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ABSTRACT 

The existing probe based distributed deadlock detection 

algorithms work only in fault free environments. But any 

network is prone to failures. So the existing probe based 

algorithms fail in such fault prone environment. This 

algorithm modifies the existing probe based algorithm to 

adapt in faulty environment also.     
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1. INTRODUCTION 
Distributed system is a collection of sites that maintains data 

resources and allows concurrent transactions to work on these 

data resources. The data resources in each site are managed by 

resource manager. In each site, a transaction manager is 

present to manage the transactions arriving in that site. In a 

truly distributed system, the transactions and resource 

managers of different sites have to communicate through 

messages.  The main advantage of distributed systems is 

resource sharing. A transaction may need one or more 

resources to complete its execution. The required resources 

may be local or remote to the transaction. Several transactions 

are allowed to simultaneously access the resources to promote 

concurrency.  But it might affect the consistency of data 

resources. The concurrency control algorithms are applied to 

protect the consistency of the data resources. These 

concurrency control algorithms might introduce deadlocks in 

transaction execution.  

The most popular algorithm for distributed deadlock detection 

and resolution is probe based algorithm by Chandy and 

Mishra[7]. In this algorithm, the transaction that suspects 

deadlock (called initiator) sends probe messages along the 

wait for edges in the transaction wait for graph. If the probe 

returns back to the initiator, it indicates the presence of 

deadlock. Simultaneous initiation of probe messages for same 

deadlock may lead to phantom deadlocks. Hence priority 

based algorithms [3, 5, 6] have been proposed. These 

algorithms ensure that only one probe is sent per deadlock 

cycle. The initiator is decided based on priority. Later several 

DDDR (Distributed Deadlock Detection and Resolution) 

algorithms have been proposed for request models like AND, 

OR and generalized models. They optimize on 

communication and message complexities. 

All these algorithms expect the underlying system model to be 

fault free. But in distributed systems, failures are bound to 

happen. In Ozu and Valduriez [2], it is stated that the failures 

in distributed systems could be categorized as: 

1. Transaction failure- bug in code  

2. Site failure- processor failure  

 3. Link failure- communication link failure  

Though fault diagnosis is not part of deadlock detection, 

information about faulty sites needs to be given to avoid 

unnecessary wait time. Unnecessary wait time leads to slower 

response time and deadlocks.  

In Li and Mcmillin [1], a totally distributed fault tolerant 

DDDR algorithm is proposed using  fault diagnosis model. In 

this the processors are categorized into faulty and non faulty. 

All non faulty processors will certify the other processors as 

faulty or non faulty. 

A fault vector is attached as part of the probe where each bit 

in the vector represents a processor in the system. 0 represents 

non faulty and 1 represents faulty.   

This paper has the following drawbacks: The processors are 

diagnosed periodically by the other non faulty processors. If 

the period is very small, the non faulty processors need to 

spend more time in diagnosing other processors than 

executing their transactions. This will reduce throughput of 

the system. On the other hand, if the periodicity is more, then 

reliability reduces. Hence the success of this algorithm lies in 

choosing ideal period of diagnosis. Message complexity is 

more in propagating updated processors’ status and clean 

messages. It can identify only one processor failure per 

deadlock cycle. 

Apart from [1], very few works had been done on fault 

tolerant DDDR algorithms. Hansdah et al. [8] discusses about 

link failure, where grant messages are lost or delayed. 

Brzezinski et al. [9] offers solution for asynchronous 

messaging system, where the messages are not delivered in 

FIFO basis. It proposes a token based system to handle the 

message loss. However this algorithm also assumes that there 

are no site failures. So there is no fault tolerant DDDR 

algorithm that can tolerate all types of failures.  
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2. MOTIVATION 
The present day distributed systems are prone to failures. So 

fault tolerance algorithms are needed to improve the reliability 

and performance. Though there are several fault tolerance 

algorithms for distributed systems, generally it is not expected 

by DDDR algorithms to provide fault tolerance. Hence much 

research work is not done in this area. However the DDDR 

algorithm should facilitate the initiator to infer why the probe 

does not come back to it.  It might be due to live lock or site 

failure (where deadlock may be present). If it is due to live 

lock, then the transactions can wait for finite time and then 

start sending resources’ requests again. If the probe does not 

come back due to site failure, then the system needs to be 

reconfigured to continue. But if it is actually due to deadlock, 

and probe does not return to initiator due to site failure, then it 

is a serious problem.  

Since there is no ideal fault tolerance algorithm and site 

failures are bound to happen, the initiator needs to get the 

probe back always despite whether it is live lock or dead lock. 

Hence this paper aims to propose a fault informant algorithm 

that sends colored probes to initiator indicating the sites’ 

status. It detects at most two site failures per deadlock cycle. 

In Geetha and Sreenath [11], an algorithm was proposed for 

detecting probes lost due to faulty environments. In this paper, 

the algorithm is extended with implementation and proofs. 

The proposed algorithm uses the following colors in probe 

messages to indicate the status. 

RED:   Indicates deadlock and there is no site failure. 

ORANGE: Indicates site failure. In this deadlock/ live lock 

status is unknown due to site failure. 

WHITE: Indicates live lock and there is no site failure 

In the proposed algorithm, transaction uses forward and 

backward probe messages to detect the reason for not getting 

the resource. Initially the color of the probe message is RED. 

The definitions of forward and reverse probe messages and 

other messages are given in section 3. A faulty vector is 

maintained in which each processor is represented by a bit. 

Bit 1 indicates the corresponding processor is faulty. Bit 0 

indicates the site is not faulty.  The messages travel along the 

wait for edges and on the opposite side by traversing node by 

node. A node that is receiving the probe message should send 

an acknowledgement to its sender. This is used to inform the 

active status of receiver to the sender.  

If sender does not receive acknowledgement message before 

timeout, it infers that the receiver site has failed. Then sender 

will change the color of forward/backward probe messages 

into ORANGE after updating the bit corresponding to the 

faulty site. The sender will send a return probe which is 

addressed always to the initiator with the color of forward/ 

backward probe along with updated faulty vector and fault 

site ID. The initiator will broadcast the faulty state of this site 

to all the sites. This faulty status is modified only when the 

faulty site broadcasts awake message. 

If the faulty site ID in both forward and backward probe 

messages is same, it can be inferred that it is one site failure. 

If they are different, then it is two –site- failure situation. 

If there is no site failure, both the forward and backward 

probe messages will reach the initiator and by the RED color 

of the probe, the initiator will infer the presence of deadlock 

and will start deadlock resolution phase.  

If there is no failure, but the wait for graph terminates at some 

node which does not have wait for edge, then receiver will not 

be able to send message any further. But it will send 

acknowledgement message to sender indicating that it is 

active. Then receiver will change the color of the 

forward/backward probe into WHITE, and return probe with 

forward/backward probe color is sent to initiator. When the 

initiator realizes it is live lock, it will wait for some more 

time, before sending resource requests again. 

3. DEFINITIONS 
Definition 1:  Wait for Graph (WFG (N, E)) is a directed 

graph where nodes N represent transactions currently 

participating in the system and E is a finite set of edges 

representing the transaction dependency on resources. Ti-→Tj 

є E where Ti is waiting on Tj for the resource held by Tj.  So 

Tj is successor of Ti and Ti is predecessor of Tj. 

Definition 2: A Deadlock is identified by a directed cycle in 

the WFG. 

Definition3: Forward probe (Forward_Probe (Initiator, 

Sender, Receiver, Forward_Probe_Color)) is a traversal of 

dependency edges in WFG from initiator and propagates until 

it reaches back initiator or terminates when there is no 

dependency edge for a transaction in the path i.e. TI  → 

T1→T2…Tn, where {Tn =  TI or Tn has no dependency edge 

| TI ,T1,T2….Tn є N}. The probe color is RED if there is a 

deadlock and WHITE if there is live lock in fault free 

environment. This probe will not reach the initiator in faulty 

environment. 

Definition 4: Backward probe (Backward_Probe (Initiator, 

Sender, Receiver, Backward_Probe_Color)) is a traversal 

from initiator and propagates backwards along the 

dependency edges in WFG,  i.e. TI  ← T1←T2…Tn, where 

{Tn =  TI or  Tn has no dependency edge | TI  → T1→T2…Tn 

are directed edges є E and  T1,T2….Tn є N}. The objective of 

using two probes is to identify at most 2 site failures in a 

deadlock cycle than 1 site failure as in[l]. The probe color is 

RED if there is a deadlock and WHITE if there is live lock in 

fault free environment. This probe will not reach the initiator 

in faulty environment. 

Definition 5: A Fault Vector (FaultVector) V = S1S2…Sn, 

where S1, S2 …Sn denotes the N sites participating in the 

system domain. Si = 1, if site i is faulty; Si = 0, if site i is non 

faulty. Instead of PMC diagnosis model, the site fault is 

identified by message response from the neighboring sites.  

Definition 6: Return probe (Return_Probe  (Initiator,Sender,   

Forward/Backward_Probe_Color,FaultVector, FaultSiteID,)) 

is the probe forwarded by the site Si holding transaction Ti to 

the initiator about its successor faulty site Sj holding 

transaction Tj, where Ti→Tj є E. This probe updates the 

status of site Sj in fault vector and sends it to the initiator. The 

initiator updates the status of Sj and broadcasts to all the other 

nodes for future requests. It stays unchanged until the awake 

message is received from the faulty site Sj. This is done 

during forward probe. In backward probe, if predecessor Tj is 

faulty, then this return probe is forwarded by the successor. 

The return probe color is WHITE if there is live lock in fault 

free environment. The return probe color is ORANGE if there 

is site failure. The return probe will have FaultVector and 

FaultSiteID only under faulty environment. 

Definition 7: Acknowledgement message (Ack_msg 

(Receiver, Sender)):- Every site on receiving the probe 

message from its sender should send an acknowledgement 

message to its sender. If this message is not received by the 
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sender, by time out period, it assumes that receiver is faulty. 

Then sender sends return probe to initiator updating fault 

vector about this faulty site. 

Definition 8: Clean message (Clean_message) is to broadcast 

all the sites to clean the probes sent by victim which is in 

faultysite.

 Definition 9: Victim is the lowest priority transaction which 

will be aborted to break the cycle. Here initiator is the victim. 

Definition 10: Awake message (awake_mesg (SiteID)) is a 

message sent by all sites on startup or after fault recovery. 

This message is needed to update its status in fault vector and 

include it for further transaction requests. 

4. SYSTEM MODEL 
The system is assumed to be free of congestion for timely 

delivery and messages are received in the order in which they 

are delivered. Further priority based DDDR algorithm [4] 

exists to ensure the least priority transaction in the cycle to 

become initiator of probe messages. This helps avoiding 

phantom deadlocks due to simultaneous initiation of probe 

messages for the same cycle. In each site it is assumed that 

only one transaction is running at a time. A transaction failure 

is also assumed as site failure. Each site is assumed to be 

running one transaction for simplicity sake. The site index and 

transaction index are assumed as same.  

5. FAULT-INFORMANT PROBE BASED 

ALGORITHM 
In our paper initiator will send forward as well as backward 

probes. The algorithm in [1] uses backward probe alone and 

can detect only one site failure per deadlock cycle. Intuitively 

if we use both forward and backward probes in our algorithm, 

at most two failures can be detected. To improve the 

reliability of the system, we use both probes in our 

mechanism. The procedures for deadlock detection and 

resolution are given below.  

Procedure Site_Initialization 

If (fault_recovery or start_up) 

     Broadcast awake_mesg(SiteID) 

End procedure. 

This procedure will be called whenever a site is started or 

recovered from failure. On receiving this message, all the 

other non faulty sites will update the status of this site in their 

fault vector.  

Procedure Transaction_ Initialization 

Probe = null; 

Fault_ Vector = Get_faultvector(); 

End Procedure 

Any transaction that comes to the system will initially have 

the probe queue empty. It will get the current status of sites 

from the neighboring sites. 

Any transaction after making request for a resource will wait 

till time out or grant message which ever comes early. After 

time out, it will start sending probe messages. Any transaction 

Ti that receives forward or backward probe messages will 

execute the following procedure. 

Transaction Ti:: 

Do    // Beginning of Do loop 

If Receive Forward_Probe (Initiator I, Sender Ti-1, Receiver = 

Ti, Forward_Probe_Color = RED){ 

Send Ack_msg to Sender Ti-1 

If there is no dependency edge from Ti { 

   Send Return-Probe (Initiator, Sender,    

    Forward_Probe_Color =WHITE); 

   Exit; 

  } 

    else{    

   Send Forward_Probe (Initiator I, Sender=Ti,  

   Receiver = Ti+1, Forward_Probe_Color = RED) 

   Until timeout    { 

     Wait for Ack_msg from Ti+1 

     If Receive Ack_msg from Ti+1   break; 

    } 

 Update FaultVector[Si+1] = 1; 

 Update FaultSiteID = S i+1;  

 Send Return- Probe (Initiator I, Sender Ti,    

Forward_Probe_Color = ORANGE,     FaultVector,   

FaultSiteID); 

} 

If Receive Backward_Probe (Initiator I, Sender Ti+1, Receiver 

= Ti, Backward_Probe_Color = RED) { 

   Send Ack_msg to Sender Ti+1 

   If there is no dependency edge from Ti    { 

     Send Return-Probe (Initiator I, Sender Ti,   

     Backward_Probe_Color = WHITE); 

     Exit; 
    } 

else{    

Send Backward_Probe (Initiator I,Sender=Ti, Receiver = Ti-1 

, Backward_Probe_Color = RED) 

Until timeout { 

 Wait for Ack_msg from Ti-1 

  If Receive Ack_msg from Ti-1 break; 

} 

Update Faultvector[Si-1] = 1;  

Update FaultSiteID = S i-1; 

Send Return- Probe (Initiator =I, Sender=Ti,   

Backward_Probe_Color= ORANGE, FaultVector, 

FaultSiteID); 

}  

Od.        // End of while loop 

The existing DDDR algorithm [3, 5, 6] determines the lowest 

priority transaction in a deadlock cycle and nominates it as 

initiator. Initiator will send forward probe along dependency 

edges and backward probe along the opposite direction of 

dependency edges. 

Initiator: 

Switch on case   

{ 

Case 1:        // Live lock/Deadlock – INITIATOR’S 

NEIGHBORING SITE(S) FAILURE{ 

   Send Forward_Probe (Initiator I, Sender=I,    

  Receiver = Ti, Forward_Probe_Color = RED) 

{ 

  Until timeout { 

Wait for Ack_msg from Receiver Ti; 

If Receive Ack_msg from Receiver Ti break; 

  } 

 Update Faultvector[Si] = 1; 

 Update FaultSiteID = Si;  

 Forward_Probe_Color = ORANGE; // Declare   

Live lock or Deadlock due to site failure Si 

Broadcast Clean_message to roll back transaction Ti   in the 

faulty site Si; 

} 

Send Backward_Probe (Initiator I, Sender I, Receiver = Tj, 

Backward_Probe_Color = RED){ 

Until timeout    { 

         Wait for Ack_msg from Tj 
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     If Receive Ack_msg from Tj break; 

   } 

  Update Faultvector[Sj] = 1;  

  Update FaultsiteID = Sj; 

 Backward_Probe_Color = ORANGE; // Declare Live lock or  

Deadlock due to site failure Sj; 

Broadcast Clean message to roll back transaction Tj in the 

faulty site Sj; 

  }  

} 

Case 2:   // Deadlock – NO SITE FAILURE; 

                      Probe comes back to the initiator 

If Receive Forward_Probe (Initiator I, Sender Ti, receiver = 

Initiator, Forward_Probe_Color = RED) AND Receive 

Backward_Probe (Initiator I, Sender Tj, receiver = Initiator, 

Backward_Probe_Color = RED) { 

   Call Deadlock Resolution Algorithm; // Declare Deadlock; 

   }  

Case 3:  // Live lock – NO SITE FAILURE 

If Receive Return_Probe (Initiator I, Sender Ti, Receiver = 

Initiator, Forward_Probe_Color = WHITE) AND Receive 

Return_Probe (Initiator I, Sender Tj, Receiver = Initiator, 

Backward_Probe_Color = WHITE){ 

 Wait until timeout;       // Declare Live lock; 

} 

Case 4: // Deadlock/ Live lock in 1 /  2 SITE FAILURES 

If Receive Return_Probe (Initiator I, Sender Ti, Receiver = 

Initiator, Forward_Probe_Color = ORANGE, FaultVector, 

FaultSiteID) AND Receive Return_Probe (Initiator, Sender 

Tj, Receiver = Initiator, Backward_Probe_Color = ORANGE, 

FaultVector, FaultSiteID) 

If FaultSiteID in Forward probe== FaultSiteID in Backward 

probe{ 

     // Declare Live lock or Deadlock due to 1 site   

      failure 

      Broadcast Clean message to roll back faulty   

      transaction Ta in the faulty site Sa;   

} 

If FaultSiteID in Forward probe <> FaultSiteID in Backward 

probe {    

 // Declare Live lock or Deadlock due to 2 site failures.  

 Broadcast Clean message to roll back transactions  

Ta and Tb in the faulty sites Sa and Sb; 

  } 

} 

EndCase. 

6.  FORMAL PROOF 
The algorithm is proved correct under the following 

assumptions: 

1. Transactions use single request model for requesting the 

resource.  

2. No transaction in deadlock aborts unless it is victimized in 

resolution phase.  

3. There are atmost 2 site failures in a cycle. 

 

 Theorem 1: The algorithm detects deadlock only if there is a 

deadlock. 

Proof: This algorithm detects a deadlock only when initiator 

receives both forward and backward probes and their colors 

are RED. In that case, there was no site failure when the probe 

was traversing. If there is any site failure, then it must have 

happened only after the probe message had passed this site. If 

the site had failed after forwarding the probe message, then 

this failure will be known only on next deadlock cycle 

detection through return probes. So the probe message 

forwarded by this site must have reached the initiator before 

the return probe. Therefore it is impossible that the transaction 

in a faulty site is aborted before the deadlock is detected. Fig 

1 shows the traversal of probes in deadlock situation under 

fault free environment. Fig 2 shows the probe traversal in 

faulty environment. 

 

Theorem 2: In a deadlock cycle of size greater than two, the 

failure of a process i is identified by its successor j and 

predecessor k, if k→ i → j is part of the cycle. 

Proof:  In a deadlock cycle with k→ i → j as part of the 

cycle, when transaction i fails, its predecessor k will not 

receive acknowledgement for its backward probe message and 

successor j will not receive acknowledgement for its forward 

probe message. The initiator will receive return probe 

messages from both k and j on faulty status of i. The color of 

the probe will be changed to ORANGE. Since fault site ID of 

both return probes will be same as the site ID of i, as given in 

the procedure executed by all transactions, this site failure is 

identified in deadlock cycle. 

Fig 2 shows 1 site failure. In fig 2, initiator itself is 

predecessor. So it will compare its fault site ID with the fault 

site ID sent by T3. Both of them will have same fault site ID 

of T4. Fig 3 shows identification of 2 site failure. In this fault 

site ID identified by T1 will be T4 and the fault site ID 

identified by initiator will be T3. Since they are not same, 2 

site failures are identified. 2 site failures are extension of 

theorem 2. 

Theorem 3: In a deadlock cycle of size two, site failures can 

be identified.  

Proof: In [10], it is given that 2t+1 processors are needed to 

detect t failures using fault diagnosis model. However in our 

case, it can be inferred that t failures can be detected with 

minimum of one processor. 

In our algorithm at most 2 site failures can be detected. Hence 

there are only two values for t, where t=1 or t=2. Since our 

algorithm is based on messaging, one processor itself is 

enough to deduce the faults in both the cases when t= 1 and 

t=2.  

  Fig 4 shows identification of two site failures by single 

processor itself. Since it will not receive acknowledgement 

message from its successor T3 and its predecessor T1, it will 

identify that both the sites have failed. But this will isolate this 

site from all the other sites and hence must be avoided. Fig 3 

shows another case of 2 site failures, where more than one 

processor is needed to detect 2 site failures. 

Theorem 4: The algorithm identifies whether the wait state is 

due to live lock or deadlock in fault free environment. 

Proof: In fault free environment, both forward as well as 

backward probe messages will reach initiator. If probe does 

not reach initiator in fault free environment, it is because of 

live lock. Some node in the wait for graph does not have any 

wait for edges. Then it cannot send forward or backward 

probes to its neighbors. So it will inform its status to initiator 

by sending return probe with WHITE color as mentioned in 

the algorithm for transactions.    

7.    SCENARIOS  
These scenarios are considered to give informal proof to the 

algorithm. They show how the algorithm works under both 

fault free and faulty environment. They also show how 

deadlock and live lock status are detected. In fault diagnosis 

model, it is shown that 2t+1 processors are needed to detect t 

failures. In our proposed algorithm, it is shown that 2t-1 

processors are enough to detect t failures through messaging. 

Since the proposed algorithm also can detect atmost 2 site 

failures, minimum number of nodes are taken to show the 

working of the proposed algorithm. Fig 1 shows various 



 International Journal of Computer Applications (0975 – 8887) 

Volume 41– No.8, March 2012 

10 

possible scenarios in a distributed system during deadlock 

detection phase. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1a: Deadlock in fault free environment 

Scenario 1: Figure 1a depicts the scenario when deadlock 

occurs in fault free environment. Initiator T1 sends red 

colored forward and backward probes along dependency edge 

and opposite direction of dependency edge. When the initiator 

receives back both probes, it infers the presence of deadlock 

and that there is no site failure along the path. Then initiator 

(lowest priority) is victim. The color of the probe is RED. 

 

 

 

 

 

 

 

 

 

Fig 1b: Live lock in fault free environment 

Scenario 2: In Fig 1b, let us assume that T1-the initiator does 

not have predecessor. Then backward probe will not be sent 

back to the initiator. As T4 does not have any dependency 

edge, forward probe terminates at T4. T4 changes the forward 

probe to WHITE indicating live lock status and T4 is active. 

This is also a scenario in fault free environment. 

 

 

 

 

 

 

 

 

 

Fig 1c: Live lock in fault free environment 

 

Scenario 3: Fig 1c also depicts live lock status in fault free 

environment. Here T2 is assumed to be having least priority. 

Hence it becomes the initiator.T3 and T1 send forward and 

backward probes indicating live lock. So they change the 

color of the forward and backward probes WHITE and send 

return probe back to initiator. 

Scenario 4: In fig 2a, let us assume T4 is faulty.T3 waits until 

time out for acknowledgement message from T4. If there is no 

acknowledgement message from T4, then it updates the fault 

vector for site 4, changes the color of probe message to 

ORANGE indicating site failure and sends return probe to 

initiator.T1 also sends backward probe. T4 sends no 

acknowledgement even after timeout. T1 concludes T4 faulty. 

It is confirmed by ORANGE forward probe from T3. Since  

 

 

 

 

 

 

 

 

 

Fig 2a: Live lock/Deadlock in faulty environment (1 site 

failure) 

 the fault site ID in return probe from T3 matches with the 

faulty site deduced by initiator, it concludes one site failure 

and it may be a live lock or deadlock situation. 

 

 

 

 

 

 

 

 

Fig 2b: Live lock / Deadlock in faulty environment (1 site 

failure) 
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Fig 2c: Live lock /Deadlock in faulty environment (2 site 

failure) 
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Scenario 5: In fig 2b, T2 is initiator. It sends forward probe to 

T3 and backward probe to T1. T4 is faulty. So T1 and T3 will 

not receive acknowledgement messages. They will change the 

probe color to ORANGE and send back to initiator after 

updating fault vector on T4. Since both T1 and T3 will have 

their fault site ID same, it is concluded that it is live lock/ 

deadlock due to single site failure.  

Scenario 6: In fig 2c, Assume T3 and T4 are both faulty. T2 

will send forward probe to T3. T3 will not send 

acknowledgement message. So T3 is updated as faulty on 

time out. T2 sends T1 backward probe. T1 forwards backward 

probe to T4. As T4 is also faulty, it will not send 

acknowledgement to T1. So T1changes return probe to 

ORANGE and updates T4 status. Since the fault side IDs 

updated by initiator and T1 are different, T2 will understand 

both T3 and T4 are both faulty and infer that it is two site 

failures scenario. 

 

 

 

 

 

 

 

 

 

Fig 2d: Live lock/Deadlock in faulty environment (2 site 

failure) 

Scenario 7: This is the worst case for 2 site failures with 4 

sites in fig 2d. Let T1 and T3 are faulty. Initiator sends 

forward and back ward probes to them. On time out, since it 

does not receive acknowledgement messages from neither T1 

nor T3, it deduces that T1 and T3 are both faulty. However 

the status of T4 is unknown, as it is unreachable by both T1 as 

well as T3. Since this algorithm can only detect at most 2 site 

failures, it cannot be inferred. However in [10], it is stated that 

at least 2t+1 processors are needed to detect t failures using 

PMC diagnosis model. However in our case it can be inferred 

that t failures can be detected with 2t – 1 processors itself. 

8.  CONCLUSION 
A new fault tolerant algorithm for Distributed Deadlock 

Detection and Resolution is proposed with the following 

improvements:   

 Initiator always knows the status of probe whether 

deadlock or live lock or site failure. 

 In [1] every non-faulty site tests other sites periodically 

for site failures. In the proposed algorithm the site failure 

is decided by acknowledgement messages. This 

improves the throughput of non-faulty sites. 

 Checking whether faulty sites are rectified is known by 

awake message. This situation is not handled separately 

in[1] 

 Only one site failure is handled in [1]. This paper 

however handles at most 2 site failure which improves 

fault tolerance 

 The color of the probe is used to indicate the status of the 

system. Red indicates deadlock with no site failure. 

Orange indicates live lock or deadlock due to site failure. 

White indicates live lock due to a transaction having no 

dependency edge. 

 The worst case message complexity is 4n where n is the 

number of transactions. This occurs when there is no site 

failure and deadlock occurs. The four messages are the 

forward probe message and backward probe message to 

next nodes and acknowledgement messages for both 

forward and backward messages to senders (see fig 1a). 

 Further fault identification is better than fault diagnosis 

model, which needs 2t+1 processors to identify t failures. 

In the messaging mechanism, 2t-1 processors are enough 

to identify t failures. 
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