
 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

26

Artificial Immune System for Bloom filter Optimization

Arulanand Natarajan

Anna University of Technology
Coimbatore

Tamil Nadu, India

Swathy Priyadharsini P
Bannari Amman Institute of

Technology, Sathyamangalam
Erode, Tamil Nadu, India

Subramanian S
Sri Krishna College of

Engineering and Technology
Coimbatore, Tamil Nadu, India

ABSTRACT

Bloom filter is a probabilistic and space efficient data

structure designed to check the membership of an element in a

set. The trade-off to use Bloom filter may have configurable

risk of false positives. The percentages of a false positive can

be made low if the hash bit map is sufficiently massive. Spam

is an unsolicited or irrelevant message sent on the internet to

an outsized range of users or newsgroup. A spam word may

be a list of well-known words that usually appear in spam

mails. In the proposed system, Bin Bloom Filter (BBF)

groups the words into number of bloom filters that have

different false positive rates primarily based on the weights of

the spam words. Clonal Selection Algorithm is one of the

methods in Artificial Immune System (AIS) involved with

computational methods inspired by the process of the

biological immune system. This paper demonstrates the CSA

algorithm for minimizing the total membership invalidation

cost of the BBF which finds the optimal false positive rates

and number of elements to be stored in bloom filters of Bin.

The experimental results demonstrate the application of CSA

in BBF and compare the results with Genetic Algorithm (GA).

General Terms

Genetic Algorithm, E-Mail, Data Structure, Immune System,

Optimization, Spam word, Internet, Synthetic Dataset,

Membership Query.

Keywords

Clonal Selection Method, Bloom filter, Spam filter, False

positive rate, Hash function.

1. INTRODUCTION
Spamming is the action of sending inappropriate messages in

bulk without the explicit permission or need of the recipients.

That is spam is an unwanted or unsolicited messages sent on

the internet to a large number of users. This huge numbers of

spam raise the requirement of automated filters to detect or

remove these spam e-mails. The spam does cost money.

Bayesian filters or other heuristic filters attempt to identify

spam through word frequency. The Bayesian filter is based on

the occurrence of words in spam mails and legitimate mails.

Content based filters can classify the mail into spam or

legitimate by examining within the e-mail contents and these

mostly seek for spam words.

A Bloom filter [1] is a memory efficient data structure for

representing a set in order to support membership queries.

Bloom filters enable false positive but it saves space. The

bloom filter is a widespread I database applications and

networking. In this paper, CSA is used for optimizing the

bloom filter in spam filtering. The clonal selection acquires

the behavior and capabilities of antibodies in the immune

system.

2. BLOOM FILTER
Bloom filter has a bit vector of size m and for any given string

X, Bloom filter computes k hash functions on it which

produces k hash values ranging from 1 to m. It then sets k bits

in an m-bit vector at the addresses corresponding to the k hash

values. This similar procedure is repeated for all the members

of the set. This process is called programming of the filter.

The query process is analogous to programming, where a

string whose membership is to be verified is given as input to

the filter. Initially,

Bloom filter generates k hash values using those hash

functions which is used to program the filter. The bits that are

corresponding to the k hash values in the m-bit vector are

looked up. If any one of the bits is not set, then the string is

asserted to be a nonmember of the set. If all the bits are found

to be set, then the string is said to be present in the set with

certain probability. This uncertainty in the membership of an

string is because of the fact that those k bits in the m-bit

vector may be set by any other n-1 members. Thus finding a

bit set does not necessarily imply that it had been set by the

actual string being queried. However, finding any of the bits

not set implies that the string does not belong to the set.

In an Bloom filter B, initially all the bits are set to 0 and k

independent hash functions h1, h2, …, hk are chosen. For any

element e to be added in the Bloom filter from the set S, the

bit positions h1(e), h2(e), …, hk(e) in B are set to 1. A

specific bit may be set to 1 more than one time. For testing the

membership of an element o the bits at positions h1(o), h2(o),

…, hk(o) are checked. If any one of them is 0, then certainly o

is not present in the set S. Otherwise, o may be present in the

set with a certain probability that it is wrong. This is called as

false positive. The parameters k and m should be chosen such

that the likelihood of a false positive is acceptable. Figure 1 is

an example where m=16, k=4 and e is the element to be stored

in the bit array.

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

27

Fig 1: Bloom Filter

The false positive rate of Bloom filter is given in equation (1)

 kmknef /1 

 (1)

For given m and n, the optimal value of k is obtained from the

equation (2)

   2ln/ nmk 

 (2)

The BF has been widely used in many database applications

([2] [3]). It is applied in networking literature [4]. A BF can

be used as a summarizing technique to aid global

collaboration in peer-to-peer networks ([5] [6] [7] [8]). It

supports probabilistic algorithms for routing and locating

resources ([9] [10] [11] [12]) and share Web cache

information ([13]). BFs have great potential for representing a

set in main memory [14] in stand-alone applications. BFs

have been used to provide a probabilistic approach for explicit

state model checking of finite-state transition systems [14]. It

is used to summarize the contents of stream data in memory

([15] [16]), to store the states of flows in the on-chip memory

at networking devices [17], and to store the statistical values

of tokens to speed up the statistical-based Bayesian filters

[18]. The variations of BFs are compressed Bloom filters [19],

counting Bloom filters [13], distance-sensitive Bloom filters

[20], Bloom filters with two hash functions [21], spacecode

Bloom filters [22], spectral Bloom filters [23], generalized

Bloom filters [24], Bloomier filters [25], Bloom filters based

on partitioned hashing [26], fully pipelined bloom filter

architecture [27] and dynamic Bloom filters [28].

3. IMMUNE SYSTEM
The immune system is a network of cells, tissues, and organs

that work together to defend the body against attacks by

foreign invaders. The primary role of the immune system is

detection and elimination of pathogen where as pathogen is

the agent of disease. Antigen is a foreign molecule that

triggers the production of antibody. An antigen can be a

microbe such as a virus, or a part of a microbe such as a

molecule. The organs of the immune system are positioned

throughout the body. White blood cells are the key players in

the immune system.

White blood cells originate in the bone marrow however

migrate to parts of the lymphatic system such as the lymph

nodes, spleen, and thymus. There are two main types of

lymphatic cells, T cells and B cells. The B cell creates new

cell types called plasma cells and B memory cells during

cloning. The plasma cell is specialized in producing a specific

protein, called an antibody that will respond to the same

antigen that matched the B cell receptor. When the antibody

finds a matching antigen, it attaches and demolishes the

antigen. The memory cells are another cell type produced by

the division of B cells. These cells have a prolonged life span

and remember specific intruders.

3.1 Clonal Selection Algorithm
The clonal expansion of B-cells will increase the average

antibody affinity for the antigen which triggered the clonal

expansion. This is termed as affinity maturation. Affinity

maturation is caused by somatic hypermutation and selection

mechanism which occurs during the clonal expansion of B-

cells. The two important features of affinity maturation in B-

cells are

 The proliferation of B-cells is proportional to the

affinity of the antigen that binds it, thus the higher

the affinity, the more clones are produced.

 The mutations suffered by the antibody of a B-cell

are inversely proportional to the affinity of the

antigen it binds.

Somatic hypermutation alters the specificity of antibodies by

introducing random changes to the genes that encode for

them. In proliferation it is differentiated into memory cells

and plasma cells. The memory cells are used to fight with the

same pathogen if the host is infected again. The plasma cells

are used to secrete lots of the recognizing antibody into the

blood. Figure 2 shows the Clonal selection method.

Fig 2: Clonal selection method ([29])

In CSA, antigen typically refers the problem and its

constraints. The antibodies are selected which is based on the

affinity either by matching against an antigen pattern or via

evaluation of pattern by a cost function. Selected antibodies

are subjected to cloning proportional to affinity. The

hypermutation of clones are inversely proportional to clone

affinity. The resultant clone set competes with the existent

antibody population for membership in the next generation. In

addition low-affinity population members are replaced by

randomly generated antibody population for the membership

in next generation.

The main immune aspects taken into account are maintenance

of the memory cells functionally disconnected from the

repertoire, selection and cloning of the most stimulated cells,

death of non-stimulated cells, affinity maturation and

reselection of the clones with higher affinity, generation and

maintenance of diversity, hypermutation proportional to the

cell affinity.

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

28

Algorithm: Pseudo code for CSA

1. Generate a set (P) of candidate solutions composed of the

subset of memory cells (M) added to the remaining (Pr)

population (P = Pr + M).

2. Select the n best individuals of the population based on a

fitness function.

3. Clone these n best individuals of the population, giving rise

to a temporary population of clones (C).

4. Submit the population of clones to a hypermutation

scheme, where the hypermutation is proportional to the

fitness function of the antibody. A maturated antibody

population is generated (C*).

5. Re-select the improved individuals from C* to compose the

memory set M. Some members of P can be replaced by

other improved members of C*

Replace d antibodies by novel ones. The lower affinity cells

have higher probabilities of being replaced.

4. OPTIMIZATION OF BBF USING CSA
A Bin Bloom Filter is a variant of Bloom filter where it has

number of Bloom filters as bins. Each Bloom filter has

different <n,k,f> which causes dissimilar membership

invalidation cost. The proposed system applies the concept of

BBF for spam filtering. In spam filtering each word is

assigned by a weight. BBF provides each bin with different

false positive rates based on the weights of the strings. The

false positive rate and number of words to be stored in each

bloom filter is identified through optimization technique

which minimize the total membership invalidation cost.

Figure 3 shows Bin BF with its tuple <n,f,w> configuration.

Fig 3: Bin Bloom Filter

where ni, fi and wi respectively represents number of strings,

false positive rate and average weight of strings in Bloom

filter i.

4.1 Problem Definition
Consider a standard supervised learning problem with a set of

training data D = {<Y1,Z1 >,..., <Yi, Zi>, … ,< Yr ,Zr

>} , where Yi is an instance represent as a single feature

vector, Zi = C(Yi) is the target value of Yi , where C is the

target function. Where Y1, Y2, … , Yr set of text document

collection, C is a class label to classify into spam or

legitimate (non-spam).

The text documents are preprocessed and features (words) are

identified. The spam weights for words are calculated from

the set. This weight value indicates its probable belongings

to spam or legitimate. The weight values are discretized and

assigned for different Bins. The tuple to describe the Bin BF

is, {{n1, n2,, …, nL}, {w1, w2,…, wL}, m, {k1, k2, …, kL},

{f1, f2, …, fL}}. It is an optimization problem to find the

value of n and f that to minimize the total membership

invalidation cost. For membership testing the total cost of

the set is the sum of the invalidation cost of each subset. The

total membership invalidation cost [30] is given as,

LLL wfnwfnwfnF 222111

The total membership invalidation cost

 ii

L

i
i wfnLF  


1

)((3)

to be minimized. Where N
L

i
in 

 1

N- Total number of Strings in a spam set.

 












 











j

i

1j

ji rnmrln2

i
2

1
f (4)

)ln(fr ii   Li 1

The objective function f(L) taken as standard for the problem

of minimization is










max

maxmax

CF(L)if0

CF(L)ifF(L)C
f(L) (5)

where Cmax is a large constant.

4.2 Weight Assignment
The first step for assigning weight to spam words is

estimating the word probability that depends on word

frequency. Word frequency is measured by the number of

occurrences of a specific word in the document. Estimating

probabilities is achieved using Bayes conditional probability

theorem. The probability of a word given that the message is

spam can be estimated as follows:

s

s

ns

ns

s

s

s

N

f

N

f

N

f

P





s

s

ns

ns

ns

ns

ns

N

f

N

f

N

f

P





Ps is the probability of a word given the mail is spam,

Pns is the probability of a word given the mail is legitimate,

fs is the frequency of word in the spam documents,

fns is frequency of words in the legitimate documents,

Ns is the total spam documents,

 Nns is the total legitimate documents.

The next step is calculating word weights. Estimating a

weight for each word is based on its frequency and its

probability in spam mail documents and non-spam mail

documents. The weight of every word is estimated using the

formula:

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

29

ns

s
word

P

P
W eight  (6)

This weight value is based on text collection containing spam

messages and non-spam messages. The word weights are

estimated from spam list during the training process and

stored in a separate text document.

4.3 Antibody representation
The three main features of clonal selection are

 Proliferation and differentiation on stimulation of cells with

antigens

 Generation of new random genetic changes, subsequently

expressed as diverse antibody patterns by somatic

mutation

 Elimination of newly differentiated lymphocytes carrying

low affinity antigenic receptors.

In the perspective of BBF, an antibody represents number of

bloom filters with number of words, false positive rate and

weight. That is, each antibody Xi, is constructed as follows:

Fig 4: Antibody representation for Bin Bloom Filter

where nij, fij and wij refer respectively the number of words,

false positive rate and weight of the jth Bloom filter of ith

antibody in a bin. The false positive rate fij can be obtained

from equation (1).

4.4 Initial Population
An antibody in the population represents one possible solution

for assigning the triples <n, f, w> for L Bloom filters.

Therefore P number of candidate solutions is generated for the

bin. Initially each antibody randomly chooses different <n, f,

w> for L bins.

The fitness function for each individual can be calculated

based on the equation (5).

4.5 Clonal selection
In clonal selection n highest fitness antibodies are selected for

cloning with the rate of β. The amount of clones to be

generated for all these n selected antibodies is given in

equation (7).

 












n

1i i

Pβ
roundNC (7)

where NC is the total amount of clones generated, β is a

multiplying factor, P is the total amount of antibodies and

round() is the operator that rounds its argument towards the

closest integer. Each term of this sum corresponds to the clone

size of each selected antibody, e.g., for P = 10 and β = 1, the

highest affinity antibody (i = 1) will produce 10 clones, while

the second highest affinity antibody produces 5 clones, and so

on.

4.6 Somatic hypermutation
A speedy accumulation of mutations is necessary for a fast

maturation of the immune response. The selection mechanism

provides a means by which the regulation of the

hypermutation process is made dependent on receptor affinity.

Cells with low affinity receptors may be further mutated and

die if they do not improve their clone size or antigenic

affinity. In cells with high-affinity antibody receptors the

hypermutation become inactive in a gradual manner [31].

For mutation the Cauchy mutation operator is applied. The

one dimensional Cauchy density function centered at the

origin is defined as follows:

 



 x
2x2t

t

π

1
f(x) (8)

where t>0 is a scale parameter.

The adaptive mutation rate Pm depends on the fitness values of

the Antibodies. The adaptation allows the individuals having

fitness values of over-average to maintain their value and

the individuals with below average fitness values to disturb.

The mutation rate adaptation rule is given in equation (9).






















avgFF2k

avgFF

avgFmaxF

FmaxF

1k

mP (9)

In this equation, F denotes the fitness value of the individual,

Fmax denotes the best fitness value of the current generation,

and Favg denotes the average fitness value of the current

generation. The constants k1 and k2 are chosen as 1.75/(n ×

N1/2), where n and N represents number of antibodies and

length of antibody [32].

5. EXPERIMENTAL ANALYSIS
The optimization of bloom filter is experimented on synthetic

data sets using both genetic algorithm and CSA. For synthetic

data sets the total number of strings taken for testing is 500.

The string weights are generated from 0.0005 to 5. The

minimum and maximum number of words stored in a Bloom

filter for 500 words is 32 and 256. The size of each Bloom

filter that presents inside the bin is 512. This experimental

setup is applied for bins from 4 to 7 for 50 iterations. Table 1

lists the parameters and their values used in BBF.

Table1. Parameter values of BBF

Data set Number

of words

stored

Min Max

Word

Weight

Min Max

Bloom

filter

size

No. of

iteratio

ns

Synthetic

data-set-

500 words

32 256

0.0005 5

1024

50

Since Bloom Filter allows false positive, the membership

invalidation cost is unavoidable. For BBF, the total

membership invalidation cost is expressed in equation (4).

Different weights in different Bloom filters into consideration,

the total membership invalidation cost for Bloom filter is then

as follows:

 fwfnwfnwfnF LLLdards)......(222111tan 

 i

L

i
idards wnfLF  


1

tan)(

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

30

The average false positive rate of last iteration of BBF is

considered as false positive rate of Bloom filter. Table 2

shows the parameter and its value in CSA and GA.

Table 2. Parameter and its value in GA and CSA

Parameter Value

CSA

Population size 10

No. of iterations 50

Cloning rate β 0.5

d 20% of population size

GA

Type of selection Roulette wheel selection

Type of crossover One point crossover

Type of mutation Uniform mutation

Type of evaluation Elitist selection

Population size 10

Selection rate 0.5

Crossover rate 0.8

Mutation rate 1/3L

Figures5(a) to 5(d) show the cost obtained for 500 strings

from synthetic data set for Bin 4, Bin 5, Bin 6 and Bin 7

respectively. In figure 5(a), for bin size 4 the cost of BBF for

GA and CSA remains similar till 22 iterations. Then for next

28 iterations the cost of BBF is reduced for CSA. In figures

5(b) to 5(d), for bin sizes 5,6 and 7 the cost of the BBF gets

reduced gradually when number of iterations is increased.

(a)

(b)

(c)

(d)

Fig 5: Comparison of GA and CSA for 500 strings

Figure 6 shows the cost obtained from GA and CSA. The cost

and bin size are negatively correlated; when the bin size

increases the cost decreases. For many configurations CSA

gives better output than GA.

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

31

Fig 6: Cost obtained from GA and CSA

5. CONCLUSION
The BBF is an efficient form of data structure which treats

words in a set differently depending on the word weights and

allocates words into bins with different false positive rates. It

has much lower membership invalidation cost compared to

the Bloom filter for the methods GA and CSA. GA has

premature convergence owing to some high rated individuals

quickly attain to dominate the population, constraining it to

converge into a local optimum. The GA depends on parameter

values rather CSA finds the global optimum independent of

initial parameter values. Simulation results show the CSA

outperforms GA.

6. REFERENCES
[1] Bloom B, “Space/time tradeoffs in hash coding with

allowable errors”, Communications of the ACM, 13,

1970, pp. 422–426.

[2] Mullin J.K, “Optimal Semijoins for Distributed Database

Systems”, IEEE Trans. Software Eng., 16, 1990, pp. 558-

560.

[3] Mackert L.F. and Lohman G.M., “Optimizer Validation

and Performance Evaluation for Distributed Queries”,

Proc. 12th Int’l Conf. Very Large Data Bases (VLDB),

1986, 149-159.

[4] Broder A and Mitzenmacher M. “Network Applications

of Bloom Filters: A Survey”, Internet Math., 1(4), 2005,

pp. 485-509.

[5] Kubiatowicz J Bindel D, Chen, Y Czerwinski S, Eaton P,

and Geels D, “Oceanstore: An Architecture for Global-

Scale Persistent Storage,” ACM SIGPLAN Notices,

35(11), 2000, pp. 190-201.

[6] Li J, Taylor J, Serban L, and Seltzer M, “Self-

Organization in Peer-to-Peer System”, Proc. ACM

SIGOPS, 2002.

[7] Cuena-Acuna F.M, Peery C,Martin R.P, and Nguyen

T.D, PlantP: “Using Gossiping to Build Content

Addressable Peer-to-Peer Information Sharing

Communities”, Proc. 12th IEEE Int’lSymp. High

Performance Distributed Computing, 2003, pp. 236-249.

[8] Chen, H, Jin, H, Chen, L, Liu, Y and Ni, L.,

“Optimizing Bloom Filter Settings in Peer-to-Peer Multi-

keyword Searching”, IEEE Transactions on Knowledge

and Data Engineering, 2011, Vol. PP. No.99, pp. 1 – 1.

[9] Rhea S.C and Kubiatowicz J, “Probabilistic Location and

Routing”, Proc. IEEE INFOCOM, 2004, 1248-1257.

[10] Hodes T.D, Czerwinski S.E, and Zhao B.Y, “An

Architecture for Secure Wide Area Service Discovery”,

Wireless Networks, vol. 8, nos. 2/3, 2002, pp. 213-230.

[11] Reynolds P and Vahdat A, “Efficient Peer-to-Peer

Keyword Searching”, Proc. ACM Int’l Middleware

Conf., 2003, pp. 21-40.

[12] Bauer D, Hurley P, Pletka R, and Waldvogel M,

“Bringing Efficient Advanced Queries to Distributed

Hash Tables”, Proc. IEEE Conf. Local Computer

Networks, 2004, pp. 6-14.

[13] Fan L, Cao P, Almeida J, and Broder A, “Summary

Cache: A Scalable Wide Area Web Cache Sharing

Protocol”, IEEE/ACM Trans. Networking, Vol.8 No.3,

2000, pp. 281-293.

[14] Peter C.D and Panagiotis M, “Bloom Filters in

Probabilistic Verification”, Proc. Fifth Int’l Conf. Formal

Methods in Computer- Aided Design, 2004, pp. 367-381.

[15] Jin C, Qian W, and Zhou A, Analysis and Management

of Streaming Data: A Survey, J. Software, 15(8), 2004,

1172-1181.

[16] Deng F and Rafiei D, “Approximately Detecting

Duplicates for Streaming Data Using Stable Bloom

Filters”, Proc. 25th ACMSIGMOD, 2006, pp. 25-36.

[17] Bonomi F, Mitzenmacher M, Panigrahy R, Singh S,

andVarghese G, “Beyond Bloom Filters: From

Approximate Membership Checks to Approximate State

Machines”, Proc. ACM SIGCOMM, 2006 , pp. 315-326.

[18] Li K and Zhong Z, “Fast Statistical Spam Filter by

Approximate Classifications”, Proc. Joint Int’l Conf.

Measurement and Modeling of Computer Systems,

SIGMETRICS/Performance, 2006, pp. 347-358.

[19] Mitzenmacher M, “Compressed Bloom Filters”,

IEEE/ACM Trans.Networking, 10(5) 2002, pp. 604-612.

[20] Kirsch A and Mitzenmacher M, “Distance-Sensitive

Bloom Filters”, Proc. Eighth Workshop Algorithm Eng.

and Experiments (ALENEX ’06), 2006.

[21] Kirsch A and Mitzenmacher M, “Building a Better

Bloom Filter, Technical Report” tr-02-05.pdf, Dept. of

Computer Science, Harvard Univ,2006.

[22] Kumar A, Xu J, Wang J, Spatschek O, and Li L,

“Space-Code Bloom Filter for Efficient Per-Flow Traffic

Measurement”, Proc. 23rd IEEE INFOCOM, 2004, pp.

1762-1773.

[23] Cohen S and Matias Y, “Spectral Bloom Filters”, Proc.

22nd ACM SIGMOD, 2003, pp. 241-252.

[24] Laufer R.P, Velloso P.B, and Duarte O.C.M.B,

“Generalized Bloom Filters”, Technical Report Research

Report GTA-05-43, Univ. of California, Los Angeles

(UCLA), 2005.

[25] Chazelle B, Kilian J, Rubinfeld R, and Tal A, “The

Bloomier Filter: An Efficient Data Structure for Static

Support Lookup Tables”, Proc. Fifth Ann. ACM-SIAM

Symp. Discrete Algorithms (SODA), 2004, pp. 30-39.

[26] Hao F, Kodialam M, and Lakshman T.V, “Building

High Accuracy Bloom Filters Using Partitioned

Hashing”, Proc. SIGMETRICS/Performance, 2007, pp.

277-287.

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

32

[27] Paynter, M and Kocak, T, “Fully pipelined bloom filter

architecture”, Communications Letters, IEEE, 2008,

Vol.12, No. 11, pp. 855 - 857

[28] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan and

Xueshan Luo, “The Dynamic Bloom Filters”, IEEE

Transactions on Knowledge and Data Engineering,

2010,Vol. 22 No. 1, pp.120 – 123.

[29] L. N. De Castro and F. J. Von Zuben (2002), “Learning

and Optimization Using the Clonal Selection Principle”,

IEEE Transactions on Evolutionary Computation , 6(3)

239 – 251.

[30] Xie K., Min Y., Zhang D., Wen J., Xie G. & Wen J,

“Basket Bloom Filters for Membership Queries”,

Proceedings of IEEE Tencon’05,2005, pp. 1-6.

[31] Berek, C. and Ziegner, M. “The Maturation of the

Immune Response”, Immunology Today, Vol. 14, No. 8,

pp. 400-402, 1993.

[32] Back, T. “Self-Adaptation in Genetic Algorithms”,

Proceedings of the First European Conference on

Artificial Life, Paris, France, December 11-13, pp.

263–271, 1991.

