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1. INTRODUCTION 
In [7], Istratescu initiated the study of fixed point theory in 

non-Archimedean Menger spaces and proved some fixed 

point theorems in this space using the same method as Cain 

and Kasriel in [5] for probabilistic metric space. The concept 

of fuzzy sets was coined by Zadeh [8] in his seminal paper in 

1965. Since then, to use this concept in topology and analysis 

many authors have expansively developed the theory of fuzzy 

sets and application. Zadeh[9] anticipated that medical 

diagnosis would be the most likely application domain of 

Fuzzy set theory. The theory of fuzzy set is of fundamental 

importance in Medical diagnosis, effect of drugs, diagnosis 

process. Recently, a number of fixed point theorems and their 

applications in fuzzy set theory have been proved by several 

authors. George and Veeramani[1] and Kramosil and 

Michalek[6] have introduced the concept of fuzzy topological 

spaces induced by fuzzy metric which has very important 

applications in quantum particle physics particularly in 

connections with both string and 
)(

theory which were 

given and studied by El. Naschie [10- 12, 14].Many 

authors[2-3,13] have proved fixed point theorem in 

fuzzy(probabilistic) metric spaces. Recently, Dorel Mihet[4] 

proved a common fixed point theorem in Non- Archimedean 

fuzzy metric space. The purpose of this paper is to prove a 

common fixed point theorem for six self maps using the 

concept of semi-compatibility and weak compatibility of pair 

of self maps in Non- Archimedean fuzzy metric space.  

 2. PREMINILARIES  

Definition 1.1 : A binary operation * : [0, 1] × [0, 1] → [0, 1] 

is a continuous tnorm 

if it satisfies the following conditions: 

(1) * is associative and commutative, 

(2) * is continuous, 

(3) a * 1 = a for all a [0, 1], 

(4) a * b ≤ c * d whenever a ≤ c and b ≤ d,  

      for each a, b, c, d   [0, 1]. 

Example 1.1 : Two typical examples of continuous t-norm 

are a * b = ab and a * b = min(a, b). 

Definition 1.2[4]: The 3-tuple (X, M, *) is called a non-

Archimedean fuzzy metric space (shortly, N.A. FM-space) if 

X is an arbitrary set, * is a continuous t norm and M is a fuzzy 

set in X
2

  [0, ) satisfying the following conditions: 

For all x,y,z X and s,t > 0, 

(NFM-1) M(x, y, 0) = 0, 

(NFM-2) M(x, y, t) = 1, for all t > 0 if and only if x = y, 

(NFM-3) M(x, y, t) = M(y, x, t), 

(NFM-4) M(x, y, t) * M(y, z, s) M(x, z, max{t, s}) 

Or equivalently M(x, y, t) * M(y, z, t) M(x, z, t) 

(NFM-5) M(x, y, .) : [0, ) [0, 1] is left continuous. 

Definition 1.3 :For t (0,) , we define the closed ball  

B[x, r, t] with centre xX and radius r (0,1) as  

B[x, r, t] = {y X ,M( x, y, t) > 1 r}. 

Definition 1.4 : A N.A. FM-space (X, M, ) is said to be of 

type (C)g if there exists a gsuch that 

g(M(x,y , t )) g(M(x,z , t )) + g(M(z,y , t )) 

for all x,y,z X and t 0, where = {g : g : [0,1] [0,) is 

continuous, strictly decreasing , g(1) = 0 and g(0) < }. 

Definition 1.5: A N. A. FM-space (X, M, ) is said to be of 

type (D)g if there exists a g such that 

g((s,t)) g(s) + g(t) for all s,t [0,1]. 

Definition 1.6: A pair of maps A and B is called weakly 

compatible pair if they commute at coincidence points i.e., 

 Ax = Bx if and only if ABx = BAx . 

Definition 1.7: Let A and S be mappings from N.A. FM-

space (X, M, ) in to itself. The mappings A and S are said to 

be compatible if limng(M(ASxn, SAxn, t)) = 0, 

for all t > 0, whenever {xn} is a sequence in X such that  

limnAxn = limnSxn = z for some z   X.  

Definition 1.8 : Let A, S : X X be mappings. The pair  

(A, S) is said to be weak-compatible if they commute at their 

coincidence points, i.e., if Az = Sz for some w X then such 

that ASw = SAw. 
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Definition 1.9 : Let A and S be mappings from an N.A. FM-

space (X, M, ) into itself. Then the mappings are said to be 

semi-compatible if 

limng(M(ASxn, Sx, t)) = 0, for all t > 0,whenever {xn} is a 

sequence in X such that limnAxn = limnSxn = x for some 

x   X.  

Proposition 1.1: Let A and S be self-maps on an N.A. FM-

space (X, M, * ). If S is continuous, then (A,S) is semi-

compatible if and only if (A, S) is compatible. 

Proof : Consider a sequence {xn} in X such that {Axn} and 

{Sxn} converges to u X. Suppose that (A, S) is compatible, 

then 

g(M(ASxn, Su, t)) g(M(ASxn, SAxn , t)) + g(M(SAxn, Su t)) 

letting n  , Since (A, S) is compatible, we have 

limng(M(ASxn, Su, t)) = 0. Hence ASxn  Su ,i.e., (A,S) 

is semi-compatible. 

Conversely, Suppose that (A,S) is semi-compatible, then 

g(M(ASxn, SAxn, t)) g(M(ASxn, Su , t))+g(M(SAxn, Su t)). 

letting n  , Since (A, S) is semi-compatible and S is 

continuous, we have 

SAxn   Su and this implies 

limng(M(ASxn, Su, t)) = 0. 

Hence the pair (A, S) is compatible. 

The following is an example of a pair of self-maps (A, S) 

which is compatible but not semi-compatible. Further, it is 

also seen here that the semi-compatibility of the pair (A, S) 

need not imply the semi-compatibility of (S,A). 

Example 1.2. Let X = [0, 1] and let (X, M, * ) be the N.A. 

FM-space with 

g(M(x, y, t)) = g

1

exp










 

t

yx
 for all x, y X, t > 0. 

Define self-map S as follows: 














2

1
1

2

1
0

xif

xifx
Sx



 

Let I be the identity map on X and 
n

xn

1

2

1
 . Then, 

{Ixn} = {xn}
2

1
 

And {Sxn} = {xn}
2

1
. Thus {ISxn} = 

{Sxn}
2

1
 S 









2

1
. Hence (I, S) is not semicompatible. 

Again as (I, S) is commuting, it is compatible. Futher, for any 

sequence {xn} in X such that {xn}  x, we have {SIxn} = 

{Sxn}  x = Ix. Hence (S, I) is always semicompatible. 

Remark 1.1. The above example gives an important aspect of 

semicompatibility as the pair of self-maps (I,S) is commuting, 

hence it is weakly commuting, compatible and weak 

compatible yet it is not semicompatible. Further, it is to be 

noted that the pair (S, I) is semicompatible but (I,S) is not 

semicompatible here. 

The following is an example of a pair of self-maps (A, S) 

which is semicompatible but not compatible. 

Example 1.2 :  Let (X, M,  ) be the N.A. FM-space, where 

X = [0, 2], with t-norm defined by a b = min{a, b}, for all a, 

b[0, 1] and  

g(M(x, y,t)) = g
 










 yxdt

t

,
for all t > 0 and  

g(M(x, y,0)) <  , for all x, y  X. Define self-maps A and S 

on X follows : 

Ax = 












2

1
1

2

102

xif
x

xif


 , Sx = 











otherwise
x

xif

5

3

12

 

And 
n

xn
2

1
2  . Then we have S(1) = A(1) = 2 and S(2) 

= A(2) = 1. Also SA(1) = AS(1) = 1 and SA(2) = AS(2) = 2. 

Thus (A, S) is weak compatible. Again, 

Axn = 
n4

1
1 , Sxn = 

n10

1
1 . 

Thus, 1,1  nn SxAx . 

Hence u = 1. 

Further, SAxn = 
n20

1

5

4
 , ASxn = 2. 

Now, 

limn g(M(ASxn, Su, t)) = g(M(2, 2, t)) = 0, 
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limng(M(ASxn, SAxn, t)) = limn g(M(2, 
n20

1

5

4
 , t)) 

= g




















5

6
t

t
 0, for all t > 0.Hence (A, S) is 

semicompatible but it is not compatible. 

Remark 1.2. (1) If a N.A.FM-space (X,M, * ) is of type (D)g 

then (X,M, * ) is of type (C)g . 

(2) If (X, M, * ) is a N.A. FM-space and *  * m , where  

* m (s, t) =max{s + t-1,0}, then (X,M, * ) is of type (D)g for 

 g   defined by g(t) = 1 - t . 

Throughout this paper, let (X,M, * ) be a complete N.A.FM-

space of type (D)g with a continuous strictly increasing t-

norm D . 

Let  : [0,+ )  [0,+ ) be a function satisfying the 

following condition () : 

()  is upper-semicontinuous from the right and (t) < t for 

all t > 0. 

Lemma 1.1. [16] If a function  : [0,+)  [0, + ) satisfies 

the condition (), then we have  

(1) For all t  0, limn n (t) = 0, where n (t) is the n-th 

iteration of (t). 

(2) If {tn} is a non-decreasing sequence of real numbers and 

tn+1  (tn),              n = 1,2,..., then limn tn = 0.  In 

particular, if t  (t) for all t  0, then t = 0. 

Lemma 1.2[15] Let {yn} be a sequence in X such that limn 

F(yn,yn+1,t)=1 for all t > 0. If the sequence {yn} is not a 

Cauchy sequence in X, then there exist   0> 0, t0 >0, two 

sequences {mi}, {ni} of positive integers such that 

(1) mi > ni + 1, and ni   as i  , 

(2) F(y
im ,y

in  , t0) < 1  0 and F(y 1im ,y
in  , t0)  10, i = 

1,2,...  

3. RESULTS 

 Theorem 1 : Let A, B, S ,T, P and Q :XX be 

mappings such that  

(1)  P(X)  ST(X) and Q(X)  AB(X), 

(2) AB = BA, ST = TS, PB = BP, QS = SQ, QT = TQ, 

(3)   g(M(Px, Qy, t))  (max{g(M(ABx,Ty, t)), 

(M(ABx,Px,t)),g(M(STy,Qy,t)),           

1/2(g(M(ABx,Qy, t))+ g(M(STy, Px, t)))}) for all t > 0, 

where a function  : [0, )  [0,) satisfies the condition().  

(4) the pair (P,AB) is semicompatible and (Q,ST) is weakly 

compatible 

(5) Either AB or P  is continuous 

Then A, B, S, T, P and Q have a unique common fixed point  

in X.   

Proof. Let x0   X, then by (1), there exists a point x1   X 

such that Px0 =  STx1 since P(X)  ST(X).  Since Q(X)  

AB(X), for this point x1, we can choose a point x2   X such 

that Qx1 =  ABx2 and so on.  Inductively, we can define a 

sequence {yn} in X such that  

(6)   y2n =  Px2n =  STx2n+1 and y2n+1 =  ABx2n+2 = Qx2n+1  for n 

= 0, 1,2..., Now we prove the sequence {yn}, defined by (6), 

such that  

  limng(M(yn,yn+1,t))=0 for all t >0 is a Cauchy sequence in 

X. 

Since g    , it follows that  limn M(yn, yn+1, t) = 1 for all  

t >  0 if and only if  limn  g(M( yn, yn+1, t ))=0 for all t > 0. 

By Lemma 1.2. if  {yn} is not a Cauchy sequence in X , then 

there exist 0 > 0 , t0 > 0 and two sequences {mi}, {ni}  of 

positive integers such that  

(A) mi > ni + 1, and ni   as i  , 

(B) F(y
im ,y

in  , t0) > 1  0 and F(y 1im ,y
in  , t0)  10, i = 

1,2,...  

Thus we have  

g(1-0) < g(M(y
im ,y

in  , t0))
 

(7)     g(M(
imy , 1imy  ,t0)) + g(M( 1imy ,y

in  ,t0)) 

                 g(M(
imy , 1imy  ,t0))  + g(1- 0 ) 

Letting i   in (7), we have  

(8)     limn g(M(y
im ,y

in  , t0))= g(1-0) . 

  On the other hand, we have  

      g(1 0) < g(M(y
im ,y

in  , t0)) 

(9)            g(M(y
in , y 1in  ,t0))+ g(M(y 1in , 

imy  ,t0)) 

Now, consider g(M(y 1in ,
imy  , t0)) in (9).Without loss of 

generality assume that both ni and mi are even.  

Then , by (3), we have  

g(M(y 1in ,
imy  , t0))  = g(M(Px

im , Qx 1in  ,t0)) 

                                 (max{g(M(ABx
im , STx 1in , t0)) , 

g(M(ABx
im , Px

im  ,t0)),g(M(STx 1in , Qx 1in ,t0)),                                

1/2(g(M(ABx
im ,Qx 1in ,t0))+g(M(STx 1in , Px

im ,t0)))}) 

(10)             =  (max{g(M(y 1im  y
in ni,,t0)), 

 g(M(y 1im , y
im ,,t0)), g(M(y

in , y 1in ,t0)),              

1/2(g(M(y 1im ,y 1in ,t0)) + g(M(y
in , y

im  ,t0)))}) 
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By (8), (9) and (10), letting i   in (10), we have  

             g(1-0)   (max {g(1-0) , 0, 0, g (1-0)}) 

                           =  (g(1-0)) < g(1-0) 

which is a contradiction.  Therefore, {yn}  is a Cauchy-

sequence in X .  

Now, we prove  limn g(M(yn , yn+1 ,t0)) = 0  for all t > 0 .  In 

fact , by (3) and (4), we have  

g(M(y2n, y2n+1,t)) =  g(M(Px2n, Qx2n+1,t)) 

                                   (max{g(M(ABx2n, STx2n+1,t)), 

                       g(M(ABx2n, Px2n , t)),g(M(STx2n+1, Qx2n+1, t)) ,  

              1/2(g(M(ABx2n, Qx2n+1 , t))+g(M(STx2n +1, Px2n,t)))}) 

                                = (max{g(M(y2n-1, y2n ,t)), g(M(y2n-1, y2n,t)), 

              g(M(y2n,y2n+1,t)),1/2 (g(M(y2n-1, y2n +1, t)) + g(1)))})                                                       

 (max{g(M(y2n-1, y2n ,t)), g(M(y2n, y2n+1 ,t)), 

                                     1/2(g(M( y2n-1, y2n ,t))  +  g(M(y2n, y2n+1,t)))}) .  

If  g(M(y2n-1, y2n ,t))   g(M(y2n, y2n+1 ,t))   for all t > 0  , then, 

by  (3), 

  g(M(y2n, y2n+1 ,t))   (g(M( y2n, y2n+1, t))) which means that , 

by Lemma 1.1., 

g(M(y2n, y2n+1 ,t)) = 0  for all   t > 0 .  Similarly, we have 

g(M(y2n+1, y2n+2 ,t)) = 0 for all t > 0 . Thus we have   

limn g(M(yn yn+1,t)) = 0  for all  t >  0 .   On the other hand, 

if   

g(M(y2n-1, y2n,t))   g (M(y2n, y2n+1,t)) ,   then by (3),  we have  

g(M(y2n, y2n+1,t))   (g(M( y2n-1, y2n ,t))  for all   t > 0 .   

Similarly, g(M(y2n+1, y2n+2 , t))  (g(M(y2n,y2n+1 ,t))),  for all  

t > 0 .Thus we have 

g(M(yn, yn+1 ,t))   (g(M(yn-1, yn, t)) for all t > 0 and  

n = 1,2,3,... Therefore by Lemma 1.1, 

 limn  g(M(yn, yn+1, t)) = 0   for all t > 0 , which implies that 

{yn}  is a Cauchy sequence in X by Lemma 1.2. Since 

(X,M, ) is   complete,  the sequence {yn} converges to a 

point zX and so the subsequences {Px2n}, {Qx2n+1}, 

{ABx2n) and {STx2n+1} of {yn} also converges to the same 

limit z, i.e., limn Px2n = limn STx2n+1 = limn Qx2n+1 = 

limn ABx2n+2 = z. 

Case I (P is continuous). In this case, we have 

PPx2n   Pz, P(AB)x2n Pz. 

The semi-compatibility of the pair (P, AB) gives 

P(AB)Px2n = ABz. As the limit of a sequence in N.M. Fuzzy 

metric Space is unique we have, ABz = Pz 

Step I. By putting x = Px2n , y = x2n+1 in (3), we obtain that 

g(M(PPx2n, Qx2n+1, t))  (max{g(M((AB)Px2n,STx2n+1 , t)),  

                    g(M((AB)Px2n PPx2n,t)),g(M(STx2n+1 ,Qx2n+1 ,t)), 

 1/2(g(M((AB)Px2n ,Qx2n+1 , t))+ g(M(STx2n+1 , PPx2n, t)))}) 

Letting n  , we have 

g(M(Pz, z, t))  (max{g(M(Pz, z , t)), g(M(Pz ,Pz,t)), 

            g(M(z ,z ,t)),1/2(g(M(Pz, z , t))+ g(M(z , Pz, t)))}) 

 g(M(Pz, z, t))  (max{g(M(Pz,z , t)), 0, 0, 

                                                     g(M(Pz ,z , t)))}) 

 g(M(Pz, z, t))  {g(M(Pz, z , t)} 

  g(M(Pz, z, t)) = 0 .i.e., M(Pz, z, t) = 1 

 z = Pz. 

Step II. As P(X)  ST(X), there exists a point  wX such 

that z = Pz = STw. By putting x = Px2n , y = w in (3), we 

obtain that 

g(M(PPx2n, Qw, t))  (max{g(M((AB)Px2n,STw , t)),  

                            g(M((AB)Px2n, PPx2n,t)),g(M(STw, Qw ,t)), 

              1/2(g(M((AB)Px2n, Qw , t))+ g(M(STw, PPx2n, t)))}) 

Letting n  , we have 

g(M(z, Qw, t))  (max{g(M(z, z , t)),  g(M(z ,z ,t)), 

               g(M(z, Qw ,t)),1/2(g(M(z ,Qw , t))+ g(M(z , z, t)))}) 

g(M(z, Qw, t))  (max{0, 0,g(M(z, Qw ,t)),  

                                                1/2(g(M(z, Qw, t)))}) 

  g(M(z, Qw, t))  (g(M(z, Qw ,t)) 

  g(M(z, Qw, t)) = 0 .i.e., M(z, Qw, t) = 1 

 z = Qw. 

Therefore Qw = STw = z. Since (Q,ST) is weakly compatible, 

we get that  

(ST)Qw = Q(ST)w, that is, Qz = STz. 

Step III. By putting x = x2n , y = z in (3), we obtain that 

g(M(Px2n, Qz, t))  (max{g(M(ABx2n, STz , t)),  

     g(M(ABx2n, Px2n,t)),g(M(STz ,Qz ,t)), 

         1/2(g(M(ABx2n, Qz, t))+ g(M(STz, Px2n, t)))}) 

g(M(z, Qz, t))  (max{g(M(z, Qz , t)),  g(M(z, z, t)),      

g(M(Qz, Qz ,t)), 1/2(g(M(z, Qz, t))+ g(M(Qz, z, t)))}) 

g(M(z, Qz, t))  (max{g(M(z, Qz , t)), 0, 0,g(M(z, Qz, t))}) 

  g(M(z, Qz, t))  (g(M(z, Qz ,t)) 

  g(M(z, Qz, t)) = 0 .i.e., M(z, Qz, t) = 1 

 z = Qz. 

Step IV. Putting x = x2n, y = Tz in (3) we get, 

g(M(Px2n, QTz, t))  (max{g(M(ABx2n, STTz , t)),  
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           g(M(ABx2n, Px2n,t)),g(M(STTz ,QTz ,t)), 

        1/2(g(M(ABx2n, QTz, t))+ g(M(STTz, Px2n, t)))}) 

As QT = TQ and ST = TS we have QTz = TQz = Tz and 

ST(Tz) = T(ST)z = Tz. 

Letting n   we get, 

g(M(z, Tz, t))  (max{g(M(z, Tz , t)), g(M(z, z, t)), 

g(M(Tz, Tz ,t)), 1/2(g(M(z, Tz, t))+ g(M(Tz, z, t)))}) 

g(M(z, Tz, t))  (max{g(M(z, Tz , t)), 0, 0,g(M(z, Tz, t))}) 

  g(M(z, Tz, t))  (g(M(z, Tz ,t)) 

  g(M(z, Tz, t)) = 0 .i.e., M(z, Tz, t) = 1 

 z = Tz. 

Now STz = Tz = z implies Sz = z. Hence Sz = Tz = Qz = z. 

Step V. By putting x = Bz , y = x2n+1 in (3), we obtain that 

g(M(PBz, Qx2n+1, t))  (max{g(M((AB)Bz,STx2n+1 , t)),  

          g(M((AB)Bz ,PBz,t)),g(M(STx2n+1 ,Qx2n+1 ,t)), 

 1/2(g(M((AB)Bz ,Qx2n+1 , t))+ g(M(STx2n+1 , PBz, t)))}) 

As BP = PB, AB = BA so we have P(Bz) = B(Pz) = Bz and  

AB(Bz) = B(ABz) = Bz. 

Letting n  , we have 

g(M(Bz, z, t))  (max{g(M(Bz, z , t)), g(M(Bz ,Bz,t)), 

g(M(z ,z ,t)), 1/2(g(M(Bz, z , t))+ g(M(z , Bz, t)))}) 

 g(M(Bz, z, t))  (max{g(M(Bz, z , t)), 0, 0, 

                                                  g(M(Bz ,z , t)))}) 

 g(M(Bz, z, t))  {g(M(Bz, z , t)} 

  g(M(Bz, z, t)) = 0 .i.e., M(Bz, z, t) = 1 

 z = Bz and ABz = z implies Az = z. Therefore, Az = Bz = 

Pz =z. 

Hence we have Az = Bz = Pz = Sz = Tz = Qz = z that is, z is a 

common fixed point of A, B, S, T, P and Q. 

Case II (AB is continuous). In this case, we have 

(AB)2 x2n   ABz and (AB)Px2n ABz. 

As (P, AB) is semicompatible, we have P(AB)x2n ABz. 

Step VI. By putting x = ABx2n , y = x2n+1 in (3), we obtain that 

g(M(PABx2n , Qx2n+1, t))  (max{g(M(ABABx2n,STx2n+1 , 

t)),   g(M(ABABx2n , PABx2n, t)),g(M(STx2n+1 ,Qx2n+1 ,t)), 

 1/2(g(M(ABABx2n ,Qx2n+1 , t))+ 

                                      g(M(STx2n+1 , PABx2n , t)))}) 

Letting n  , we have 

g(M(ABz, z, t))  (max{g(M(ABz, z , t)), 

                              g(M(ABz ,ABz,t)),g(M(z ,z ,t)), 

  1/2(g(M(ABz ,z , t))+ g(M(z , ABz, t)))}) 

 g(M(ABz, z, t))  (max{g(M(ABz, z , t)), 0, 0, (g(M(z , 

ABz, t)))}) 

 g(M(ABz, z, t))  {g(M(ABz, z , t)} 

  g(M(ABz, z, t)) = 0 .i.e., M(ABz, z, t) = 1 

 z = ABz and rest of the proof follows from Step III 

onwards of the previous case. 

Uniqueness. Let u be another common fixed point of A, B, S, 

T, P and Q. 

Then u = Au = Su = Bu = Tu = Pu = Qu. 

Putting x = z and y = u in (3), we have 

g(M(Pz, Qu, t))  (max{g(M(ABz, STu, t)), g(M(ABz, 

Pz,t)),g(M(STu, Qu,t)),            

1/2(g(M(ABz, Qu, t))+ g(M(STu, Pz, t)))}), 

 g(M(z, u, t))  (max{g(M(z, u, t)), g(M(z, z, t)),g(M(u, 

u, t)), 1/2(g(M(z, u, t))+ g(M(u, z, t)))}), 

  g(M(z, u, t))  (max{g(M(z, u, t)), 0, 0, g(M(z, u, t))}), 

 g(M(z, u, t))  {g(M(z, u , t)} 

  g(M(z, u, t)) = 0 .i.e., M(z, u, t) = 1 

 z = u. 

Therefore, z is the unique common fixed point of the self- 

maps A, B, S, T, P and Q. 

 Corollary 1.1. Let A, B, S , T :XX be mappings such that  

(1)  A(X)  T(X) and B(X)  S(X), 

(2)   g(M(Ax, By, t))  (max{g(M(Sx,Ty, t)), 

g(M(Sx,Ax,t)),g(M(Ty,By,t)),            

1/2(g(M(Sx,By, t))+ g(M(Ty, Ax, t)))}) for all t > 0, 

where a function  : [0, )  [0,) satisfies the condition 

(). 

(3) the pair (A,S) is semicompatible and (B,T) is weakly 

compatible. 

(4) one of A or S is continuous 

Then A, B,S and T have a uniqe common fixed point  in X.   

Proof. As semicompatibility implies weak compatibility, the 

proof follows from theorem 1.1. 

Now, taking S = I and T = I in theorem in 1.1,  we get the 

following corollary. 

 Corollary 1.2.  Let A, B :XX be mappings such that  

(1) g(M(Ax, By, t))  (max{g(M(x, y, t)), 

 g(M(x, Ax, t)),g(M(y, By, t)),  
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1/2(g(M(x, By, t))+ g(M(y, Ax, t)))}) for all t > 0, where a 

function  : [0, )  [0,) satisfies the condition () . 

Then A, B have a unique common fixed point  in X. 

4. CONCLUSION  
In this work we have dealt with fixed points of six mappings 

in which one pair of three mappings is semicompatible and 

other pair of three mappings is weakcompatible. The future 

scope is to obtained quartet fixed points for mappings in this 

space. 
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