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ABSTRACT 

Bloom filter is a probabilistic and space efficient data 

structure designed to check the membership of an element in a 

set. The trade-off to use Bloom filter may have configurable 

risk of false positives. The percentages of a false positive can 

be made low if the hash bit map is sufficiently massive. Spam 

is an unsolicited or irrelevant message sent on the internet to 

an outsized range of users or newsgroup. A spam word may 

be a list of well-known words that usually appear in spam 

mails.  In the proposed system, Bin Bloom Filter (BBF) 

groups the words into number of bloom filters that have 

different false positive rates primarily based on the weights of 

the spam words. Clonal Selection Algorithm is one of the 

methods in Artificial Immune System (AIS) involved with 

computational methods inspired by the process of the 

biological immune system. This paper demonstrates the CSA 

algorithm for minimizing the total membership invalidation 

cost of the BBF which finds the optimal false positive rates 

and number of elements to be stored in bloom filters of Bin. 

The experimental results demonstrate the application of CSA 

in BBF and compare the results with Genetic Algorithm (GA). 

General Terms 

Genetic Algorithm, E-Mail, Data Structure, Immune System, 

Optimization, Spam word, Internet, Synthetic Dataset, 

Membership Query. 
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1. INTRODUCTION 
Spamming is the action of sending inappropriate messages in 

bulk without the explicit permission or need of the recipients. 

That is spam is an unwanted or unsolicited messages sent on 

the internet to a large number of users. This huge numbers of 

spam raise the requirement of automated filters to detect or 

remove these spam e-mails. The spam does cost money. 

Bayesian filters or other heuristic filters attempt to identify 

spam through word frequency. The Bayesian filter is based on 

the occurrence of words in spam mails and legitimate mails. 

Content based filters can classify the mail into spam or 

legitimate by examining within the e-mail contents and these 

mostly seek for spam words. 

A Bloom filter [1] is a memory efficient data structure for 

representing a set in order to support membership queries. 

Bloom filters enable false positive but it saves space. The 

bloom filter is a widespread I database applications and 

networking. In this paper, CSA is used for optimizing the 

bloom filter in spam filtering. The clonal selection acquires 

the behavior and capabilities of antibodies in the immune 

system. 

2. BLOOM FILTER 
Bloom filter has a bit vector of size m and for any given string 

X, Bloom filter computes k hash functions on it which 

produces k hash values ranging from 1 to m. It then sets k bits 

in an m-bit vector at the addresses corresponding to the k hash 

values. This similar procedure is repeated for all the members 

of the set. This process is called programming of the filter. 

The query process is analogous to programming, where a 

string whose membership is to be verified is given as input to 

the filter. Initially,  

Bloom filter generates k hash values using those hash 

functions which is used to program the filter. The bits that are 

corresponding to the k hash values in the m-bit vector are 

looked up. If any one of the bits is not set, then the string is 

asserted to be a nonmember of the set. If all the bits are found 

to be set, then the string is said to be present in the set with 

certain probability. This uncertainty in the membership of an 

string is because of the fact that those k bits in the m-bit 

vector may be set by any other n-1 members. Thus finding a 

bit set does not necessarily imply that it had been set by the 

actual string being queried. However, finding any of the bits 

not set implies that the string does not belong to the set. 

In an Bloom filter B, initially all the bits are set to 0 and k 

independent hash functions h1, h2, …, hk are chosen. For any 

element e to be added in the Bloom filter from the set S, the 

bit positions h1(e), h2(e), …, hk(e) in B are set to 1. A 

specific bit may be set to 1 more than one time. For testing the 

membership of an element o the bits at positions h1(o), h2(o), 

…, hk(o) are checked. If any one of them is 0, then certainly o 

is not present in the set S. Otherwise, o may be present in the 

set with a certain probability that it is wrong. This is called as 

false positive. The parameters k and m should be chosen such 

that the likelihood of a false positive is acceptable. Figure 1 is 

an example where m=16, k=4 and e is the element to be stored 

in the bit array. 
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Fig 1: Bloom Filter 

The false positive rate of Bloom filter is given in equation (1) 

           
 kmknef /1 

                  (1) 

For given m and n, the optimal value of k is obtained from the 

equation (2) 

               
   2ln/ nmk 

                                                  (2) 

The BF has been widely used in many database applications 

([2] [3]). It is applied in networking literature [4]. A BF can 

be used as a summarizing technique to aid global 

collaboration in peer-to-peer networks ([5] [6] [7] [8]). It 

supports probabilistic algorithms for routing and locating 

resources ([9] [10] [11] [12]) and share Web cache 

information ([13]). BFs have great potential for representing a 

set in main memory [14] in stand-alone applications. BFs 

have been used to provide a probabilistic approach for explicit 

state model checking of finite-state transition systems [14]. It 

is used to summarize the contents of stream data in memory 

([15] [16]), to store the states of flows in the on-chip memory 

at networking devices [17], and to store the statistical values 

of tokens to speed up the statistical-based Bayesian filters 

[18]. The variations of BFs are compressed Bloom filters [19], 

counting Bloom filters [13], distance-sensitive Bloom filters 

[20], Bloom filters with two hash functions [21], spacecode 

Bloom filters [22], spectral Bloom filters [23], generalized 

Bloom filters [24], Bloomier filters [25], Bloom filters based 

on partitioned hashing [26], fully pipelined bloom filter 

architecture [27] and dynamic Bloom filters [28]. 

3. IMMUNE SYSTEM 
The immune system is a network of cells, tissues, and organs 

that work together to defend the body against attacks by 

foreign invaders. The primary role of the immune system is 

detection and elimination of pathogen where as pathogen is 

the agent of disease. Antigen is a foreign molecule that 

triggers the production of antibody. An antigen can be a 

microbe such as a virus, or a part of a microbe such as a 

molecule. The organs of the immune system are positioned 

throughout the body.  White blood cells are the key players in 

the immune system. 

White blood cells originate in the bone marrow however 

migrate to parts of the lymphatic system such as the lymph 

nodes, spleen, and thymus. There are two main types of 

lymphatic cells, T cells and B cells.  The B cell creates new 

cell types called plasma cells and B memory cells during 

cloning. The plasma cell is specialized in producing a specific 

protein, called an antibody that will respond to the same 

antigen that matched the B cell receptor. When the antibody 

finds a matching antigen, it attaches and demolishes the 

antigen. The memory cells are another cell type produced by 

the division of B cells. These cells have a prolonged life span 

and remember specific intruders. 

3.1 Clonal Selection Algorithm 
The clonal expansion of B-cells will increase the average 

antibody affinity for the antigen which triggered the clonal 

expansion. This is termed as affinity maturation. Affinity 

maturation is caused by somatic hypermutation and selection 

mechanism which occurs during the clonal expansion of B-

cells. The two important features of affinity maturation in B-

cells are 

 The proliferation of B-cells is proportional to the 

affinity of the antigen that binds it, thus the higher 

the affinity, the more clones are produced.  

 The mutations suffered by the antibody of a B-cell 

are inversely proportional to the affinity of the 

antigen it binds. 

Somatic hypermutation alters the specificity of antibodies by 

introducing random changes to the genes that encode for 

them. In proliferation it is differentiated into memory cells 

and plasma cells. The memory cells are used to fight with the 

same pathogen if the host is infected again.  The plasma cells 

are used to secrete lots of the recognizing antibody into the 

blood. Figure 2 shows the Clonal selection method. 

 

Fig 2: Clonal selection method ([29]) 

In CSA, antigen typically refers the problem and its 

constraints. The antibodies are selected which is based on the 

affinity either by matching against an antigen pattern or via 

evaluation of pattern by a cost function. Selected antibodies 

are subjected to cloning proportional to affinity. The 

hypermutation of clones are inversely proportional to clone 

affinity. The resultant clone set competes with the existent 

antibody population for membership in the next generation. In 

addition low-affinity population members are replaced by 

randomly generated antibody population for the membership 

in next generation. 

The main immune aspects taken into account are maintenance 

of the memory cells functionally disconnected from the 

repertoire, selection and cloning of the most stimulated cells, 

death of non-stimulated cells, affinity maturation and 

reselection of the clones with higher affinity, generation and 

maintenance of diversity, hypermutation proportional to the 

cell affinity. 
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Algorithm: Pseudo code for CSA 

1. Generate a set (P) of candidate solutions composed of the 

subset of memory cells (M) added to the remaining (Pr) 

population (P = Pr + M). 

2. Select the n best individuals of the population based on a 

fitness function. 

3. Clone these n best individuals of the population, giving rise 

to a temporary population of clones (C).  

4. Submit the population of clones to a hypermutation 

scheme, where the hypermutation is proportional to the 

fitness function of the antibody. A maturated antibody 

population is generated (C*). 

5. Re-select the improved individuals from C* to compose the 

memory set M. Some members of P can be replaced by 

other improved members of C* 

Replace d antibodies by novel ones. The lower affinity cells 

have higher probabilities of being replaced. 

4. OPTIMIZATION OF BBF USING CSA 
A Bin Bloom Filter is a variant of Bloom filter where it has 

number of Bloom filters as bins. Each Bloom filter has 

different <n,k,f> which causes dissimilar membership 

invalidation cost. The proposed system applies the concept of 

BBF for spam filtering. In spam filtering each word is 

assigned by a weight.  BBF provides each bin with different 

false positive rates based on the weights of the strings. The 

false positive rate and number of words to be stored in each 

bloom filter is identified through optimization technique 

which minimize the total membership invalidation cost.  

Figure 3 shows Bin BF with its tuple <n,f,w> configuration. 

 

Fig 3: Bin Bloom Filter 

where ni, fi and wi respectively represents number of strings, 

false positive rate and average weight of strings in Bloom 

filter i. 

4.1 Problem Definition 
Consider a standard supervised learning problem with a set of 

training data           D = {<Y1,Z1 >,..., <Yi, Zi>, … ,< Yr ,Zr 

>} , where Yi is an instance represent as a single feature 

vector, Zi = C(Yi ) is the target value of  Yi , where C is the 

target function. Where Y1, Y2, … , Yr set of text document 

collection, C is a class label  to classify into  spam or 

legitimate (non-spam).  

The text documents are preprocessed and features (words) are 

identified.  The spam weights for words are calculated from 

the set.   This weight value indicates its probable belongings 

to spam or legitimate.  The weight values are discretized and 

assigned for different Bins. The tuple to describe the Bin BF 

is, {{n1, n2,, …,  nL}, {w1, w2,…, wL}, m, {k1, k2, …, kL}, 

{f1, f2, …, fL}}. It is an optimization problem to find the 

value of  n and f that to minimize the total membership 

invalidation cost.  For membership testing   the total cost of 

the set is the sum of the invalidation cost of each subset. The 

total membership invalidation cost [30] is given as, 

LLL wfnwfnwfnF  ......222111  

The total membership invalidation cost 
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The objective function f(L) taken as  standard for the problem 

of minimization is 

                         









max

maxmax

CF(L)if0

CF(L)ifF(L)C
f(L)             (5) 

where Cmax is a large constant. 

4.2 Weight Assignment 
The first step for assigning weight to spam words is 

estimating the word probability that depends on word 

frequency.  Word frequency is measured by the number of 

occurrences of a specific word in the document. Estimating 

probabilities is achieved using Bayes conditional probability 

theorem. The probability of a word given that the message is 

spam can be estimated as follows: 
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Ps is the probability of a word given the mail is spam, 

Pns is the probability of a word given the mail is legitimate,  

fs is the frequency of word in the spam documents, 

fns is frequency of words in the legitimate documents, 

Ns is the total spam documents, 

 Nns is the total legitimate documents. 

The next step is calculating word weights. Estimating a 

weight for each word is based on its frequency and its 

probability in spam mail documents and non-spam mail 

documents. The weight of every word is estimated using the 

formula: 
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This weight value is based on text collection containing spam 

messages and non-spam messages. The word weights are 

estimated from spam list during the training process and 

stored in a separate text document. 

4.3 Antibody representation 
The three main features of clonal selection are 

 Proliferation and differentiation on stimulation of cells with 

antigens 

 Generation of new random genetic changes, subsequently 

expressed as   diverse antibody patterns by somatic 

mutation  

 Elimination of newly differentiated lymphocytes carrying 

low affinity antigenic receptors. 

In the perspective of BBF, an antibody represents number of 

bloom filters with number of words, false positive rate and 

weight. That is, each antibody Xi, is constructed as follows: 

 

Fig 4: Antibody representation for Bin Bloom Filter 

where nij,  fij and wij refer respectively the number of words, 

false positive rate and  weight of the jth  Bloom filter of ith 

antibody  in a bin. The false positive rate fij can be obtained 

from equation (1). 

4.4 Initial Population 
An antibody in the population represents one possible solution 

for assigning the triples <n, f, w> for L Bloom filters. 

Therefore P number of candidate solutions is generated for the 

bin. Initially each antibody randomly chooses different <n, f, 

w> for L bins.  

The fitness function for each individual can be calculated 

based on the equation (5). 

4.5 Clonal selection 
In clonal selection n highest fitness antibodies are selected for 

cloning with the rate of β.  The amount of clones to be 

generated for all these n selected antibodies is given in 

equation (7). 

                          
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where NC is the total amount of clones generated, β is a 

multiplying factor, P is the total amount of antibodies and 

round() is the operator that rounds its argument towards the 

closest integer. Each term of this sum corresponds to the clone 

size of each selected antibody, e.g., for P = 10 and β = 1, the 

highest affinity antibody (i = 1) will produce 10 clones, while 

the second highest affinity antibody produces 5 clones, and so 

on. 

4.6 Somatic hypermutation 
A speedy accumulation of mutations is necessary for a fast 

maturation of the immune response. The selection mechanism 

provides a means by which the regulation of the 

hypermutation process is made dependent on receptor affinity. 

Cells with low affinity receptors may be further mutated and 

die if they do not improve their clone size or antigenic 

affinity. In cells with high-affinity antibody receptors the 

hypermutation become inactive in a gradual manner [31]. 

For mutation the Cauchy mutation operator is applied. The 

one dimensional Cauchy density function centered at the 

origin is defined as follows: 
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where t>0 is a scale parameter. 

The adaptive mutation rate Pm depends on the fitness values of 

the Antibodies. The adaptation allows the individuals having 

fitness values of        over-average to maintain their value and 

the individuals with below average fitness values to disturb. 

The mutation rate adaptation rule is given in equation (9). 
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In this equation, F denotes the fitness value of the individual, 

Fmax denotes the best fitness value of the current generation, 

and Favg denotes the average fitness value of the current 

generation.  The constants k1 and k2 are chosen as 1.75/(n × 

N1/2), where n and N represents  number of antibodies and 

length of antibody [32]. 

5. EXPERIMENTAL ANALYSIS 
The optimization of bloom filter is experimented on synthetic 

data sets using both genetic algorithm and CSA. For synthetic 

data sets the total number of strings taken for testing is 500. 

The string weights are generated from 0.0005 to 5. The 

minimum and maximum number of words stored in a Bloom 

filter for 500 words is 32 and 256. The size of each Bloom 

filter that presents inside the bin is 512.  This experimental 

setup is applied for bins from 4 to 7 for 50 iterations. Table 1 

lists the parameters and their values used in BBF. 

Table1. Parameter values of BBF 

Data set Number 

of words                   

stored 

Min   Max 

Word 

Weight 

 

Min       Max 

Bloom 

filter 

size 

No. of 

iteratio

ns 

Synthetic 

data-set-

500 words 

 

32     256 

 

0.0005     5       

 

1024 

 

50 

 

Since Bloom Filter allows false positive, the membership 

invalidation cost is unavoidable. For BBF, the total 

membership invalidation cost is expressed in equation (4).  

Different weights in different Bloom filters into consideration, 

the total membership invalidation cost for Bloom filter is then 

as follows:  

            fwfnwfnwfnF LLLdards )......( 222111tan   
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The average false positive rate of last iteration of BBF is 

considered as false positive rate of Bloom filter. Table 2 

shows the parameter and its value in CSA and GA. 

Table 2. Parameter and its value in GA and CSA 

Parameter Value 

CSA 

Population size 10 

No. of iterations 50 

Cloning rate β 0.5 

d 20% of population size 

GA 

Type of selection Roulette wheel selection 

Type of crossover One point crossover 

Type of mutation Uniform mutation 

Type of evaluation Elitist selection 

Population size 10 

Selection rate 0.5 

Crossover rate 0.8 

Mutation rate 1/3L 

Figures5(a) to 5(d) show the cost obtained for 500 strings 

from synthetic data set for Bin 4, Bin 5, Bin 6 and Bin 7 

respectively. In figure 5(a), for bin size 4 the cost of BBF for 

GA and CSA remains similar till 22 iterations. Then for next 

28 iterations the cost of BBF is reduced for CSA. In figures 

5(b) to 5(d), for bin sizes 5,6 and 7 the cost of the BBF gets 

reduced gradually when number of iterations is increased.  

 

 

(a) 

 

 

(b) 

 

(c) 
 

 
(d) 

Fig 5: Comparison of GA and CSA for 500 strings 

Figure 6 shows the cost obtained from GA and CSA. The cost 

and bin size are negatively correlated; when the bin size 

increases the cost decreases. For many configurations CSA 

gives better output than GA. 
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Fig 6:  Cost obtained from GA and CSA 

5. CONCLUSION 
The BBF is an efficient form of data structure which treats 

words in a set differently depending on the word weights and 

allocates words into bins with different false positive rates. It 

has much lower membership invalidation cost compared to 

the Bloom filter for the methods GA and CSA. GA has 

premature convergence owing to some high rated individuals 

quickly attain to dominate the population, constraining it to 

converge into a local optimum. The GA depends on parameter 

values rather CSA finds the global optimum independent of 

initial parameter values. Simulation results show the CSA 

outperforms GA. 
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