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ABSTRACT 
Over the past decades there has been several techniques found 

to overcome the data analysis problem in most of the science 

domains such as engineering, astronomy, biology, remote 

sensing, economics, consumer transactions etc., It is required  
to reduce the dimension of  the data (having less features) in 

order to improve the efficiency and accuracy of data analysis. 

Traditional statistical methods partly calls off due to the 

increase in the number of observations, but mainly because of 

the increase in number of variables associated with each 

observation. As a consequence an ideal technique called 

Principal Pattern Analysis is developed which encapsulates 

feature extraction and categorize features. Initially it applies 

principal component analysis to extract eigen vectors 

similarly to prove pattern categorization theorem the 

corresponding patterns are segregated. Certain decisive 

factors as weight vectors are determined to categorize the 

patterns. Experimental results have been proved that error 

approximation rate is very less too it’s more versatile for high 

dimensional datasets. 

Keywords 

Principal Component Analysis, Eigen vectors, Dimensionality 
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1. INTRODUCTION 
In order to mine the surplus data besides estimating gold 

nugget (decisions) from data involves several data mining 

techniques. The assessment could be as simple, so as to make 

decision for particular conditions of company in a share 

market, or to decide whether a consumer is profitable or not to 

a particular concern. The dimensionality reduction comes 

down to almost  reducing the number of variables to few 

category (newly definable) variables (reduce huge dimensions 

to linear or non-linear combinations of variables, also called 

reduce variables to category dimensions) or categorizations of 

huge dimensional spaces into understandable fewer 

partitioned spaces of  category spaces (reduce huge 

dimensions to category spaces), with appropriate deduction  

of unusual dimensions, variables, categories, and spaces (also 

termed outlying variables, outlying categories, and outlying 

spaces). In addition the trends not attributable to robust 

decision rules from the data. For instance, in a large credit 

company the number of variables involved to analyze is in 

thousands.  The ultimate question is whether the individual 

could be authorized for upgrade of his card to higher priced, 

better-serviced card with in the franchise. The analysts could 

use all the following:  However based on the purpose, whether 

we are looking for decision rules out of the data, how easy to 

interpret, or how robust (less affected by outlying observation 

and probability distributional assumptions of data), one may 

choose the right one.  Some guidelines are provided below to 

that effect whether we are looking for decision rules out of the 

data,  

1) How easy to interpret,  

2) How robust (less affected by outlying observations and 

probability distributional assumptions of data), one may 

choose the right one.   

3) Predicting importance of variable. 

The dimension of the data depends on the number of variables 

that are measured on each observation.While considering the 

statistical records data accumulates in an unprecedented speed 

so Dimensionality reduction is an effective approach for 

diluting the data. There exists some problems of “Big p Small 

n”, these are extreme examples of situations where Dimension 

Reduction (DR) is necessary because the number of 

explanatory variables p exceeds (sometimes greatly exceeds) 

the number of samples [11]. While approaching from a 

statistical point of view it is desirable that the number of 

examples in the training set should significantly exceed the 

number of features used to describe those examples (Figure 

1(a)). Moreover the number of examples increases 

exponentially with the number of features, if inference is to be 

made with the data. If this is not the case, accordingly only the 

real high-dimension occupies a manifold in the input space so 

the implicit dimension of the data will be less than the number 

of features p. This is expressed in Figure 1(b) can be still 

analyzed. 

Traditional algorithms however, are applied in machine 

learning and pattern recognition applications which are often 

susceptible to the well-known problem of the curse of 

dimensionality. In the assessment of performance of a given 

learning algorithm as a data pre-processing step, or as part of 

the data analysis to simplify the data model it is referred as the 

degradation. Crucially this involves the identification of a 

suitable low-dimensional representation for the original high-

dimensional data set. While working with this reduced 

representation, tasks such as classification or clustering can 

often yield more accurate and readily interpretable results, 

further the computational costs may also be significantly 

reduced.  

Hereby the keen impulse of dimension reduction is 

encapsulated, 

1. The identification of a reduced set of features  



International Journal of Computer Applications (0975 – 8887) 

Volume 41– No.6, March 2012 

   

45 

2. For a number of learning algorithms, the training and/ 

or classification time increases directly with the number of 

features. 

3. Noisy or irrelevant features can have the same 

influence on classification as predictive features, so they 

will impact negatively on accuracy. 

4. Things look more similar on average other than the 

abundant features used to describe them; Hence the 

outcome after dimensionality reduction is represented in 

figure 2. 

   P 

           

 

 

     

      

                       n                         

 

 

 

Figure 1 (a): Dataset’s Initial Appearance 
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Figure1 (b) Big P and Small n 

On the other hand still there is an ever growing needs for 

techniques related to the dimensionality reduction and 

classification. A novel algorithm called Principal Pattern 

Analysis algorithm (PPA) is presented in our proposed work. 

The work partially implements Principal Component analysis 
algorithm and then employs the principal pattern analysis 

algorithm, consequently evaluating the feature patterns .The 

figure 2 stochastically expresses the reality of dimensionality 

reduction. 

 

 

Figure 2: Dimensionality Reduction 

The rest of the paper is organized as follows. Section 1 

discusses the related works in Dimensionality reduction 

techniques; Section 2 presents the Basic Credentials related to 

our proposed work. The summarization of our proposed 

system is exemplified in Section 3; Experimental results are 

delineated in Section 4. This paper is circumscribed with 

conclusion in Section 5. 

2. Related Works 
There are several implementations of dimensionality 

reduction platforms, providing various levels of functionality 

either regarding on the unsupervised or supervised data.  

Traditionally, the missing value problem in PCA is first 

studied by Dear (1959), who only used one component and 

one imputation iteration (see below). It is based on the 

minimum mean square error formulation of PCA which is 

introduced by Young (1941). Wiberg (1976) first suggested 

directly minimizing the mean-square error of the observed 

part of the data. An algorithm by de Ligny et al. (1981) 

already worked with up to half of the values missing. The 

missing values problem using a multivariate normal 

distribution has been studied even earlier than using PCA, for 

instance, by Anderson (1957). More historical references can 

be found in the book by Jolliffe (2002). 

With respect to various solutions for dimensionality reduction 

and pattern categorization one of the authors [8] had proposed 

two eigen vector-based approaches in which the class 

information is taken for consideration. Optimization of the 

ratio between-class variance to within-class variance of the 

transformed data, carried out in the first approach is 

parametric. The second approach is a nonparametric 

modification of the first one based on local calculation 

between class covariance matrices. Another author [13] 

described a methodology to perform variable ranking and 

selection using Support Vector Machines (SVMs). A series of 

sparse linear SVMs are constructed to generate linear models 
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that will generalize well, and adopts a subset of non zero 

weighted variables found by the linear models to produce a 

final nonlinear model. 

The authors in [1] have suggested a method based on PCA. 

They have implemented Multi-level Mahalanobisbased 

Dimensionality Reduction (MMDR). In the technique of 

Multi-level Mahalanobis-based Dimensionality Reduction, it 

is able to reduce the number of dimensions while keeping the 

precision high, and handles large datasets effectively. In order 

to index the data points in different reduced subspaces the 

extended iDistance metrics is used.  

On the other hand some economical model-based schemes are 

proposed by author [5]. As it is known that Principal 

component analysis (PCA) is a data analysis technique that 

can be traced back to Pearson, where some of the data values 

are missing, and it is shown that there are many features 

which are usually associated with nonlinear models, such as 

over fitting also resulting in bad local optimal solutions. For 

the sake a probabilistic formulation of PCA, a good 

foundation for handling missing values is exhausted, 

consequently formulas are wrapped for doing that. There are 

several problems and traditional algorithms for PCA in case 

of high dimensions along with the very sparse data also over 

fitting are very slow. As a result a novel fast algorithm is 

discovered by the authors of whom it is extended to variation 

in Bayesian learning.  

Still extending the work of [14], an enhanced novelized 

approach is presented for dimensionality reduction along with 

pattern classification. 

This algorithm gently improves salient features for the 

problem concerned. 

1. The original high-dimensional representation of data is 

significantly reduced to a lower-dimensional compact 

representation. 

2. Projects the data in the least square sense– it captures big 

(principal) variability in the data and ignores small variability. 

3. Eliminates the unwanted noise in the data. 

4. Provides a contemporary methodology for feature 

extraction. 

5. Affords a good strategic decision making scenarios via the 

pattern classification. 

3. BACKGROUND  
Generally the dimension reduction is the process of reduction 

of concentrated random variables where it can be divided into 

feature selection and feature extraction. 

3.1 Feature Selection 
Feature selection, too accessed as variable/attribute selection. 

Feature reduction, is the technique to construct robust learning 

models by selecting the subset of relevant features. 

Alternatively feature selection also helps to acquire better 

understanding about their data in addition it helps to identify 

the important features and their relation with each other. 

Feature selection helps to improve the performance of 

learning models by banishing the unwanted and repeated 

features from the data, 

 Allaying the effect of the curse of dimensionality. 

 Elevating generalization efficiency. 

 Rapiding the learning process. 

 Enhancing model interpretability. 

3.2 Feature Extraction 

Feature extraction is an exceptional form of dimensionality 

reduction. It is needed when the input data for an algorithm is 

too large to be processed and it is suspected to be notoriously 

redundant (much data, but not much information) then the 

input data will be transformed into a reduced representation 

set of features (also named features vector). By the way of 

explanation transforming the input data into the set of features 

is called feature extraction. The extracted features are 

carefully chosen. It is expected that the features set will 

extract the relevant information from the input data in order to 

perform the desired task using the reduced representation 

instead of the full size input. 

3.3 PCA Brief Outlook 
PCA is invented in 1901 by Karl Pearson.  Now it is profusely 

explored as a tool in exploratory data analysis to 

make predictive models. By means of Eigen value 

decomposition of a data covariance matrix or singular value 

decomposition of a data matrix, generally after mean 

centering the data for each feature the PCA can be worked 

out. On considering the results of a PCA it is clear that they 

are commonly conferred in terms of component scores (the 

transformed variable values corresponding to a particular case 

in the data) and loadings (the weight by which each 

standardized original variable should be multiplied to get the 

component score). 

A data matrix, XT, is defined from the training data. 

Following this the zero empirical mean is computed (the 

empirical (sample) mean of the distribution has been 

subtracted from the data set), where each of the m rows 

representing a different repetition of the experiment, and each 

of the n columns gives a particular kind results from a 

particular probe. Computing the XT is often alternatively 

denoted as X itself. The singular value decomposition (SVD) 

of X is X = WΣVT, where the m × n matrix W is the matrix 

of eigenvectors of XXT, the matrix Σ is an m × n rectangular 

diagonal matrix with non-negative real numbers on the 

diagonal, and the n × n matrix V is the matrix of eigenvectors 

of XTX. The number of principal components same as original 

variables is given by the PCA transformation that preserves 

dimensionality and this is represented as, 

𝒀𝑻 = 𝑿𝑻𝑾 

                                                 = 𝑽∑𝑻𝑾𝑻𝑾 

                                                 = 𝑽∑𝑻 

When m < n – 1 and V is not uniquely defined. Since W (by 

the delineation of SVD of a real matrix) is an orthogonal 

matrix, each row of YT is simply a rotation of the 

corresponding row of XT. The first column of YT is composed 

of the "scores" of the cases in regards with the "principal" 

component; while the next column is with  the "second 

principal" component, and so on. 

In order to bring more reduced-dimensionality representation, 

X can be projected down into the receded space defined by 

only the first L singular vectors,  

WL: 𝒀 = 𝑾𝑳′𝑿 = 𝜮𝑳  𝒗′. 

http://en.wikipedia.org/wiki/Curse_of_dimensionality
http://en.wikipedia.org/wiki/Dimensionality_reduction
http://en.wikipedia.org/wiki/Dimensionality_reduction
http://en.wikipedia.org/wiki/Dimensionality_reduction
http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Exploratory_data_analysis
http://en.wikipedia.org/wiki/Predictive_modeling
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Data_matrix_(multivariate_statistics)
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Empirical_mean
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Eigenvector
http://en.wikipedia.org/wiki/Rectangular_diagonal_matrix
http://en.wikipedia.org/wiki/Rectangular_diagonal_matrix
http://en.wikipedia.org/wiki/Rectangular_diagonal_matrix
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Orthogonal_matrix
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Where ΣL=IL×M Σ, IL×M and the L×M represents the 

rectangular identity matrix. The matrix W of singular vectors 

of X is equivalently the matrix W of eigenvectors of the 

matrix, of observed co variances C = X XT, 

Projecting points in the Euclidean space, the first principal 

component corresponding to a line passes through the 

multidimensional mean and minimizes the sum of squares of 

the distances of the points from the line. The second principal 

component corresponding to the same concept after all 

correlation with the first principal component has been 

subtracted out from the points. The singular values (in Σ) are 

the square roots of the Eigen of the matrix XXT. Each 

eigenvalue is proportional to the portion of the "variance" 

(more correctly of the sum of the squared distances of the 

points from their multidimensional mean) that is correlated 

with each eigenvector. The sum of all the Eigen values is 

equal to the sum of the squared distances of the points from 

their multidimensional mean. PCA principally rotates the set 

of points around their mean in order to align with the principal 

components. This moves as much of the variance as possible 

(using an orthogonal transformation) into the first few 

dimensions.  

3.4 Significant Statistics Metrics 

Correlation Matrix    
A correlation matrix is used for pointing the simple 

correlations r, among all possible pairs of variables included 

in the analysis; also it is a lower triangle matrix.  The diagonal 

elements (of 1) are usually omitted.  

Bartlett's test of Sphericity  
Bartlett's test of Sphericity is a test statistic used to examine 

the hypothesis that the variables are uncorrelated in the 

population.  In other words, the population correlation matrix 

is an identity matrix; each variable correlates perfectly with 

itself (r = 1) but has no correlation with the other variables (r 

= 0).  

Kaiser-Meyer-Olkin (KMO) 
KMO is a measure of sampling adequacy, which is an index.  

It is applied with the aim of examining the appropriateness of 

factor/Principal Components analysis. High values (between 

0.5 and 1.0) indicate that factor analysis befits and their value 

below 0.5 implies that factor analysis may not be suitable.  

Our proposed approach too proceeds by estimating these 

statistics. 

4. PROPOSED SYSTEMIZATION  
The scope of this paper is to present ensemble approach for 

dimensionality reduction along pattern classification. This 

section presents PPA algorithm and its step by step 

processing.  

 Compute the column vectors such that each column is with 

M rows. 

 Locate the column vectors into single matrix X of which    

each column has M x N dimension. The empirical mean EX is 

computed for M x N dimensional matrix. 

 Subsequently the correlation matrix Cx is computed for M x 

N matrix. 

 Consequently the Eigen values and Eigen Vectors are 

calculated for X. 

By hindering the estimated results, the Principal Pattern 

Analysis algorithm persists by proving the Pattern Analysis 

theorem.  

4.1 Principal Pattern Analysis   
For a given Set of Training patterns S there exists two classes 

of Pattern δ1 and δ2; i.e. S1={Aiε δ1, i=1,2,……N1; Bj ε δ2, 

j=1,2,……N2;  N1 >N2  also  N1 ,N2 < ∞ where Ai and Bj are n 

dimensional vectors also δ1 and δ2 (Eigen measures /Where δ1, 

δ2 ε δ) which are linearly inseparable then there exists a 

solution weighted vector T which gives linear classification of 

patterns. 

Proof 
Assume the two patterns Ai Bj. in which those set is defined to 

be a set of real numbers.  

Ai .C > 0 where i=1, 2, 3……, N1 .Consider another pattern Bj. 

which is defined to be set of real numbers. 

Bj. C < 0where j=1, 2, 3……., N2 Rewriting the inequalities 

C.Xm > 0, where m=1, 2……N.  

At this juncture C indicates the cost vector; here arises a 

question of how to predict the cost vector. The cost vector 

value is kept below 0.05. The above said inequalities are 

computed just to verify the existence of the two sets of 

patterns. 

Xm= Ai for m=i=1, 2, 3……, N1 

Xm= -Bj for m=j=1, 2, 3……, N2  

Thus a set T= {Xm} is constructed to be patterns which are 

linearly undividable.  

From the results it is clear that there exists two set of training 

patterns for both data matrix also the dimensional vectors. 

Those training patterns are further considered for further 

processing of pattern classification. 

Pattern analysis theorem ends with finally proving two 

hypothesis for pattern classification. 

Hypothesis 1 
For the two patterns δ1 and δ2 there exists a weight Matrix 

which gives the linear combination of training patterns. 

To prove this hypothesis we need to prove another hypothesis 

2. 

 

Hypothesis 2 
For every Ek /k=1, 2….N there exists a constant which 

converges to a solution C2 such that C2 →0. 

Moreover consider another metrics Yk.; It is essential to find 

the value of Yk. Before computing the value of Yk.; It is 

crucial to know about Eigen values and its corresponding 

Eigen vectors. Data Matrix considered is real; as a result their 

related Eigen values are real. Let ζk be the Eigen Values and 

its corresponding Eigen Vectors be ψk. The Eigen vectors 

corresponding to non zero Eigen values are taken to be 

considered. Consequently assume a constant t where t >0  

∝𝒌=  σk  𝑡𝑛
𝑘                                        -------1 

∑ ∝𝒌= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒏
𝒌=𝟏                         -------2 

 

𝜷𝒌 =  ∝𝐤  𝛙𝐤
𝒏
𝒌                                -------3 

Assume another constant vector (called decisive vector) γ 

=0.01 and its corresponding iterative vector is computed by 

giving a slight increment. Then compute 

 
           𝑭𝒌 =  𝛄𝐤 𝛙𝐤

𝒏
𝒌                                           -------4 

∑ 𝑬𝒌𝛙𝐤
𝒏
𝒌=𝟏                                                   ------5 

Where  𝐸𝑘 = γk  σk    /k represents iterative vectors. Here ∝𝒌 

is again taken for computing the error rate which is denoted as  

𝛽 . 𝛽 →0 on computing the summation of 3 then Moreover 

after calculating the summation 4 it is observed that there 
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exists a solution converges to 0. The value of γ is taken in 

such a way that, it is chosen to be linearly independent vectors 

when multiplied with the Eigen vectors giving the mutually 

orthogonal vectors. Equation 4 converges to solution c1; 5 

converge to solution c2→0 and obviously the hypothesis 2 has 

been proved. To evaluate the patterns compute weight matrix 

Wk. Wk is computed by having the below equation.  

𝑾𝒌 = | 𝑭𝒌 − σk|.Thus evaluating the respective features of 

Wk.; this also provides the patterns which are classified 

according to weighted threshold.  

6. EXPERIMENTAL RESULT 
The proposed algorithm is implemented on having the 

transactional dataset. The dataset deals about the company’s 

firm status in the market. The data are trained for further 

evaluation of reduced dimensions. 

Initially the data are organized. The missing responses for the 

items are replaced respectively by their corresponding mean 

or zero. On using the correlation, the variables are 

standardized and the total variance equals the number of 

variables used in the analysis (because each standardized 

variable has a variance equal to 1).   

On using the covariance matrix, the variable remains in their 

original metric.  However, care must be taken to use variables 

whose variances are similar.  For this reason the correlation 

matrix are estimated following the Eigen values and Eigen 

vectors are anticipated. Moreover Kaiser-Meyer-Olkin 

(KMO) measure is applied for post estimation measure of 

PCA. This measure is applied for the purpose of qualifying 

the overall results. On attaining the results, Pattern Analysis 

Theorem is proved. The experimental results are carried out 

for having several sample set of data. Pictorial representations 

for some sample data are endowed here. 

 

 

Figure 3: Representation of Patterns acquired w.r.to 

Dataset   

6.1 Impact of Principal Pattern Analysis On 

implementing the Pattern Analysis Theorem the results are 

evaluated. The consequences are represented in the pictorial 

representations. Foremost figure 3 represents the patterns 

gained with its corresponding sample datasets. For the first 

set, patterns (clusters) obtained are three. Similarly 5 patterns 

are obtained for fifth set of samples. 

Figure 4 represents the weight matrix obtained and its 

respective Features. The prioritized Feature is located at the 

top followed by the next feature. This indicates that the most 

prioritized feature is 2 proceeding this less prioritized feature 

is feature 1.  

The Experiment is repeated for next dataset. The main 

concerned feature is judged as feature 2. Next it approaches 

the 6th feature. In this way the experiment is carried out for all 

the sample sets.  Figure 8 illustrates that the less significant 

feature is 3 and most significant feature is 2 and so on. The 

graphical representation in Figure 9 exemplifies the most 

important feature is 3. On the contrary the most significant 

feature for sample 5 is predicted as feature 4 from figure 10. 

From Figure 7 it is observed that accuracy (%) increases for 

the proposed approach. The accuracy depends on number of 

missing terms and the plotted dimensional values. All the 

results obtained so far are depends on the decisive vector. If 

the decisive vector is 0.01 then the error rate is low,  so the 

accuracy rate is proportional to the decsive factor assumed. It 

is better to place right decisive factor which should be less 

than 0.02. Stimulating the decisive factor value results in 

erroneous situation. 

 

Figure 4: Depiction of Features its corresponding Weight 

Matrix for Dataset1 

 

Figure 5: Depiction of Features its corresponding Weight 

Matrix for Dataset2 
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Figure 6: Portrayal of Error Rate observed 

 

Figure 7: Accuracy Rate of the results observed 

 

Figure 8: Depiction of Features its corresponding Weight 

Matrix for Dataset 3 

 

Figure 9: Depiction of Features its corresponding Weight 

Matrix for Dataset 4 

 

 

Figure 10: Portrayal of Features its corresponding Weight 

Matrix for Dataset5 

7. CONCLUSION 
In this paper a mutual comprehensive solution for the 

dimensionality reduction ensemble with pattern classification 

is afforded. The ultimate goal of dimensionality reduction is 

to rapidly improve the query accuracy and efficiency; 

simultaneously pattern classification is to select and apply the 

right pattern at right scenarios. Our proposed approach paves 

and elucidates above mentioned state of affairs. On proving 

the PPA theorem dimensionality is reduced on plotting the 

weight matrix thresholds. On the other hand it is endowed 

with a priori determination of patterns and thus classified 

accordingly. In addition this approach reduces the error rate, 

significant rise in the throughput, reduction in missing of 

items and finally the patterns are classified. In future still 

more enhancement of this approach is needed especially 

concentrating on pattern recognition/classification which is 

malleable to be applied in other domains such as image 

processing, forensic studies, gene expression in biological 

tissue sample, several statistical / stochastic models and 

ecological communities. 
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