared with DBNeighShrink. However, 

SURENeighShrink requires much processing time compared 

with DBNeighShrink. This is due to the fact that 

SURENeighShrink search for optimal window size and 

threshold value for every wavelet subband by minimizing 

Stein’s unbiased risk estimate while DBNeighShrink uses a 

predefined data base regarding suboptimal window size and 

threshold value as a function of noise intensity level which in 

turn makes it computationally more efficient as compared 

with SURENeighShrink.  

As an example, we compare the computational complexity of 

NeighShrink, SURENeighShrink, and DBNeighShrink using 

CPU run time. Although CPU time is not an exact measure, it 

gives a rough estimation of complexity. All the experiments 

were done with an Intel Dual-Core processor at 2.6GHz with 

2GB of RAM, using MATLAB R2008b environment under 

Microsoft Windows XP SP2 operating system. The average 

execution time of ten runs for each denoising algorithm was 

recorded for Lena image of size 512×512. Results show that, 

the average execution time of SURENeighShrink is about 

27.352 seconds while DBNeighShrink requires just 2.761 

seconds. On the other hand, NeighShrink, requires about 

2.364 seconds. Thus, by taking the computational complexity 

into our considerations, DBNeighShrink exhibits both good 

performance and low computational complexity as compared 

with NeighShrink and SURENeighShrink. 

Finally, it is important to examine some denoised images 

visually. Figure(2), shows that for low noise level degradation 

(σn ≤ 10), almost all denoising algorithms achieve nearly 

equivalent performance although NeighShrink exhibits less 

PSNR value. Figure(3) and figure(4), show the effect of 

denoising for moderate noise level. Noticeably, the images in 

figure(3-b) and figure(4-b) are little over smoothed which is 

the nature of NeighShrink as discussed before. While, 

SURENeighShrink and DBNeighShrink denoising algorithms 

provide better edges preservation and exhibit nearly 

equivalent visual quality. Figure(5) and figure(6), show the 

effect of denoising for high level of noise degradation. 

Clearly, NeighShrink is the worse denoising algorithm 

compared with others. It is overly smooth the image and 

destroying most of denoised image details as can be seen in 

figure(5-b) and more clearly in the zoom-in of the window 

edge in figure(6-b). Therefore NeighShrink is not suitable 

especially for high noise levels. While, all other denoising 

algorithms achieve better denoising and edge preservation in 

terms of both PSNR value and visual perception. 
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To summarize, referring to the results in Table(2), we can see 

that SURENeighShrink outperforms other denoising 

algorithms most of the time but at the expense of extremely 

high processing demands. SURENeighShrink and 

DBNeighShrink achieve comparable denoising performance 

in terms of PSNR value as well as in terms of visual quality. 

5. CONCLUSIONS 
The NeighShrink[8] uses a fixed suboptimal universal 

threshold value and identical neighboring window size in all 

wavelet subbands which results in overly smooth images. In 

this paper, we improve NeighShrink  through selecting 

different suboptimal threshold and neighboring window size 

for every subband that minimized Stein's Unbiased Risk 

Estimate(SURE). Experimental results indicate that the 

proposed DBNeighShrink outperforms NeighShrink over all 

noise levels and for all test images. On the other hand, 

SURENeighShrink and DBNeighShrink achieve comparable 

denoising performance in terms of PSNR value as well as in 

terms of visual quality. Thus, we conclude that the proposed 

DBNeighShrink exhibits both good performance and low 

computational complexity as compared with NeighShrink and 

SURENeighShrink. 
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Table 2. PSNR Results for Denoising Lena, Barbara, a 

nd Goldhill 

 

 

 NeighShrink SURENeighShrink DBNeighShrink 

Lena Image 

σn =10 32.822 34.626 34.645 

σn =20 29.648 31.461 31.416 

σn =30 27.741 29.599 29.492 

σn =50 25.300 27.072 26.898 

σn =75 23.284 24.601 24.449 

σn =100 21.752 22.716 22.506 

Average 

PSNR 
26.758 28.346 28.234 

Barbara Image 

σn =10 30.436 32.783 32.789 

σn =20 26.685 29.033 28.955 

σn =30 24.692 26.978 26.920 

σn =50 22.431 24.452 24.381 

σn =75 20.919 22.273 22.228 

σn =100 19.727 20.640 20.564 

Average 

PSNR 
24.148 26.027 25.973 

Goldhill Image 

σn =10 30.206 32.606 32.638 

σn =20 27.588 29.547 29.541 

σn =30 26.241 27.924 27.866 

σn =50 24.548 25.761 25.723 

σn =75 22.982 23.678 23.504 

σn =100 21.498 22.043 21.832 

Average 

PSNR 
25.511 26.927 26.834 
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 Fig 2: Denoising results for Child: (a) Noisy image 

PSNR=28.196dB (𝛔𝐧=10); (b) Denoised image using 

NeighShrink, PSNR=32.029dB;(c)Denoised image Using 

SURENeighShrink PSNR=34.059;(d) Denoised image 

using DBNeighShrink, PSNR=33.594. 

 Fig 3: Denoising results for Barbara:(a) Noisy image  

PSNR=22.176 (𝛔𝐧=20); (b) Denoised image using 

NeighShrink, PSNR=26.662; (c) Denoised image using 

SURENeighShrink, PSNR=29.022; (d) Denoised image 

using DBNeighShrink, PSNR=28.875. 

 Fig 4: Denoising results for Lena: (a) Noisy Image, 

PSNR=18.711dB(𝛔𝐧=30);(b) Denoised image Using 

NeighShrink, PSNR=27.720 dB; (c) Denoised image Using 

SURENeighShrink, PSNR=29.596 dB; (d) Denoised image 

Using DBNeighShrink, PSNR=29.485 dB. 

 Fig 5: Denoising results for Goldhill: (a) Noisy Image, 

PSNR=14.622 dB (𝛔𝐧=50); (b) Denoised image Using 

NeighShrink, PSNR=24.586 dB; (c) Denoised image Using 

SURENeighShrink, PSNR=25.766 dB; (d) Denoised image 

Using DBNeighShrink, PSNR=25.747 dB. 
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Fig 6: Denoising results for House: (a) Noisy Image, 

PSNR=14.576 dB (𝛔𝐧=50); (b) Denoised image Using 

NeighShrink, PSNR=25.163 dB; (c) Denoised image Using 

SURENeighShrink, PSNR=26.340 dB; (d) Denoised image 

Using DBNeighShrink, PSNR=26.312 dB. 


