
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.6, March 2012

23

Network Awareness in Communication Path for Efficient

Support to Network Services

Rakesh Kumar Singh
Scientist-C (Information Technology)

G.B. Pant Institute of Himalayan Environment & Development
Kosi-Katarmal, Almora – 263 643, Uttarakhand, India

ABSTRACT

A promising approach to access efficient network services in

dynamic network environment is to provide network

awareness in communication paths. Network services across a

wide area network still remains a challenging task and the

difficulty mainly comes from the heterogeneous and

constantly changing network environment, which usually

causes undesirable user experience for network-oblivious

applications. A promising approach to address this is to

provide network awareness in communication paths. Many

challenging problems remain, in particular: how to

automatically create effective network paths whose

performance is optimized for encountered network conditions;

how to dynamically reconfigure such paths when network

conditions change; and how to manage and distribute network

resources among different paths and between different

network regions. This paper describes solutions for these

problems, built into a programmable network infrastructure

called Switching Network Services (SNS). The SNS

infrastructure provides applications with network-aware

communication paths that are automatically created and

dynamically modified.

Keywords

Communication Path, Data Communication, Network

Services, Bandwidth, Protocol, etc.

1. INTRODUCTION
Internet has undergone a transition from simply being a data

repository to one providing access to a large set of

sophisticated network accessible. A typical communication

path between a client application and the visited server, one

can observe that the path usually involves multiple links.

These links can have very different bandwidth, delay, and

error characteristics, ranging from serial links to wireless to

broadband to fiber link. In a network links, the nodes along

the path can also have very different capabilities.

Complicating service access is the fact that the load on the

network resources along a communication path may change

continually. When running in such heterogeneous and

constantly changing environments, applications require

quality guarantees in data communication for delivering

satisfactory user experiences.

TCP provides applications with the abstraction of an end-to-

end reliable byte stream, and it also contains mechanisms for

handling flow control and a few exceptional network

conditions. However, TCP does not allow application to

specify how to cope with the condition when the bandwidth of

an individual link drops to some level, which causes a

decreased throughput at the receiving end. Such changes

require very different handling between banking applications

and media streaming applications. The combination of these

factors: heterogeneous and dynamic changing network

environment and the lack of application specific control over

data communication across the network can cause poor

performance or unsatisfactory user experiences for network-

oblivious applications.

Fig.1. Network Communication Paths between Clients and

Internet Services.

1.1 Data Communication and Network

Awareness
Data communication in dynamic network environment should

be aware of underlying network conditions, which may

change dynamically. Data communication should also have

the knowledge of application performance requirements,

which are directly related to the way in which data is

interpreted and used by the application. Combining these two

together, a network-aware communication path should be able

to match application performance requirements with the

underlying network resource availability, and further

continually adapt to dynamic changes in the network.

Traditional data communication path that provides high-level

abstractions such as reliable byte streams, a network-aware

communication path understands application specific

performance requirements and can accordingly change its

behavior under different network conditions. Without the

support for such network awareness, either applications

themselves have to cope with the problems or the user will

end up with an unsatisfactory experience.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.6, March 2012

24

2. OBJECTIVES OF THE RESEARCH
This research presents a path-based framework with a

complete set of solutions. The main objectives of this research

are:

1. To automatically create effective network

communication paths whose performance is

optimized for encountered network conditions?

2. To dynamically reconfigure such communication

paths when network conditions change.

3. To manage and distribute network resources among

different communication paths and between

different network regions.

3. RESEARCH APPROACH AND GOAL
The approach has realized in a general adaptive network

infrastructure that provides network-aware paths for

applications whose performance is related to the quality of

underlying data communication. Network-aware paths are

automatically created by the underlying infrastructure,

requiring only high-level input from applications.

Automatically generated paths provide optimized

performance to applications by customizing their behaviors to

the network conditions encountered at run time. When

underlying network conditions change, such paths, both

globally and at the level of individual segments, can

continually modify their behaviors according to the

performance requirements of the application. Both path

creation and reconfiguration are handled by the underlying

infrastructure; therefore, regular applications can easily be

augmented with network awareness without requiring onerous

effort from application developers. This network

infrastructure achieves the following goals:

1. It allows custom control over communication paths

using various application specific components. The

selection of components requires only high-level

information from the application. Unlike

conventional abstractions, these components

understand data in transmission, thus can process it

in accordance with application performance

requirements.

2. It separates application business logic from what is

used for creating and controlling such augmented

paths. Once high-level objectives are specified by

the application, the logic for creating and

controlling paths is application-neutral and can be

handled by the infrastructure.

4. METHODOLOGY
To find out the performance of those adaptation approaches

under different network conditions, we adopt a simulation-

based methodology. Using a detailed simulator modeling a

typical large-scale network where multiple concurrently-

active clients download media content from server sites, we

characterize the performance of the three approaches: end-

point, proxy-based, and path-based. We provide an overview

of our simulation scenario and performance metrics of interest

below, deferring a detailed description of the specific

parameters. The network modeled in our simulation is

depicted in the following figure. The network contains

multiple ISP regions, each of which is modeled as a

centralized gateway/proxy node providing a connection to the

Internet backbone. The server and client nodes in the network

are attached to one of these ISP nodes using various

connectivity.

 The simulation models users connecting to server

nodes from client nodes to download and display streaming

media content. The connection will be released once the

download session is completed (which can happen either after

the content is completely downloaded, or when the download

task is cancelled by the user). To display the received content

appropriately, the throughput of a download path is required

to be in some specific range (i.e., a certain frame rate). When

the available bandwidth is insufficient to meet the

requirement, several components can be used to reduce

bandwidth consumption.

Fig.2. Experimental Network Topology

5. PROBLEM DEFINITION
The active networking emerged, which proposed general

mechanisms for extending the functionality of network nodes

to support execution of code embedded in network packets: in

addition to passive data, a packet in an active network could

contain some executable code. The network nodes (routers) in

an active network are required to execute the accompanying

code upon receiving an incoming packet. The code, not

limited to just route packets, could perform arbitrary

computation on the packets, including modification of the

packet itself. An important anticipated use of active

networking was for deploying new network protocols over the

network. Such an approach can certainly be used to bring

applications more control over the data communication in the

network, but it entails significant modification of the existing

infrastructure. Realizing the difficulty in modifying the

existing infrastructure, overlay networks try to bring in

additional functionality on top of the existing infrastructure.

 A Resilient Overlay Network (RON)) is an

application- layer overlay on top of the existing Internet

routing substrate where each overlay node monitors the

functioning and quality of the Internet paths between itself

and other overlay nodes. RON can be used by distributed

applications to detect and recover from path failure, often

much faster than TCP/IP. Moreover, it can also improve

performance of data communication, i.e. loss rate, latency, or

throughput perceived by applications. Internet exhibits

increasingly complex behaviors and the diversity of

applications increases, the need for custom functionality in the

network also grows. From the perspective of applications, this

means more control over data communication for applications

to obtain better performance; in other words, data

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.6, March 2012

25

communication should be aware of network conditions and

application requirements.

An augmented communication path, P = (c1,….,cn), is a

sequence of type compatible components, in which ci’s output

is sent to the input of ci+1. A route, R = {N1,N2, . . . ,Np}, is a

sequence of nodes separated by links . Each node Ni is

modeled in terms of its computation capacity, comp(Ni) with

operations per second, and a link between two nodes, Li =

(Ni,Ni+1), is modeled in terms of its bandwidth, B(Li). Both

comp(Ni) and B(Li) are defined in terms of the shares of

resources along the route available for a particular path. A

mapping, M : P R, associates components on augmented

communication path P with nodes in route R. We are only

interested in mappings that satisfy the following restriction:

(M(ci) = Nu) (M(ci+1) = Nq) u q, i.e., components are

mapped to nodes in path sequence order. The intuition behind

this is that sending data back and forth between nodes along a

route usually results in poor performance and wastes

resources. Our path creation strategies exploit the type

compatibility to identify valid composition patterns. The

relation between types and components is depicted using a

type graph Gt : a vertex in the graph represents a type, and an

edge represents a component that can transform data from the

source type to the sink type. The path creation problem can

now be formally stated as the following: given a route R (with

the resource shares allocated to the path), a type graph Gt, a

source data type ts, a destination data type td, select an

augmented communication path P that transforms ts to td and

can be mapped to R so as to satisfy the following

requirements: (i) Type compatibility between adjacent

components; and (ii) Optimal performance. Performance can

mean different things, for example, maximum throughput,

minimal latency etc.

 This investigation will describe solutions for above

said problems, built into a programmable network

infrastructure called Switching Network Services (SNS). The

SNS infrastructure provides applications with network-aware

communication paths that are automatically created and

dynamically modified. SNS highlights four key mechanisms:

1. A high-level integrated type-based specification of

components and network resources.

2. Automatic path creation strategies.

3. System support for low overhead path

reconfiguration.

4. Distributed strategies for managing and allocating

network resources.

We shall evaluate these mechanisms using experiments

with typical applications running in the SNS infrastructure,

and extensive simulation of a large-scale network topology to

compare with other alternatives.

6. EXTENT OF THE SOLUTION
This research explores how to provide network-oblivious

applications with network awareness in data communication

using a path-based approach. These path creation strategies

automatically select and map a type-compatible component

sequence to underlying network resources. In addition to

satisfying type requirements, the strategies respect constraints

imposed by node and link characteristics and optimize some

overall path metric such as response time, data quality, or

throughput. We first describe a base version of the algorithm,

based on dynamic programming, in which a single

performance metric needs to be optimized. We then present an

extension for applications that require the value of some

performance metric to be in an acceptable range. For such

applications, only after that range has been met does the

application worry about other preferences. For example, most

media streaming applications usually demand a suitable data

transmission rate so that received data can be rendered

appropriately at display devices; once the transmission rate is

kept in that range, other factors such as data quality become

the concern.

 We use the terms range metrics and performance

metrics to refer to the two types of preferences. Lastly, we

describe a “local” scheme that can be used for a portion of the

communication path. Using local planning, disjoint segments

of a communication path can adjust their behaviors

independently and concurrently while maintaining some

overall performance guarantee. Such a local scheme can

improve adaptation agility in that any portion of a

communication path can be modified to respond to local

changes in its network segment. More importantly, such

schemes are indispensable for deploying path-based

infrastructures in the situations where a communication path

needs to span multiple network domains, for which fine-

grained coordination across different network domains is

either prohibitively expensive or infeasible due to

administration policies.

7. ANALYSIS
The contributions of this research include the following:

1. A high-level integrated specification of components

and network resources to model behaviors of both

components and network resources. This

specification allows late binding of components to

paths, which is essential for flexibility of dynamic

compositions.

2. Automatic path creation strategies for constructing

network-aware access paths for applications. The

generated network paths provide optimized

performance in accordance with application

performance requirements and underlying network

conditions.

3. System support for low-overhead dynamic path

reconfiguration. Path reconfiguration in our

infrastructure provides semantic continuity

guarantees for data transmission, and is carried out

without requiring involvement from applications.

Our reconfiguration strategies can be used to

modify the entire communication path as well as

disjoint portions of the path concurrently and

independently.

4. Distributed resource management strategies, which

can be used to manage resources among multiple

paths and different network regions so as to improve

performance of both individual paths and the whole

network.

5. Adaptive network architecture called Switching

Network Services (SNS). SNS is built from the

ground up to embody our approach. A series of

experiments have been conducted on SNS with

different types of applications, the results validate

the effectiveness of our approach.

6. Extensive performance comparison among end-

point, proxy-based, and path based approaches by

simulating their behaviors in a large network

topology. Our simulation results will show that the

path-based approach provides the best and the most

stable performance under different network

configurations.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.6, March 2012

26

8. LOGICAL VIEW OF DYNAMIC

NETWORK ARCHITECTURE
This framework takes a general view that the network consists

of applications, services, and communication paths connecting

the two. The notion of the communication path is extended

from one traditionally limited to data transmission between

end points to include application-specific functionality

dynamically injected by end services, applications, or the

underlying infrastructure. Such functionality takes the form of

components, which are self-contained pieces of code that can

perform a particular activity. Components are connected with

each other at run time and operate on data streams to provide

network awareness in data communication by matching

application requirements with physical characteristics of the

underlying network and properties of end devices.

Fig.3. Logical view of a Dynamic Network Architecture.

 This framework is realized in Execution

Environments, an instance of which runs on all infrastructure-

enabled nodes. Augmented paths are deployed to these nodes.

The execution environment provides interfaces for

applications to create and manage paths, and an environment

for component execution, basically serving as the underlying

“operating system” of our infrastructure.

9. COMMUNICATION PATHS IN

DYNAMIC NETWORK
An augmented path in this framework contains functionality

to process data in an application-specific fashion. Introducing

such functionality into communication paths can bring

application two major benefits. First, they can be used to

match application requirements with the underlying network

conditions. For example, compression functionality can be

used for addressing the problem of low bandwidth in a

network link; encryption functionality can be applied to

address problems caused by network links that do not provide

sufficient guarantees on data privacy and integrity. Second, by

allowing computation in communication paths, functionality

of an application can be extended with what exists in the

network. For example, for a small device that can only display

WML pages but needs to access an Internet service where

only HTML format is supported, the augmented

communication path can handle the conversion from HTML

to WML by orchestrating functionality in the network, so that

the browser running on the devices can display the contents

appropriately. To construct network-aware communication

paths, we need a way to orchestrate various kinds of

functionality together. Instead of using a monolithic

implementation, our approach adopts a much more extensible

approach where communication paths are constructed by

dynamically composing different components. To construct

such augmented paths, only high-level information will be

required, which includes services properties, application

requirements, and characteristics of the underlying platform.

10. NETWORK SYSTEM SUPPORT FOR

EFFICIENT PATH

RECONFIGURATION
To cope with dynamic changes in the network, a network-

aware communication path needs to reconfigure itself when

the current configuration can no longer meet its performance

requirements. Our solution of low-overhead reconfiguration

has two parts: a set of simple rules placing slight restrictions

on component behavior; and a reconfiguration protocol that

leverages these restrictions. We observe that there are two

major challenges in dynamically modifying a communication

path.

First, path reconfiguration should provide semantic

continuity guarantee. Since components within an augmented

communication path can transform data from one type to

another, the conventional notion of continuity, i.e. in-order

byte level delivery, can not be applied directly to this

scenario. Instead, the continuity required by applications is at

the granularity of semantic segments. A semantic segment

here refers to a demarcatable application-specific unit of data

in transmission, e.g., an HTML page or an MPEG frame.

Conventional properties such as in-order transmission and

exactly-once delivery can now be defined at the granularity of

semantic segments.

Second, a path reconfiguration should avoid

introducing a long interruption period in data transmission. To

reduce reconfiguration overhead, mechanisms that can adapt

to “local” changes in the network by modifying small portions

of a whole communication path are important.

11. RESOURCE DISTRIBUTION

ACROSS DYNAMIC NETWORK

REGIONS
This strategy is motivated by the observation that although

path-based infrastructures can in general deploy operators on

any network node along a communication path, usable nodes

in practice are most likely a small set of strategic nodes such

as ISP and gateway nodes. Besides, there usually exist some

forms of administrative agreements between a higher-level

network domain (e.g., the ISP) and a lower-level one (e.g., the

server). Combining these two together, one can view the

computation distribution problem as one of rearranging

computation resources in a hierarchical network graph.

Specifically, given a fixed computation resource budget,

initially assumed allocated to nodes of a lower-level domain,

the problem becomes one of moving a portion of the budget to

nodes in a higher-level domain so that the overall

performance of the whole network can be improved. The

reason that such rearrangements result in better performance

of the overall network is basically because of resource

sharing; after such a rearrangement, overloaded servers can

take advantage of shared resources at a high-level node in the

network graph, contributed by servers that have a relative

light load.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.6, March 2012

27

Fig.4. Hierarchical arrangement of Servers and ISP nodes

To move the maximal amount of resources to high-level

network domains with the guarantee that the performance of

those domains, from which the computation resources are

moved out, will not be compromised after the rearrangement.

This rearrangement problem is illustrated in above figure.

Initially, each server si has a computation budget Ci (number

of operations per second), and is connected to the ISP node (I)

via a link with bandwidth BWi. The ISP node in turn is

connected to a higher-level network domain with a link of

bandwidth BWI. We use the terms server link and ISP link to

distinguish between the two types of links. We further assume

that

The problem is to determine what portion of Ci ought to be

moved from si to I (and what portion of the computation

resources at I can be moved to the higher-level). In the

description that follows, we first focus on how to distribute

computation resources between these two levels. How to

apply our strategy recursively within a network graph is

deferred to the end of our description.

12. IMPLEMENTATION
We implement a prototype of this framework in the form of a

programmable network infrastructure, called Switching

Network Services (SNS). The kernel of the SNS infrastructure

is the SNS Execution Environment (EE). The SNS EE serves

as the runtime system for components in augmented

communication paths, and provides all the infrastructural

support required by these paths to realize network-aware data

communication: delivering data across networks, managing

resources and communication paths (i.e. path creation and

reconfiguration), downloading mobile code, and providing

resource availability information. A SNS network is realized

by a set of SNS-Enabled nodes, each runs an instance of the

SNS EE. Augmented paths are deployed on these nodes.

 Fig.5. SNS Execution Environment

We use the Java, JVM as a programming language on

windows platform. The hardware which includes the latest

Intel dual Core processor with 2.8 MHz processing speed, 2

GB RAM, Two Ethernet Cards with the network speed of

10/100/1000 Mbps and other computer and networking

hardware devices as switches, router, etc.

13. PROCEDURE OF PATH SETUP AND

RECONFIGURATION
To set up the path, the application needs to call the Plan

Manager directly or via the interception layer, with

information about the server to access and its performance

requirements. The next steps that follow are different

depending on a centralized or distributed strategy is in use. In

the centralized case, the Plan Manager first determines a

network route between the server and the client application

(using a shortest path algorithm). With the selected route, the

plan manager constructs the component graph and the

mapping using the planning algorithms. It partitions the

component graph, and sends these partitions to nodes along

the path. The distributed strategy works as follows: When the

plan manager receives a request from the application, it routes

the request towards the server. After the request arrives, the

server (or the SNS node next to the server along the route)

bounces back a planning request. This planning request is

received by each of the nodes along the route, which

calculates its portion of the communication path.

After the components graph is determined and communicated,

every node along the path instantiates its components in the

local EE. In addition, it also creates an instance of the path

controller object for controlling this path. The path controller,

running on each node along a SNS path, monitors events that

reflect the performance of the path. Whenever a path

controller realizes that the performance does not meet the

requirements, it triggers reconfiguration using the protocol.

When data transmission of a path completes, drivers and path

controller of the path are removed from the EE, and any

allocated resources released.

14. EXPERIMENTAL PLATFORM IN

DYNAMIC NETWORK ENVIRONMENT
A typical network path between a mobile client and an

Internet server as shown in following Figure has been

considered in this experiment. This platform models a mobile

user using a portable device (N2) such as a laptop or a pocket

PC to access an Internet service in a shared wireless

environment. The communication path from the device to the

visited service typically spans (at least) three hops: a wireless

link (L2) connecting the user’s device to an access point, a

wired link (L1) between the wireless access point and a

gateway to the general Internet, and finally a WAN link

between the gateway and the host running the service. We

assume that SNS components can be deployed on three sites,

the mobile device (N2), a proxy server located close to the

access point (N1), or an edge server located near the gateway

(N0). In our experiments, bandwidth on links L1 and L2 can

change dynamically. This either results from dynamic

network traffic or users joining and leaving the shared

wireless network N1. For our experiments, network

configurations with different link bandwidths and

computation capabilities are obtained by running SNS either

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.6, March 2012

28

on an appropriate selected actual hardware platform, or one

emulated using “sandboxing” techniques that model a range

of computation capacity and link characteristics by limiting

CPU consumption of applications and the rate at which

applications are allowed to send and receive messages.

Fig.6. Network Path between a Mobile Client and an

Internet Services.

The “sandbox” techniques give us the flexibility of controlling

experiment parameters used in our experiments, making up

for the absence of such control in current-day hardware.

Additionally, the “sandbox” also provides resource

availability information to SNS EEs.

15. OUTCOME OF THE RESEARCH
The main outcomes of the research are as follows:

 The end-point approach usually works well with

server sites that have a large amount of computation

resources and for clients that connect to the network with

relatively high bandwidth links. However, servers that have

limited computation capacity or clients that use weak

connections may suffer from poor performance using such

an approach.

 The proxy approach usually does not exhibit bias

towards different types of servers or clients. The shared

resource pool at proxy sites can bring better performance

for small server sites or clients that have weak

connectivity. However, constraining the adaptation to only

occur before the last hop can cause considerable resource

wastage in the network, in turn leading to early saturation

as load increases.

 Support for dynamic reconfiguration is important

for the performance of both individual paths and the whole

network.

 The path-based approach has all the benefits of both

end-point and proxy approaches. Adaptation can be

conducted on upstream nodes without being limited to the

node before the last hop. More importantly, the approach

sets up shared resource pools across the whole network,

providing the most flexibility for overloaded servers to

benefit from spare computation resources elsewhere. With

effective resource management strategies, this approach

provides the best and the most robust performance under

different network configurations.

16. REFERENCES
[1] Xiaodong Fu. Infrastructure Support for Accessing

Network Services in Dynamic Network environment.

Ph.D thesis, New York University, 2003.

[2] M. Castro, P. Druschel, A. Kermarrec, and A.

Rowstron. SCRIBE: A large-scale and decentralized

application-level multicast infrastructure. IEEE Journal

on Selected Areas in communications (JSAC), October

2002.

[3] S. D. Gribble and et al. The Ninja Architecture for

Robust Internet-Scale Systems and Services. Special

Issue of IEEE Computer Networks on Pervasive

Computing, 2000.

[4] N. C. Hutchinson and L. L. Peterson. The x-Kernel:

An Architecture for Implementing Network Protocols.

IEEE Transactions on Software Engineering, 17(1):64–

76, 1991.

[5] D. S. Alexander,W. A. Arbaugh, M.W. Hicks, P.

Kakkar, A. D. Keromytis, J. T. Moore, C. A. Gunter, S.

M. Nettles, and J. M. Smith. The switchware active

network architecture. IEEE Network Special Issue on

Active and Controllable Networks, 12(3):29– 36, 1998.

[6] B. Noble. System Support for Mobile, Adaptive

Applications. IEEE Personal Communications, pages

44–49, February 2000.

[7] U. Varshney and R. Vetter. Emerging Mobile and

Wireless Networks. Communications of the ACM, pages

73–81, June 2000.

[8] R. Wolski, N. T. Spring, and J. Hayes. The network

weather service: a distributed resource performance

forecasting service for metacomputing. Future

Generation Computer Systems, 15(5–6):757–768, 1999.

[9] The IPSEC working group. IP security protocol

(IPSec). In Internet Draft, April 2003.

[10] Sun Microsystems. Enterprise Java Beans(tm)

specification 2.1 proposed final draft 2. Technical report,

Jun 2003.

