
 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

6

Distributed Deadlock Detection using Fault Informing

Probes

V. Geetha

Department of Information Technology
Pondicherry Engineering College

Puducherry, India

N. Sreenath
Department of Computer science & Engineering

Pondicherry Engineering College
Puducherry, India

ABSTRACT

The existing probe based distributed deadlock detection

algorithms work only in fault free environments. But any

network is prone to failures. So the existing probe based

algorithms fail in such fault prone environment. This

algorithm modifies the existing probe based algorithm to

adapt in faulty environment also.

General Terms

Distributed Systems, fault tolerance, deadlocks.

Keywords

Distributed Systems, fault tolerance, deadlocks, probe based

detection.

1. INTRODUCTION
Distributed system is a collection of sites that maintains data

resources and allows concurrent transactions to work on these

data resources. The data resources in each site are managed by

resource manager. In each site, a transaction manager is

present to manage the transactions arriving in that site. In a

truly distributed system, the transactions and resource

managers of different sites have to communicate through

messages. The main advantage of distributed systems is

resource sharing. A transaction may need one or more

resources to complete its execution. The required resources

may be local or remote to the transaction. Several transactions

are allowed to simultaneously access the resources to promote

concurrency. But it might affect the consistency of data

resources. The concurrency control algorithms are applied to

protect the consistency of the data resources. These

concurrency control algorithms might introduce deadlocks in

transaction execution.

The most popular algorithm for distributed deadlock detection

and resolution is probe based algorithm by Chandy and

Mishra[7]. In this algorithm, the transaction that suspects

deadlock (called initiator) sends probe messages along the

wait for edges in the transaction wait for graph. If the probe

returns back to the initiator, it indicates the presence of

deadlock. Simultaneous initiation of probe messages for same

deadlock may lead to phantom deadlocks. Hence priority

based algorithms [3, 5, 6] have been proposed. These

algorithms ensure that only one probe is sent per deadlock

cycle. The initiator is decided based on priority. Later several

DDDR (Distributed Deadlock Detection and Resolution)

algorithms have been proposed for request models like AND,

OR and generalized models. They optimize on

communication and message complexities.

All these algorithms expect the underlying system model to be

fault free. But in distributed systems, failures are bound to

happen. In Ozu and Valduriez [2], it is stated that the failures

in distributed systems could be categorized as:

1. Transaction failure- bug in code

2. Site failure- processor failure

 3. Link failure- communication link failure

Though fault diagnosis is not part of deadlock detection,

information about faulty sites needs to be given to avoid

unnecessary wait time. Unnecessary wait time leads to slower

response time and deadlocks.

In Li and Mcmillin [1], a totally distributed fault tolerant

DDDR algorithm is proposed using fault diagnosis model. In

this the processors are categorized into faulty and non faulty.

All non faulty processors will certify the other processors as

faulty or non faulty.

A fault vector is attached as part of the probe where each bit

in the vector represents a processor in the system. 0 represents

non faulty and 1 represents faulty.

This paper has the following drawbacks: The processors are

diagnosed periodically by the other non faulty processors. If

the period is very small, the non faulty processors need to

spend more time in diagnosing other processors than

executing their transactions. This will reduce throughput of

the system. On the other hand, if the periodicity is more, then

reliability reduces. Hence the success of this algorithm lies in

choosing ideal period of diagnosis. Message complexity is

more in propagating updated processors’ status and clean

messages. It can identify only one processor failure per

deadlock cycle.

Apart from [1], very few works had been done on fault

tolerant DDDR algorithms. Hansdah et al. [8] discusses about

link failure, where grant messages are lost or delayed.

Brzezinski et al. [9] offers solution for asynchronous

messaging system, where the messages are not delivered in

FIFO basis. It proposes a token based system to handle the

message loss. However this algorithm also assumes that there

are no site failures. So there is no fault tolerant DDDR

algorithm that can tolerate all types of failures.

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

7

2. MOTIVATION
The present day distributed systems are prone to failures. So

fault tolerance algorithms are needed to improve the reliability

and performance. Though there are several fault tolerance

algorithms for distributed systems, generally it is not expected

by DDDR algorithms to provide fault tolerance. Hence much

research work is not done in this area. However the DDDR

algorithm should facilitate the initiator to infer why the probe

does not come back to it. It might be due to live lock or site

failure (where deadlock may be present). If it is due to live

lock, then the transactions can wait for finite time and then

start sending resources’ requests again. If the probe does not

come back due to site failure, then the system needs to be

reconfigured to continue. But if it is actually due to deadlock,

and probe does not return to initiator due to site failure, then it

is a serious problem.

Since there is no ideal fault tolerance algorithm and site

failures are bound to happen, the initiator needs to get the

probe back always despite whether it is live lock or dead lock.

Hence this paper aims to propose a fault informant algorithm

that sends colored probes to initiator indicating the sites’

status. It detects at most two site failures per deadlock cycle.

In Geetha and Sreenath [11], an algorithm was proposed for

detecting probes lost due to faulty environments. In this paper,

the algorithm is extended with implementation and proofs.

The proposed algorithm uses the following colors in probe

messages to indicate the status.

RED: Indicates deadlock and there is no site failure.

ORANGE: Indicates site failure. In this deadlock/ live lock

status is unknown due to site failure.

WHITE: Indicates live lock and there is no site failure

In the proposed algorithm, transaction uses forward and

backward probe messages to detect the reason for not getting

the resource. Initially the color of the probe message is RED.

The definitions of forward and reverse probe messages and

other messages are given in section 3. A faulty vector is

maintained in which each processor is represented by a bit.

Bit 1 indicates the corresponding processor is faulty. Bit 0

indicates the site is not faulty. The messages travel along the

wait for edges and on the opposite side by traversing node by

node. A node that is receiving the probe message should send

an acknowledgement to its sender. This is used to inform the

active status of receiver to the sender.

If sender does not receive acknowledgement message before

timeout, it infers that the receiver site has failed. Then sender

will change the color of forward/backward probe messages

into ORANGE after updating the bit corresponding to the

faulty site. The sender will send a return probe which is

addressed always to the initiator with the color of forward/

backward probe along with updated faulty vector and fault

site ID. The initiator will broadcast the faulty state of this site

to all the sites. This faulty status is modified only when the

faulty site broadcasts awake message.

If the faulty site ID in both forward and backward probe

messages is same, it can be inferred that it is one site failure.

If they are different, then it is two –site- failure situation.

If there is no site failure, both the forward and backward

probe messages will reach the initiator and by the RED color

of the probe, the initiator will infer the presence of deadlock

and will start deadlock resolution phase.

If there is no failure, but the wait for graph terminates at some

node which does not have wait for edge, then receiver will not

be able to send message any further. But it will send

acknowledgement message to sender indicating that it is

active. Then receiver will change the color of the

forward/backward probe into WHITE, and return probe with

forward/backward probe color is sent to initiator. When the

initiator realizes it is live lock, it will wait for some more

time, before sending resource requests again.

3. DEFINITIONS
Definition 1: Wait for Graph (WFG (N, E)) is a directed

graph where nodes N represent transactions currently

participating in the system and E is a finite set of edges

representing the transaction dependency on resources. Ti-→Tj

є E where Ti is waiting on Tj for the resource held by Tj. So

Tj is successor of Ti and Ti is predecessor of Tj.

Definition 2: A Deadlock is identified by a directed cycle in

the WFG.

Definition3: Forward probe (Forward_Probe (Initiator,

Sender, Receiver, Forward_Probe_Color)) is a traversal of

dependency edges in WFG from initiator and propagates until

it reaches back initiator or terminates when there is no

dependency edge for a transaction in the path i.e. TI →

T1→T2…Tn, where {Tn = TI or Tn has no dependency edge

| TI ,T1,T2….Tn є N}. The probe color is RED if there is a

deadlock and WHITE if there is live lock in fault free

environment. This probe will not reach the initiator in faulty

environment.

Definition 4: Backward probe (Backward_Probe (Initiator,

Sender, Receiver, Backward_Probe_Color)) is a traversal

from initiator and propagates backwards along the

dependency edges in WFG, i.e. TI ← T1←T2…Tn, where

{Tn = TI or Tn has no dependency edge | TI → T1→T2…Tn

are directed edges є E and T1,T2….Tn є N}. The objective of

using two probes is to identify at most 2 site failures in a

deadlock cycle than 1 site failure as in[l]. The probe color is

RED if there is a deadlock and WHITE if there is live lock in

fault free environment. This probe will not reach the initiator

in faulty environment.

Definition 5: A Fault Vector (FaultVector) V = S1S2…Sn,

where S1, S2 …Sn denotes the N sites participating in the

system domain. Si = 1, if site i is faulty; Si = 0, if site i is non

faulty. Instead of PMC diagnosis model, the site fault is

identified by message response from the neighboring sites.

Definition 6: Return probe (Return_Probe (Initiator,Sender,

Forward/Backward_Probe_Color,FaultVector, FaultSiteID,))

is the probe forwarded by the site Si holding transaction Ti to

the initiator about its successor faulty site Sj holding

transaction Tj, where Ti→Tj є E. This probe updates the

status of site Sj in fault vector and sends it to the initiator. The

initiator updates the status of Sj and broadcasts to all the other

nodes for future requests. It stays unchanged until the awake

message is received from the faulty site Sj. This is done

during forward probe. In backward probe, if predecessor Tj is

faulty, then this return probe is forwarded by the successor.

The return probe color is WHITE if there is live lock in fault

free environment. The return probe color is ORANGE if there

is site failure. The return probe will have FaultVector and

FaultSiteID only under faulty environment.

Definition 7: Acknowledgement message (Ack_msg

(Receiver, Sender)):- Every site on receiving the probe

message from its sender should send an acknowledgement

message to its sender. If this message is not received by the

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

8

sender, by time out period, it assumes that receiver is faulty.

Then sender sends return probe to initiator updating fault

vector about this faulty site.

Definition 8: Clean message (Clean_message) is to broadcast

all the sites to clean the probes sent by victim which is in

faultysite.

 Definition 9: Victim is the lowest priority transaction which

will be aborted to break the cycle. Here initiator is the victim.

Definition 10: Awake message (awake_mesg (SiteID)) is a

message sent by all sites on startup or after fault recovery.

This message is needed to update its status in fault vector and

include it for further transaction requests.

4. SYSTEM MODEL
The system is assumed to be free of congestion for timely

delivery and messages are received in the order in which they

are delivered. Further priority based DDDR algorithm [4]

exists to ensure the least priority transaction in the cycle to

become initiator of probe messages. This helps avoiding

phantom deadlocks due to simultaneous initiation of probe

messages for the same cycle. In each site it is assumed that

only one transaction is running at a time. A transaction failure

is also assumed as site failure. Each site is assumed to be

running one transaction for simplicity sake. The site index and

transaction index are assumed as same.

5. FAULT-INFORMANT PROBE BASED

ALGORITHM
In our paper initiator will send forward as well as backward

probes. The algorithm in [1] uses backward probe alone and

can detect only one site failure per deadlock cycle. Intuitively

if we use both forward and backward probes in our algorithm,

at most two failures can be detected. To improve the

reliability of the system, we use both probes in our

mechanism. The procedures for deadlock detection and

resolution are given below.

Procedure Site_Initialization

If (fault_recovery or start_up)

 Broadcast awake_mesg(SiteID)

End procedure.

This procedure will be called whenever a site is started or

recovered from failure. On receiving this message, all the

other non faulty sites will update the status of this site in their

fault vector.

Procedure Transaction_ Initialization

Probe = null;

Fault_ Vector = Get_faultvector();

End Procedure

Any transaction that comes to the system will initially have

the probe queue empty. It will get the current status of sites

from the neighboring sites.

Any transaction after making request for a resource will wait

till time out or grant message which ever comes early. After

time out, it will start sending probe messages. Any transaction

Ti that receives forward or backward probe messages will

execute the following procedure.

Transaction Ti::

Do // Beginning of Do loop

If Receive Forward_Probe (Initiator I, Sender Ti-1, Receiver =

Ti, Forward_Probe_Color = RED){

Send Ack_msg to Sender Ti-1

If there is no dependency edge from Ti {

 Send Return-Probe (Initiator, Sender,

 Forward_Probe_Color =WHITE);

 Exit;

 }

 else{

 Send Forward_Probe (Initiator I, Sender=Ti,

 Receiver = Ti+1, Forward_Probe_Color = RED)

 Until timeout {

 Wait for Ack_msg from Ti+1

 If Receive Ack_msg from Ti+1 break;

 }

 Update FaultVector[Si+1] = 1;

 Update FaultSiteID = S i+1;

 Send Return- Probe (Initiator I, Sender Ti,

Forward_Probe_Color = ORANGE, FaultVector,

FaultSiteID);

}

If Receive Backward_Probe (Initiator I, Sender Ti+1, Receiver

= Ti, Backward_Probe_Color = RED) {

 Send Ack_msg to Sender Ti+1

 If there is no dependency edge from Ti {

 Send Return-Probe (Initiator I, Sender Ti,

 Backward_Probe_Color = WHITE);

 Exit;
 }

else{

Send Backward_Probe (Initiator I,Sender=Ti, Receiver = Ti-1

, Backward_Probe_Color = RED)

Until timeout {

 Wait for Ack_msg from Ti-1

 If Receive Ack_msg from Ti-1 break;

}

Update Faultvector[Si-1] = 1;

Update FaultSiteID = S i-1;

Send Return- Probe (Initiator =I, Sender=Ti,

Backward_Probe_Color= ORANGE, FaultVector,

FaultSiteID);

}

Od. // End of while loop

The existing DDDR algorithm [3, 5, 6] determines the lowest

priority transaction in a deadlock cycle and nominates it as

initiator. Initiator will send forward probe along dependency

edges and backward probe along the opposite direction of

dependency edges.

Initiator:

Switch on case

{

Case 1: // Live lock/Deadlock – INITIATOR’S

NEIGHBORING SITE(S) FAILURE{

 Send Forward_Probe (Initiator I, Sender=I,

 Receiver = Ti, Forward_Probe_Color = RED)

{

 Until timeout {

Wait for Ack_msg from Receiver Ti;

If Receive Ack_msg from Receiver Ti break;

 }

 Update Faultvector[Si] = 1;

 Update FaultSiteID = Si;

 Forward_Probe_Color = ORANGE; // Declare

Live lock or Deadlock due to site failure Si

Broadcast Clean_message to roll back transaction Ti in the

faulty site Si;

}

Send Backward_Probe (Initiator I, Sender I, Receiver = Tj,

Backward_Probe_Color = RED){

Until timeout {

 Wait for Ack_msg from Tj

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

9

 If Receive Ack_msg from Tj break;

 }

 Update Faultvector[Sj] = 1;

 Update FaultsiteID = Sj;

 Backward_Probe_Color = ORANGE; // Declare Live lock or

Deadlock due to site failure Sj;

Broadcast Clean message to roll back transaction Tj in the

faulty site Sj;

 }

}

Case 2: // Deadlock – NO SITE FAILURE;

 Probe comes back to the initiator

If Receive Forward_Probe (Initiator I, Sender Ti, receiver =

Initiator, Forward_Probe_Color = RED) AND Receive

Backward_Probe (Initiator I, Sender Tj, receiver = Initiator,

Backward_Probe_Color = RED) {

 Call Deadlock Resolution Algorithm; // Declare Deadlock;

 }

Case 3: // Live lock – NO SITE FAILURE

If Receive Return_Probe (Initiator I, Sender Ti, Receiver =

Initiator, Forward_Probe_Color = WHITE) AND Receive

Return_Probe (Initiator I, Sender Tj, Receiver = Initiator,

Backward_Probe_Color = WHITE){

 Wait until timeout; // Declare Live lock;

}

Case 4: // Deadlock/ Live lock in 1 / 2 SITE FAILURES

If Receive Return_Probe (Initiator I, Sender Ti, Receiver =

Initiator, Forward_Probe_Color = ORANGE, FaultVector,

FaultSiteID) AND Receive Return_Probe (Initiator, Sender

Tj, Receiver = Initiator, Backward_Probe_Color = ORANGE,

FaultVector, FaultSiteID)

If FaultSiteID in Forward probe== FaultSiteID in Backward

probe{

 // Declare Live lock or Deadlock due to 1 site

 failure

 Broadcast Clean message to roll back faulty

 transaction Ta in the faulty site Sa;

}

If FaultSiteID in Forward probe <> FaultSiteID in Backward

probe {

 // Declare Live lock or Deadlock due to 2 site failures.

 Broadcast Clean message to roll back transactions

Ta and Tb in the faulty sites Sa and Sb;

 }

}

EndCase.

6. FORMAL PROOF
The algorithm is proved correct under the following

assumptions:

1. Transactions use single request model for requesting the

resource.

2. No transaction in deadlock aborts unless it is victimized in

resolution phase.

3. There are atmost 2 site failures in a cycle.

 Theorem 1: The algorithm detects deadlock only if there is a

deadlock.

Proof: This algorithm detects a deadlock only when initiator

receives both forward and backward probes and their colors

are RED. In that case, there was no site failure when the probe

was traversing. If there is any site failure, then it must have

happened only after the probe message had passed this site. If

the site had failed after forwarding the probe message, then

this failure will be known only on next deadlock cycle

detection through return probes. So the probe message

forwarded by this site must have reached the initiator before

the return probe. Therefore it is impossible that the transaction

in a faulty site is aborted before the deadlock is detected. Fig

1 shows the traversal of probes in deadlock situation under

fault free environment. Fig 2 shows the probe traversal in

faulty environment.

Theorem 2: In a deadlock cycle of size greater than two, the

failure of a process i is identified by its successor j and

predecessor k, if k→ i → j is part of the cycle.

Proof: In a deadlock cycle with k→ i → j as part of the

cycle, when transaction i fails, its predecessor k will not

receive acknowledgement for its backward probe message and

successor j will not receive acknowledgement for its forward

probe message. The initiator will receive return probe

messages from both k and j on faulty status of i. The color of

the probe will be changed to ORANGE. Since fault site ID of

both return probes will be same as the site ID of i, as given in

the procedure executed by all transactions, this site failure is

identified in deadlock cycle.

Fig 2 shows 1 site failure. In fig 2, initiator itself is

predecessor. So it will compare its fault site ID with the fault

site ID sent by T3. Both of them will have same fault site ID

of T4. Fig 3 shows identification of 2 site failure. In this fault

site ID identified by T1 will be T4 and the fault site ID

identified by initiator will be T3. Since they are not same, 2

site failures are identified. 2 site failures are extension of

theorem 2.

Theorem 3: In a deadlock cycle of size two, site failures can

be identified.

Proof: In [10], it is given that 2t+1 processors are needed to

detect t failures using fault diagnosis model. However in our

case, it can be inferred that t failures can be detected with

minimum of one processor.

In our algorithm at most 2 site failures can be detected. Hence

there are only two values for t, where t=1 or t=2. Since our

algorithm is based on messaging, one processor itself is

enough to deduce the faults in both the cases when t= 1 and

t=2.

 Fig 4 shows identification of two site failures by single

processor itself. Since it will not receive acknowledgement

message from its successor T3 and its predecessor T1, it will

identify that both the sites have failed. But this will isolate this

site from all the other sites and hence must be avoided. Fig 3

shows another case of 2 site failures, where more than one

processor is needed to detect 2 site failures.

Theorem 4: The algorithm identifies whether the wait state is

due to live lock or deadlock in fault free environment.

Proof: In fault free environment, both forward as well as

backward probe messages will reach initiator. If probe does

not reach initiator in fault free environment, it is because of

live lock. Some node in the wait for graph does not have any

wait for edges. Then it cannot send forward or backward

probes to its neighbors. So it will inform its status to initiator

by sending return probe with WHITE color as mentioned in

the algorithm for transactions.

7. SCENARIOS
These scenarios are considered to give informal proof to the

algorithm. They show how the algorithm works under both

fault free and faulty environment. They also show how

deadlock and live lock status are detected. In fault diagnosis

model, it is shown that 2t+1 processors are needed to detect t

failures. In our proposed algorithm, it is shown that 2t-1

processors are enough to detect t failures through messaging.

Since the proposed algorithm also can detect atmost 2 site

failures, minimum number of nodes are taken to show the

working of the proposed algorithm. Fig 1 shows various

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

10

possible scenarios in a distributed system during deadlock

detection phase.

Fig 1a: Deadlock in fault free environment

Scenario 1: Figure 1a depicts the scenario when deadlock

occurs in fault free environment. Initiator T1 sends red

colored forward and backward probes along dependency edge

and opposite direction of dependency edge. When the initiator

receives back both probes, it infers the presence of deadlock

and that there is no site failure along the path. Then initiator

(lowest priority) is victim. The color of the probe is RED.

Fig 1b: Live lock in fault free environment

Scenario 2: In Fig 1b, let us assume that T1-the initiator does

not have predecessor. Then backward probe will not be sent

back to the initiator. As T4 does not have any dependency

edge, forward probe terminates at T4. T4 changes the forward

probe to WHITE indicating live lock status and T4 is active.

This is also a scenario in fault free environment.

Fig 1c: Live lock in fault free environment

Scenario 3: Fig 1c also depicts live lock status in fault free

environment. Here T2 is assumed to be having least priority.

Hence it becomes the initiator.T3 and T1 send forward and

backward probes indicating live lock. So they change the

color of the forward and backward probes WHITE and send

return probe back to initiator.

Scenario 4: In fig 2a, let us assume T4 is faulty.T3 waits until

time out for acknowledgement message from T4. If there is no

acknowledgement message from T4, then it updates the fault

vector for site 4, changes the color of probe message to

ORANGE indicating site failure and sends return probe to

initiator.T1 also sends backward probe. T4 sends no

acknowledgement even after timeout. T1 concludes T4 faulty.

It is confirmed by ORANGE forward probe from T3. Since

Fig 2a: Live lock/Deadlock in faulty environment (1 site

failure)

 the fault site ID in return probe from T3 matches with the

faulty site deduced by initiator, it concludes one site failure

and it may be a live lock or deadlock situation.

Fig 2b: Live lock / Deadlock in faulty environment (1 site

failure)

.

Fig 2c: Live lock /Deadlock in faulty environment (2 site

failure)

T1 T2

T4 T3

Initiator

Forward Probe

Backward Probe

Ack. Message

Return probe

T1 T2

T4 T3

Initiator

T1 T2

T3 T4

Initiator

T1 T2

T3 T4

T1 T2

T3 T4

Initiator

Initiator

T1 T2

T3 T4

Initiator

 International Journal of Computer Applications (0975 – 8887)

Volume 41– No.8, March 2012

11

Scenario 5: In fig 2b, T2 is initiator. It sends forward probe to

T3 and backward probe to T1. T4 is faulty. So T1 and T3 will

not receive acknowledgement messages. They will change the

probe color to ORANGE and send back to initiator after

updating fault vector on T4. Since both T1 and T3 will have

their fault site ID same, it is concluded that it is live lock/

deadlock due to single site failure.

Scenario 6: In fig 2c, Assume T3 and T4 are both faulty. T2

will send forward probe to T3. T3 will not send

acknowledgement message. So T3 is updated as faulty on

time out. T2 sends T1 backward probe. T1 forwards backward

probe to T4. As T4 is also faulty, it will not send

acknowledgement to T1. So T1changes return probe to

ORANGE and updates T4 status. Since the fault side IDs

updated by initiator and T1 are different, T2 will understand

both T3 and T4 are both faulty and infer that it is two site

failures scenario.

Fig 2d: Live lock/Deadlock in faulty environment (2 site

failure)

Scenario 7: This is the worst case for 2 site failures with 4

sites in fig 2d. Let T1 and T3 are faulty. Initiator sends

forward and back ward probes to them. On time out, since it

does not receive acknowledgement messages from neither T1

nor T3, it deduces that T1 and T3 are both faulty. However

the status of T4 is unknown, as it is unreachable by both T1 as

well as T3. Since this algorithm can only detect at most 2 site

failures, it cannot be inferred. However in [10], it is stated that

at least 2t+1 processors are needed to detect t failures using

PMC diagnosis model. However in our case it can be inferred

that t failures can be detected with 2t – 1 processors itself.

8. CONCLUSION
A new fault tolerant algorithm for Distributed Deadlock

Detection and Resolution is proposed with the following

improvements:

 Initiator always knows the status of probe whether

deadlock or live lock or site failure.

 In [1] every non-faulty site tests other sites periodically

for site failures. In the proposed algorithm the site failure

is decided by acknowledgement messages. This

improves the throughput of non-faulty sites.

 Checking whether faulty sites are rectified is known by

awake message. This situation is not handled separately

in[1]

 Only one site failure is handled in [1]. This paper

however handles at most 2 site failure which improves

fault tolerance

 The color of the probe is used to indicate the status of the

system. Red indicates deadlock with no site failure.

Orange indicates live lock or deadlock due to site failure.

White indicates live lock due to a transaction having no

dependency edge.

 The worst case message complexity is 4n where n is the

number of transactions. This occurs when there is no site

failure and deadlock occurs. The four messages are the

forward probe message and backward probe message to

next nodes and acknowledgement messages for both

forward and backward messages to senders (see fig 1a).

 Further fault identification is better than fault diagnosis

model, which needs 2t+1 processors to identify t failures.

In the messaging mechanism, 2t-1 processors are enough

to identify t failures.

9. REFERENCES
[1] Pei-yu Li and Bruce McMillin, “Fault-tolerant

Distributed Deadlock Detection/ Resolution”, IEEE

Transactions on parallel and distributed systems, pp

224-230, 1993.

[2] M.Tamer Ozsu and Patrick Valduriez, “Principles of

Distributed Database Systems”, Pearson Education,

1999.

[3] Chowdhary, A.N., Kohler, W. H., Stankovic, J.A. and

Towsley, D., “A modified priority based probe algorithm

for distributed deadlock detection and resolution”, IEEE

Trans, Software Eng., vol. SE-15, pp.10-17, Jan. 1989.

[4] Mitchell, D.P. and Merrit, M.J., “A distributed algorithm

for deadlock detection and resolution.” Proc. 3rd ACM

Symp. Principles of Distributed Computing, Vancouver,

Canada. pp. 282-284, Aug 1984.

[5] Roesler, M., Burkhard, W.A. and Cooper, K.B.,

“Efficient deadlock resolution for lock-based

concurrency control schemes”, IEEE 8th Int’l conf.

Distributed Computing Systems, pp. 224-233, 1988.

[6] Sinha, M.K and Natarajan, N., “A priority based

distributed deadlock detection algorithm,” IEEE Trans.

Software Eng., vol. SE-11, pp. 67-80, Jan. 1985.

[7] K.Mani Chandy and Jayadev Mishra, ”Distributed

Deadlock Detection”, ACM Transactions on Computer

Systems, Vol.1,No.2,Pages 144-156, 1983.

[8] R.C.Hansdah, Nilanjan Gantait, Sandeep Dey, “A Fault

Tolerant distributed Deadlock Detection

Algorithm”,Lecture Notes in Computer Science,

Springerlink, Vol. 2571,pp 78-87,2002.

[9] J.Brzezinski, J.M. Helary, M.Raynal and M. Singhal,

“Deadlock models and a General Algorithm for

Distributed Deadlock Detection”, Journal of Parallel and

Distributed Computing, vol. 31, pp112-125, 1995.

[10] Preparata et al., “On the connection assignment problem

of diagnostic systems”, IEEE Transactions on Electronic

Computers, Vol. EC-16, 1967.

[11] V.Geetha and n.Sreenath, “ Fault-informant distributed

deadlock detection using colored probes”, Second

International Conference on Advances in

Communication, Network, and Computing, CNC 2011,

Bangalore, India, March 10-11, 2011. Proceedings in

LNCS-CICS.

Initiator

T1

T2

T3 T4

