
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.7, March 2012

19

 Randomized Algorithm for Scaling Factors in

Fractal Image Compression

Dinesh Rao B
Associate Professor

MCIS
Manipal

Ganesh Kamath
MS Student

MCIS
Manipal

Niranjan U C
Director Research & Training

Manipal Dot Net
Manipal

ABSTRACT

Modern fractal compression methods are based on iterative

function systems (IFS), which was developed by Barnsley [1]

and Jacquin [2]. During compression, the algorithm partitions

the image into a set of square blocks (domain blocks). After

this a new partition is made into smaller range blocks [2]. The

domain blocks are generally double the size of range blocks.

For every range block the nearest domain block is identified

among all domain blocks after applying a set of

transformations on the domain blocks. Smaller sized images

are obtained by storing the information about these

transformations alone. The transforms store the domain

number, scaling constant, offset etc. This method of

compression is called the partitioned iteration function system

(PIFS). This paper explores the use of variable scaling factors

for the transformation from domain to the range blocks. This

variable factor has been generated using a pseudo-random

number generator. The results show comparable ratios of

compression and RMS error with PIFS (Partitioned iterated

function systems) based fractal compression.

 General Terms

Image Compression, Fractal, Non-linear, random, Range,

Domain.

Keywords

Fractal image compression, IFS.

1. INTRODUCTION
Image compression makes image storage and transmission

efficient. Excellent results have been obtained with fractal

image compression in the past few years. Barnsley[1]

promoted the most important fractal image compression

algorithm based on Iterated Function System (IFS) called

Partitioned Iterated function systems.

An iterated function system is a collection of contractive

affine transformations. A basic theorem in fractal geometry

states that each IFS, i.e. each set of contractive affine

transformations, defines a unique image what is called fractal

[2]. Fractal image compression is the inverse problem. Instead

of generating an image from a given formula, the aim in

fractal image compression is to find a set of transformations

that can represent a given image.

The basic implementation of the PIFS compression method

has tiled the image into B x B blocks in the image as the set of

range blocks, and all (overlapping) 2B x 2B blocks in the

image as the set of domain blocks [2]. The set of

transformations applied consists of a spatial contraction,

followed by one of the eight square symmetry operations (4

rotations and 4 reflections) followed by a contractive affine

transformation on the grayscale value. The domain block is

first brought down to the size of the range blocks. Each

domain pixel is then multiplied by the scaling factor S and an

offset O is added to it to get the corresponding range pixel.

The following equation represents the transformation of

domain pixels to range pixels.

𝑅𝑖 = 𝑆 ∗ 𝐷𝑖 + 𝑂 equation(1)

Where -1<S<1 guarantees contraction. In the above equation

Ri represents the range pixel and Di represents the domain

pixel. Here S and O are so chosen that the RMS error between

the domain and the range is a minimum. Search is made on

the whole domain pool to identify the closest domain for each

range. The union of these mappings defines the image.

Efforts have been made to reduce the search time for the

closest domain by reducing the domain space based on

polynomial approximation [5]. Spatial correlations [9] in both

range and domain pools are utilized to reduce search space. In

[10], mean and variance is used to classify the domain blocks

improving the search speed for finding the nearest domain for

a range block. Domain blocks can also be searched randomly

[11] for every range to improve the speed of encoding. The

decompression algorithm is improved by taking an initial seed

value [6] other than arbitrary values or zero. If the closeness

of the range and domain is not within a limit, quad-tree

splitting can be made to reduce the size of range and domains

[7] and increase accuracy at the cost of size of compressed

image.

In this paper, we will discuss the usage variable scaling

factors for transforming the domain pixels to range pixels. In

PIFS, the scaling factor S (equation (1)) is a constant for a

range-domain pair. These variable scaling factors are

generated by the use of a pseudo random generator.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.7, March 2012

20

2. PIFS METHOD OF FRACTAL IMAGE

COMPRESSION
In this section, we will first briefly discuss the method of PIFS

[3] compression and decompression. We then investigate the

methods of compression using the difference and non-linear

methods [8].

2.1 Encoding procedure
The encoding procedure for PIFS:

1. Partitioning of the original image (Figure 1) into N

non-overlapping range blocks.

2. Tiling of the image into M (possibly overlapping)

domain blocks.

The following procedure is repeated for all range blocks.

1. Choose a range block Ri.

2. From all combinations of transformations for

domain blocks, based on equation (1), choose the

best transformation which minimizes the RMS

distance between the range block and domain.

When the best pair has been found, only the transform detail

for each range is stored. This transformation contains

information about the positional description of the domain

block Dj associated with a given range, the number of rotation

operation, scaling (S) and offset (O) parameters.

2.2 Decoding procedure
The decoding procedure is as follows:

1. An initial image X (Figure 2) is chosen at random

(usually a uniform gray image). A transformed

image is created from the following transformation.

2. To get a range block, apply the transformation on its

corresponding domain. The domain number is

stored in the transformation.

3. When all range blocks are exhausted, the resulting

image will contain the transformed version of the

starting image.

4. In the next step we will transform the resulting

image again starting from step 2.

5. Due to the contractive nature of the mappings, the

resulting image will converge towards a final image

after a few iterations (Typically 9 iterations are

sufficient).

Figure 1: Original Image

Figure 2: Compressed image using PIFS technique

3. Randomized PIFS method
In randomized PIFS method, we store image using a pseudo

random seed value and offset for every transformation. If the

size of a range is 16, then, using the seed, 16 pseudo random

numbers are generated in the range 0 to 1. These 16 values are

considered to be the scale values for multiplying the domain

pixels. A fixed number of different seed values are considered

and an optimal seed value is stored along with the offset for

every transformation. Different domains are not searched for

optimal values of scaling and offset. Instead, only the first

domain is considered for all ranges. Hence, it is not required

to store the domain number in every transformation.

3.1 Transforms
The set of transforms are of the form

𝑅𝑖 = 𝑠𝑖 ∗ 𝐷𝑖 + 𝑂 equation(2)

Where Ri is the Range value of ith pixel, Di is the Domain

value of ith pixel, O is the offset value, si is the scale value that

is a pseudo random number between 0 and 1 (0 < si < 1) for a

particular seed.

The values stored for each transform are:

1. Seed for pseudo random generator.

2. Offset which minimizes the RMS error between the

range block and domain block.

3. Symmetry.

3.2 Encoding Procedure
1. Partitioning of the original image into N non-

overlapping range blocks {Ri}N k=1

Repeat the following procedure for all range blocks:

1. Choose a range block.

2. Choose domain block number 1.

3. For all possible seed values, choose a seed value

that minimizes the RMS error between the domain

block and range block.

4. Store the seed value, offset and symmetry for each

transform of the compressed image (Figure 3) .

 Decoding Procedure

1. Create a random image.

2. Apply the transformation for each range block.

3. Repeat step 2 till the image converges. This

normally happens in about 9 iterations.

Figure 3: Compressed Randomized PIFS Image

4. Randomized non-linear PIFS
In this case, we compress the image using a power factor

instead of scaling factor for every transform [8]. This makes

the transforms non-linear.

4.1 Transform
The set of transforms are of the form

𝑅𝑖 = 𝐷𝑖
𝑃𝑖 + 𝑂 equation(3)

Where Ri is the Range value of ith pixel, Di is the Domain

value of ith pixel, O is the offset value, Pi is the power value

that is a pseudo random number between 0 and 1 (0 < Pi < 1)

for a particular seed.

The values stored for each transform are

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.7, March 2012

21

1. Pseudo-random seed which minimizes the RMS error

between the domain and the range.

2. Offset which minimizes the RMS error between the range

block and domain block.

3. Symmetry.

4.1 Encoding Procedure
The encoding procedure involves

1. Partitioning of the original image into N non-overlapping

range blocks {Ri}N k=1

2. Selection of a pseudo random seed for the power factor

that minimizes the distance between the domain and the

range.

Repeat the following procedure for all range blocks.

a. Choose a range block.

b. From all available seeds for generating pseudo random

numbers, choose a seed which minimizes the distance

between the only domain (first) and the range.

c. Store the seed value, symmetry and offset (O) that

minimizes the distance between the domain and the

range between the compressed (Figure 4) and the initial

image.

4.2 Decoding Procedure
1. Create a random image.

2. Apply the transformation (equation 2) for each range

block.

3. Repeat step 2 till the image converges. This normally

happens in about 9 iterations.

Figure 4: Cmpressed Randomized non-linear image

5. Difference based Randomized

compression
Here difference based compression [8] is implemented using

randomized scaling factors using pseudo random generators.

Here, the difference between range and domain pixel is

scaled. Pseudo random numbers are used for scaling rather

than a fixed scaling factor.

5.1 Transform
The set of transforms are of the form

𝑅𝑖 = 𝐷𝑖 + 𝑠𝑖 ∗ (𝑅𝑖 −𝐷𝑖) + 𝑂 equation(4)

Where Ri is the Range value of ith pixel, Di is the Domain

value of ith pixel, O is the offset value, si is the scaling factor

that is a pseudo random number between 0 and 1 (0 < si < 1)

for a particular seed.

5.2 Encoding Procedure
The encoding procedure involves

1. Partitioning of the original image into N non-overlapping

range blocks {Ri}N k=1

2. Selection of a pseudo random seed for determining the

scaling factors that minimizes the distance between the

domain and the range.

3. Storing the initial seed value for image that minimizes

the RMS error between the compressed and

decompressed image and the initial image.

4. Storing the number of iterations that minimizes the RMS

error between the compressed image(Figure 5) and the

initial image

Repeat the following procedure for all range blocks.

a. Choose a range block.

b. From all available seeds for generating pseudo random

numbers, choose a seed which minimizes the distance

between the only domain (first) and the range.

c. Store the seed value and offset (O) that minimizes the

distance between the domain and the range.

5.3 Decoding Procedure
1. Create an image initialized with seed value.

2. Apply the transformation (equation 4) for each range

block.

3. Repeat step 2 as many times as the number of iterations.

Figure 5: Compressed Difference based-Randomized

image

6. Difference based Non-linear

Randomized compression

6.1 Transforms
The set of transforms are of the form [8].

𝑅𝑖 = 𝑅𝑖 + (𝐷𝑖 − 𝑅𝑖)
𝑃𝑖 + 𝑂 equation(5)

Where Ri is the Range value of ith pixel, Rn is the Range value

of nth pixel, Di is the Domain value of ith pixel, O is the offset

value, Pi is the power value that is a pseudo random number

between 0 and 1 (0 < Pi < 1) for a particular seed.

6.2 Encoding Procedure
The encoding procedure involves

1. Partitioning of the original image into N non-overlapping

range blocks {Ri}N k=1.

2. Selection of a pseudo random seed for the power factor

that minimizes the distance between the only domain and

the range.

3. Storing the initial seed value for image that minimizes

the RMS error between the compressed, decompressed

image and the initial image.

4. The number of iterations that minimizes the RMS error

between the compressed image(Figure 6) and the initial

image.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.7, March 2012

22

Repeat the following procedure for all range blocks.

a. Choose a range block.

b. From all available seeds for generating pseudo random

numbers, choose a seed which minimizes the distance

between the only domain (first) and the range.

c. Store the seed value, symmetry and offset (O) that

minimizes the distance between the domain and the

range.

6.3 Decoding Procedure

1. Create an image initialized with seed value.

2. Apply the transformation (equation 5) for each range

block.

3. Repeat step 2 as many times as the number of iterations.

Figure 6: Compressed Difference based non-linear

randomized Image

7. DISCUSSION
Instead of using constant scaling and power factors for

compression using fractal techniques, we can use variable

scaling and power factors. Since the pixels in a range are

generally different, different scaling factors would help in

getting better compression ratios. We have used randomized

scaling factors being used for four different techniques and

achieved reasonable compression ratios with good picture

quality. Looking at the table, we see that difference based

techniques perform better than the normal PIFS (randomized)

techniques. Looking at the table 1, we see that difference

based techniques perform better than the normal PIFS

(randomized) techniques. Table 1 shows the comparison

between the different image compression schemes

experimented and the different RMS errors associated with

them.

8. RESULTS
Table 1 shows the comparison between the different image

compression schemes experimented and the different RMS

errors associated with them when the image was compressed

to 7.81 Kb each from an original image of size 15.6 Kb.

Table 1: Image compression results

Method Compressed

Size

RMS

Error

PIFS 11.7 Kb 222

PIFS - Random 7.81 Kb 7350

Difference based Random 7.81 Kb 2591

Nonlinear Random 7.81 Kb 3448

Nonlinear Difference-based

Random

7.81 Kb 6964

9. CONCLUSIONS
Compression can be achieved with randomized techniques. A

fixed domain is sufficient to achieve reasonable levels of

compression with good accuracy. The compressed images

have smaller size when compared to other methods of fractal

compression. The space required to address a large number of

domains is replaced by a seed value which takes only 8 bits.

Improvement in quality is not seen with increase in the

number of tried seed values.

10. REFERENCES
[1] M. F. Barnsley and L. P. Huard, “Fractal Image

Compression”, AK Peters. Ltd. (1992).

[2] Ning Lu, Fractal Imaging, Academic Press, 1997.

[3] Arnaud E. Jacquin, “Fractal Image Coding: A Review”,

Proceeding of the IEEE, Vol. 81, No. 10, October 1993.

[4] Dan C. Popescu, Alex Dimca, and Hong Yan, “A

Nonlinear Model for Fractal Image Coding”, IEEE

Transaction on image processing, Vol. 6, No. 3, March

1997.

[5] Zhuang Wu, Bixi Yan, “An effective fractal image

compression algorithm”, IEEE International conference

on ICCASM, 2010, pp.139-143.

[6] Hosseini, Shookooh, Shahhosseini, Beizaee, “Speeding

up fractal image de-compression”, IEEE International

conference on ICCAIE, 2010, pp.521-526.

[7] Hui Yu, Li Li, Dan Liu, HongyuZhai, Xiaoming Dong,

“Based on Quadtree Fractal Image Compression

Improved Algorithm for Research”, IEEE Trans, 2010,

pp.1-3.

[8] Dinesh Rao B., Ganesh Kamath and Arpitha K. J.

“Difference based Non-linear Fractal Image

Compression”. International Journal of Computer

Applications 38(1):41-44, January 2012. Published by

Foundation of Computer Science, New York, USA.

[9] T.K Truong, C.M Kung, , J.H Jeng, M.L Hsieh, “Fast

fractal image compression using spatial correlation”,

ScienceDirect, Vol 22, Issue 5, December 2004, Pages

1071–1076.

[10] Yung-Gi Wu, Ming-Zhi Huang, Yu-Ling Wen, "Fractal

image compression with variance and mean", IEEE,

vol.1, 18 August 2003.

[11] S. K. Ghosh, Jayanta Mukherjee, P. P. Das, “Fractal

image compression: a randomized approach”, Pattern

Recognition Letters archive, Volume 25 Issue 9, 2 July

2004, Elsevier Science Inc. New York, NY, USA.

