
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.5, March 2012

14

A Hybrid Algorithm for Solving Steiner Tree Problem

Samira Noferesti

Electrical and Computer Engineering Department,
University of Sistan and Baluchestan, Iran

Hamed Shah-Hosseini
Electrical and Computer Engineering Department,

Shahid Beheshti University

ABSTRACT

In this paper, a hybrid algorithm based on modified intelligent

water drops algorithm and learning automata for solving

Steiner tree problem is proposed. Since the Steiner tree

problem is NP-hard, the aim of this paper is to design an

algorithm to construct high quality Steiner trees in a short

time which are suitable for real time multicast routing in

networks. The global search and fast convergence ability of

the intelligent water drops algorithm make it efficient to the

problem. To achieve better results, we used learning automata

for adjusting IWD parameters. IWD has several parameters.

The appropriate selections of these parameters have large

effects on the performance and convergence of the algorithm.

Experimental results on the OR-library test cases show that

the proposed algorithm outperforms traditional heuristic

algorithms and other iteration based algorithms with faster

convergence speed.

General Terms

Keywords

Intelligent water drops algorithm; Steiner tree problem;

Learning automata; Parameter adaptation

1. INTRODUCTION
Multicasting is the ability of a communication network which

allows a source node to communicate with multiple

destination nodes. One way to establish a multicast session is

to build a multicast tree connecting the members of the

multicast group. This multicast tree is rooted at the source

node and spans all destination nodes such that the

communication cost becomes minimized. Multicast routing

problem has many applications such as audio and video

conferencing and multiplayer games. Recently, with the high

demand of real time communication services, most

researchers have focused on developing algorithms that

produce high quality multicast trees with low computational

cost. One of the most popular algorithms for building

multicast trees in networks is Steiner tree algorithms [1,2].

The Steiner minimum tree (SMT) is the shortest network

spanning a set of nodes called terminals with the use of

additional points named Steiner points. The determination of a

Steiner tree is NP-complete and hard even to approximate

In this paper a hybrid algorithm based on intelligent water

drops (IWD) algorithm and learning automata is proposed for

solving the Steiner tree problem in graphs. The IWD

algorithm was first introduced in [3] and has been used for

some of well-known NP-hard combinatorial optimization

problems such as the travelling salesman problem (TSP) [4],

multiple knapsack problems (MKP), n-queen puzzle,

automatic multilevel thresholding [5] and economic load

dispatch [6] and reached promising results. We use the

modified IWD algorithm called EIWD in which some elitist

IWDs perform global soil updating instead of the best-

iteration IWD. In order to overcome the problem of premature

convergence, when all elitist IWDs produce the same tree the

amount of soil on all edges of the graph is set to the initial

value and then global soil updating is done for the best

resulted tree. Also, to achieve better results learning automata

are used for adjusting IWD parameters. Simulation results

show that these extensions improve the original IWD

algorithm for solving Steiner tree problem.

The rest of the paper is organized as follows. Section 2,

formally defines the Steiner tree problem and reviews the

previous works to solve it. A brief description of the IWD

algorithm and the proposed algorithm for solving Steiner tree

problem is given in section 3. Section 4 describes learning

automata based approach for adaptation of IWD parameters.

Simulation results are presented in Section 5. Finally section 6

concludes the paper.

2. THE STEINERT TREE PROBLEM

AND RELATED WORKS
Two famous special cases of the Steiner tree problem are the

Euclidean Steiner tree and rectilinear Steiner tree. In both

problems the task is to find a shortest tree connecting given

points in the plane. The only difference in these special cases

is the metric used to measure distances. In the Euclidean

Steiner tree problem distances are measured by the L2, i.e. the

Euclidean metric, while in the rectilinear Steiner tree problem

distances are measured by the L1 metric [7,8]. These two

special cases of the Steiner tree problem have been studied

intensely. However, Steiner tree problems arising in practical

applications usually involve cost functions that do not satisfy

the L1 or L2 metric. This motivates the study of the Steiner

tree Problem in graphs. Since in the Steiner tree in graphs we

do not have any restrictions on the length function for the

edges in the graph, we can model any Steiner tree problem in

any metric by a Steiner tree problem in graphs.

The Steiner tree problem in graphs is formally defined as

follows: Given an edge-weighted graph G = (V, E) and a

subset of vertices called terminals, the goal is to find a

minimum-weight connected subgraph of G that includes all

terminals. It has been proven that the resulting subgraph is

always a tree and it is known as the Steiner tree. The cost of a

Steiner tree is defined as the total cost of all links included in

the tree.

http://mathworld.wolfram.com/NP-CompleteProblem.html
http://mathworld.wolfram.com/Subgraph.html

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.5, March 2012

15

If the resulted tree just contained terminals, the tree is a

minimum spanning tree and many well-known polynomial

time algorithms such as Prim’s algorithm [9] have been

proposed for solving this problem. However in general, the

tree may include some auxiliary non-terminal points called

Steiner vertices or Steiner points. Steiner points are used to

decrease the overall cost of the tree. As an example, consider

the graph of figure 1. In this figure, terminals are numbered

with 1, 2, 3 and 4. The Steiner minimal tree includes two

Steiner points which are highlighted and has a cost of 8.

Fig 1: An example of the Steiner tree in graph

The Steiner tree problem is NP-hard even in Euclidean or

rectilinear metrics [10-12]. A lot of works have been done to

find exact algorithms as well as heuristic approaches to solve

the Steiner tree problem. Exact algorithms usually based on

dynamic programming and branch and cut algorithms [7]

require significant computational effort and they aren’t

appropriate for most practical applications such as multicast

routing in networks. Therefore much more previous efforts

were heuristic algorithms [7, 13-15] such as the shortest path

heuristic (SPH), the distance network heuristic (DNH) and the

average distance heuristic (ADH) [16]. Most of the traditional

heuristic algorithms either need long computational time or

generate low quality solutions.

After introducing evolutionary algorithms, genetic algorithms

have been successfully used for building Steiner trees [17-18].

These algorithms reach good results but may encounter the

long computational time to obtain the solutions because they

have to iterate many generations to converge. In recent years,

swarm intelligence approaches such as particle swarm

intelligence (PSO) [19-20] and ant colony optimization

(ACO) [2,21] have been successfully applied to the Steiner

tree problem. In this paper we pursue these approaches and

use the modified IWD algorithm with learning automata for

parameter adaptation.

3. THE IWD ALGORITHM
Intelligent Water Drops or IWD is a new swarm intelligence

technique based on observation of natural water drops moving

in rivers, lakes and seas. Natural water drops which follow in

a river often find good paths among lots of possible paths.

These near optimal or optimal paths are obtained by

cooperation among the water drops and the water drops with

the riverbeds.

In IWD algorithm, water drops move from source to

destination in discrete time steps. Each IWD has two

attributes: soil and velocity and begins its trip with an initial

velocity and zero soil. During its trip, each IWD removes

some soil from the riverbed and transfers soil from one place

to another place. The amount of soil which an IWD is

gathered from the bed depends on its velocity. Faster water

drops can gather and transfer more soil. In addition, when an

IWD encounters several paths, it needs a mechanism to select

among them. Water drops prefer to select the paths which

have low soil [4-5]. In the following, we introduce the IWD

algorithm to solve the Steiner tree problem in graphs.

3.1 The IWD Algorithm for Solving

Steiner Tree Problem
In the first step, the SMT problem should be represented in a

suitable way for IWD algorithm. For this reason, the

candidate Steiner points in the original graph are numbered

from 1 to m. Where m is the number of non-terminal nodes.

Then a new directed graph (V,E) is constructed where the

node set V denotes the candidate Steiner points of the original

graph and edge set E denotes the directed edges between

nodes. Every node ni has exactly two directed links to the next

node ni+1 called above and below links.

Each IWD begins constructing its solution from the first node

n1, then travels from node n1 to n2 and continues its trip until it

reaches the last node nm+1. It means that when an IWD is in

node ni, the next node will be ni+1. Selecting the above link by

the IWD in node ni means that the ith non-terminal node will

be in the Steiner tree. In contrast, selecting the below link

means the node ni will not be in the final tree. On the other

hand, each IWD is responsible for extracting appropriate set

of Steiner points. The IWD algorithm for solving Steiner tree

problem is as follows:

1. The static and dynamic parameters of the IWD algorithm

are set to appropriate values. We choose the following

parameter values. For velocity updating the parameters are

av=1, bv=0.01 and cv=1 and for soil updating the parameters

are as=1, bs=0.01 and cs=1. The initial soil on each link is set

to 10000. The initial velocity and soil of each IWD is set to

200 and 0 respectively. The global soil updating parameter

 𝜌𝑖𝑤𝑑 is set to 0.9. 𝜌𝑠 is set to 1.9. The local soil updating

parameters 𝜌 is chosen as a negative value -0.9. These

values are the same values used in [4].

2. The number of water drops is equal to the number of non-

terminal nodes. As be mentioned, the role of each IWD is to

construct a solution by selecting some of candidate Steiner

points. Thus, each IWD has a list of selected nodes S which

is empty at first.

3. At the start of each iteration, all IWDs are placed on the first

node n1.

4. The IWD in node i chooses the link l to reach the next node

i+1 according to the following probability:

𝑃𝑖 ,𝑙
𝐼𝑊𝐷 =

𝑓 𝑠𝑜𝑖𝑙 𝑖 ,𝑙

𝑓 𝑠𝑜𝑖𝑙 𝑖 ,𝑎𝑏𝑜𝑣𝑒 +𝑓 𝑠𝑜𝑖𝑙 𝑖 ,𝑏𝑒𝑙𝑜𝑤
 (1)

f(𝑠𝑜𝑖𝑙𝑖,𝑙) =
1

𝜀𝑠+𝑔(𝑠𝑜𝑖𝑙𝑖,𝑙)
 (2)

𝑔 𝑠𝑜𝑖𝑙𝑖,𝑙 =
𝑠𝑜𝑖𝑙𝑖,𝑙 𝑖𝑓 𝑚𝑖𝑛𝑗∈{𝑎𝑏𝑜𝑣𝑒 ,𝑏𝑒𝑙𝑜𝑤 }𝑠𝑜𝑖𝑙𝑖,𝑗 ≥ 0

𝑠𝑜𝑖𝑙𝑖,𝑙 −𝑚𝑖𝑛𝑗 ∈{𝑎𝑏𝑜𝑣𝑒 ,𝑏𝑒𝑙𝑜𝑤 }𝑠𝑜𝑖𝑙𝑖,𝑗 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

Where 𝑃𝑖,𝑙
𝐼𝑊𝐷 is the probability of selecting link l to move to

the next node and s is a small positive number which

prevents division by zero in function f(.). 𝑠𝑜𝑖𝑙𝑖,𝑙 represents

the amount of soil on the output link l of node i. If an IWD

selects the link above, node i is added to its set S.

5. Whenever an IWD travels from node i to the next node

through link l, its velocity is updated as follows:

𝑣𝑒𝑙𝐼𝑊𝐷 𝑡 + 1 = 𝑣𝑒𝑙 𝑡 +
𝑎𝑣

𝑏𝑣+𝑐𝑣 .𝑠𝑜𝑖𝑙 𝑖,𝑙
∝ 𝑙𝜖 𝑎𝑏𝑜𝑣𝑒, 𝑏𝑒𝑙𝑜𝑤 (4)

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.5, March 2012

16

Where 𝑣𝑒𝑙𝐼𝑊𝐷(𝑡 + 1) is the updated velocity of the IWD.

is set to 3 by using trial and error procedure. av,bv and cv are

constant parameters.

6. The amount of soil which the IWD removes from the

current link l between node i to node i+1 is calculated by:

∆𝑠𝑜𝑖𝑙𝑖,𝑙 =
𝑎𝑠

𝑏𝑠 + 𝑐𝑠 . 𝑡𝑖𝑚𝑒𝜃 𝑖, 𝑙,𝑣𝑒𝑙𝐼𝑊𝐷

𝑡𝑖𝑚𝑒 𝑖, 𝑙, 𝑣𝑒𝑙𝐼𝑊𝐷 =
1

𝑣𝑒𝑙𝐼𝑊𝐷

 (5)

Where 𝑡𝑖𝑚𝑒 𝑖, 𝑙, 𝑣𝑒𝑙𝐼𝑊𝐷 represents the time is needed to

travel from node i to node i+1 via link l with the velocity

velIWD . as, bs and cs are constant parameters.

7. The soil of the path traversed by each IWD and the soil of

each IWD are updated by the following equations.

𝑠𝑜𝑖𝑙𝑖,𝑙 = (1 − 𝜌). 𝑠𝑜𝑖𝑙𝑖,𝑙 − 𝜌.∆𝑠𝑜𝑖𝑙𝑖,𝑙 (6)

𝑠𝑜𝑖𝑙𝐼𝑊𝐷 = 𝑠𝑜𝑖𝑙𝐼𝑊𝐷 + ∆𝑠𝑜𝑖𝑙𝑖,𝑙 (7)

Where 𝑠𝑜𝑖𝑙𝐼𝑊𝐷 is the amount of soil that the IWD carries

and 𝜌 is a constant parameter.

8. Each IWD follows step 2-6 repeatedly till it reaches the last

node. Then the modified Prim’s algorithm is run to

construct a minimum spanning tree to connect destination

nodes including terminals and selected Steiner points S of

each IWD. In this process one of the terminal nodes is

selected randomly. Then, other destination nodes are added

to the tree one by one until all destination nodes are

included in the tree. Each destination node is added to the

tree by the shortest path which only includes destination

nodes. If there is no such path, intermediate nodes are also

added into the tree. The constructed tree may include non-

terminal nodes in its leaves. Therefore the tree must be

pruned and non-terminal leaves must be deleted. To find out

the redundant nodes, a depth first search is performed on the

tree. During this search, the non-terminal nodes with degree

1 are deleted.

9. The reverse of the Steiner tree cost is used to measure the

fitness of IWDs. Then, the best IWD of the current iteration

is determined. The best IWD is the IWD with the minimum

Steiner tree cost. We named this IWD as the best-iteration

IWD and called its tour as TIB.

10. A local search is performed on the best IWD of the

current iteration. The local search treats each edge in Steiner

tree according to the following steps (Ding and Ishii 1995):

 Delete the edge and depart the tree into two parts. Use

depth-first search to delete redundancy nodes in two

parts, and then calculate the sum of links included in

two parts.

 Assume the two parts as two nodes sets, find the

shortest path between two nodes sets.

 If the path cost is smaller than that of source tree,

replace the old edge by the new path, otherwise, the

edge is taken as the part of Steiner tree.

11. The soil on the path of the best-iteration IWD is updated

as:

𝑠𝑜𝑖𝑙𝑖,𝑗 = 𝜌𝑠 . 𝑠𝑜𝑖𝑙𝑖,𝑗 − 𝜌𝑖𝑤𝑑 .
1

𝑁𝐼𝐵−1
. 𝑠𝑜𝑖𝑙𝐼𝐵

𝐼𝑊𝐷 ∀ 𝑖, 𝑗 𝜖𝑇𝐼𝐵 (8)

Where 𝑠𝑜𝑖𝑙𝐼𝐵
𝐼𝑊𝐷 is the soil gathered by the best-iteration

IWD. 𝑁𝐼𝐵 is the number of Steiner points chosen by the

best-iteration IWD. 𝜌𝑠 and 𝜌𝑖𝑤𝑑 are constant parameters.

12. The total-best solution 𝑇𝑇𝐵 is updated by the current

iteration-best solution 𝑇𝐼𝐵 as follows:

𝑇𝑇𝐵 =
𝑇𝐼𝐵 𝑖𝑓 𝑓(𝑇𝐼𝐵) ≥ 𝑓(𝑇𝑇𝐵)

𝑇𝑇𝐵 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

Where f(.) represents the fitness function.

13. The algorithm is repeated for the prescribed number of

iterations and global best solution is chosen as the minimum

Steiner tree.

3.2 The Extended IWD Algorithm
In the original IWD algorithm, only the best IWD of each

iteration performs global soil updating. However, in the

extended IWD algorithm, Ne elitist IWDs are selected and

they perform global soil updating at the end of each iteration.

The elitist IWDs are IWDs of the current iteration with the

smallest values for the Steiner tree cost. In addition, the local

search is performed by elitist IWDs instead of the best-

iteration IWD. To overcome the premature convergence,

another extension to the original IWD algorithm is done.

When all elitist IWDs of the iteration produce the same tree,

the amount of soil on all edges of the graph is set to the initial

value and then the global soil updating is done for the best

resulted tree until this iteration. Therefore we changed the

IWD algorithm for solving Steiner tree problem as follows:

1-7. Follow steps 1 to 7 of the IWD algorithm sequentially.

8. Calculate Steiner tree cost for each IWD and sort IWDs

according to their Steiner tree cost in ascending order and

select the first Ne IWDs from the resulted list.

 9. Local search is performed on elitist IWDs.

10.The global-best solution TTB is updated such as IWD

algorithm.

11. If all elitist IWDs produce the same tree, the amount of

soil on all edges of the graph is set to 10000 and the soil on

the path of the global-best solution TTB is updated as:

soili,j = ρs . soili,j − ρiwd .
1

N IB −1
. soilIB

IWD ∀ i, j ϵTTB (10)

Otherwise, the soil on the path of each elitist IWD e with

the tour Te
IB is updated as:

soili,j = ρs . soili,j − ρiwd .
1

N IB
e −1

. soilIB
e ∀(i, j)ϵTe

IB (11)

Where soilIB
e is the soil is gathered by the elitist IWD e. NIB

e

is the number of Steiner points chosen by the elitist IWD e.

ρs and ρiwd are constant parameters.

12. The algorithm is repeated for the predefined number of

iterations and global best solution is chosen as the minimum

Steiner tree.

The flowchart of the EIWD algorithm is shown in Figure 2.

4. USING LEARNING AUTOMATA FOR

PARAMETER ADAPTATION OF EIWD

ALGORITHM

Intelligent Water Drops algorithm has several parameters such

as global soil updating parameter ρiwd , local soil updating

parameter ρ, velocity updating parameters , av, bv and cv and

soil updating parameters , as, bs and cs. The efficiency of the

IWD algorithm is greatly dependent on tuning its parameters.

Usually, the optimal (or near optimal) parameters are chosen

by the trial-and-error procedure or using the past experience.

As the number of trials necessary to fine-tune the parameters

is usually quite high, it is often the case that limited time is

used for each algorithm run.

Several researches have suggested using learning automata for

automatically adjusting the parameters of different algorithms

and obtained good results [22-23]. In this paper, we improve

http://www.mathworks.com/help/techdoc/ref/sort.html

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.5, March 2012

17

the performance of IWD algorithm by using learning automat

for adaptation of α, , ρs , ρiwd and ρ parameters. These

parameters have a great impact on the algorithm performance

and convergence. We use learning automata to show how the

Fig 2: Flowchart of the EIWD algorithm for solving Steiner tree problem

state of the algorithm should influence the parameters. During

the runs, the algorithm may learn what is the relation between

the algorithm state, and the optimal parameter values.

4.1 Learning Automata
An automaton is a machine designed to automatically follow a

predetermined sequence of operations or respond to encoded

instructions. A finite number of actions can be performed in a

random environment. When a specific action is performed, the

environment provides a random response which is either

favorable or unfavorable. The objective in the design of the

automaton is to determine how the choice of the action at any

stage should be guided by past actions and responses.

Learning automata can be classified into two main families,

fixed and variable structure learning automata.

The proposed algorithm is implemented with different kinds

of learning automata. Simulation results show that the Krylov

automaton produces better results than other fixed structure

learning automata and variable structure learning automata. In

[23] is shown that how we can choose the best automaton for

parameter adaptation of ant colony optimization for solving

Steiner tree problem. In the following, we briefly describe

Krylov automaton which we use in this paper.

4.2 Krylov Learning Automata
The Krylov automaton has 2N states and two actions. It keeps

an account of the number of successes and failures received

for each action. For favorable response the automaton moves

deeper into the memory of the corresponding action and for

unfavorable response moves out of it. The state transition

graph of Krylov automaton is shown in Figure 3.

a. favorable response

b. unfavorable response

Fig 3: The state transition graph for Krylov automaton

1 2 N-1 3 N+1 N N+2 2N-1 N+3 2N

1 N-12 N 2N-1 N+22N

0.5

0.5 0.5 0.5 0.5 0.5

0.5

N+1

Step 3-6. Each IWD constructs a Steiner tree

5. Compute the amount of soil (soil)

which is gathered by the IWD

6. Update the edge soil and the IWD soil

Have all IWDs

completed

their solutions

4. Select an edge to reach to the next node

3. Update the velocity of the IWD

no

yes

Step1: Parameters initialization

itr1

Step2: Put all IWDs on the first node

Step 8. Find the elitist IWDs

Step 9. Perform the local search

on elitist IWDs

Step 10. Update the global best solution

Step 11. If all Elitist IWDs produce the same tree Then
 - the amount of soil on all edges is set to 10000

 - global soil updating is done for the global best solution

Else Perform global soil updating by elitist IWDs

Step 7. For each IWD construct a

Steiner tree by using Prim’s algorithm

itr < max_itr

yes

itr itr + 1

Return the

global best

Go to the step 2

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.5, March 2012

18

Table 1. Comparison of IWD and EIWD with other algorithms

Graph

No.

Optimal

Cost
|nodes| |Edges| |Terminals| SDG SPH ADH ACS NLA GA PSO IWD EIWD

1 82 50 63 9 0 0 0 0 0 0 0 0 0

2 83 50 63 13 84.3 0 0 0 0 0 0 0 0

3 138 50 63 25 1.45 0 0 0 0 0 0 0 0

4 59 50 100 9 8.43 5.08 5.08 2.7 0 0 0 0 0

5 61 50 100 13 4.92 0 0 0 0 0 0 0 0

6 122 50 100 25 4.92 3.28 1.64 1.8 0 0 0 0 0

7 111 75 94 13 0 0 0 0 0 0 0 0 0

8 104 75 94 19 0 0 0 0 0 0 0 0 0

9 220 75 94 38 27.2 0 0 0.05 0 0 0 0 0

10 86 75 150 13 3.95 4.65 4.65 3.84 0 0 0 0 0

11 88 75 150 19 2.27 2.27 2.27 1.59 1.8 0 0 0.23 0

12 174 75 150 38 0 0 0 0.11 0 0 0 0 0

13 165 100 125 17 6.06 7.88 2.24 0 4.2 0 0 0.61 0

14 235 100 125 25 1.28 2.55 0.43 0.09 0 0 0 0 0

15 318 100 125 50 2.20 0 0 0 0 0 0 0 0

16 127 100 200 17 7.87 3.15 0 0.16 1.2 0 0 0 0

17 131 100 200 25 34.5 3.82 3.05 1.22 1.3 0 0 0 0

18 218 100 200 50 4.59 1.83 0 1.42 0 0 0 0.46 0

4.3 Parameter Adaptation by Using Krylov

Automaton
To adjust IWD parameters we used 5 learning automata. Each

automaton is used for setting one decision parameter. Legal

values for decision parameters are as follows.

∝, θ ∈ 2,3,4 (12)

ρ ∈ −0.5,−0.6,−0.7,−0.8,−0.9

ρs ∈ {1.5, 1.6, 1.7, 1.8, 1.9, 2 ,2.1 ,2.2}

ρiwd = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

The actions of an automaton are legal values of the

correspond parameter. At the start of the algorithm, selected

actions of learning automata (IWD parameters) and the depth

associated with each action (N) are chosen randomly form the

set of allowable values. At the beginning of each iteration of

the IWD algorithm, each learning automaton selects one of its

actions. The values of selected actions are used by all water

drops to produce Steiner trees. At the end of the iteration, cost

of the best-iteration tree is given to learning automata as the

response of the environment. If the best-iteration tree cost is

less than the global-best tree cost until this iteration, selected

actions by each of the five automata are rewarded. Otherwise

selected actions are penalized.

5. Experimental results
In the first experiment, we ran the IWD and EIWD on the B-

problem set from OR-library [24]. The results are the average

date of 10 runs for each test instance with 50 iterations for

each run. Table 1 compares the performance of the proposed

algorithms with seven reported algorithms for building Steiner

tree in graphs while the details of DNH1, SPH2 and ADH3

have been illustrated in [16]. Ant colony optimization (ACS),

learning automata approach (NLA) and particle swarm

intelligence technique are described in [21], [25] and [19]

respectively.

The format of Table 1 is as follows: The first column is used

to express the graph number in B-problem set from Beasley.

The second column gives the optimal cost of Steiner tree, the

next three columns indicate the number of nodes, edges and

terminals of each graph and other columns give relative error

for each algorithm. The relative error criterion calculated as

follows.

relative− error =
C−Copt

Copt
 (13)

Where Copt is the optimal solution of a given problem and C is

the solution by a certain algorithm. In this experiment, we

used trial and error procedure to select the best values for

IWD parameters. These values are ∝= 3, θ = 3,ρ =
−0.9, ρs = 1.9 and ρiwd = 0.9.

Table 1 shows that EIWD gets better results compared to

IWD. The EIWD obtained the optimal solution for all

instances. Even though the IWD can’t succeed in obtaining

the optimal solution on problems B11, B13 and B18, the

relative error values are very small and the algorithm

outperforms other algorithms expect for GA and PSO.In the

second experiment, we compare the convergence speed of the

best algorithms of the previous experiment. Table 2 shows the

1
 Distance network heuristic

2 Shortest path heuristic
3 Average distance heuristic

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.5, March 2012

19

number of generated Steiner trees by GA and PSO before

finding out the optimal tree. As can be seen, our proposed

algorithm has much faster convergence speed than others. The

EIWD generates average 57 trees to find the optimal solutions

which is only 7% of the GA and 40% of the PSO. In

conclusion, although GA and PSO find out the optimal

solutions but they require excessive execution time especially

for large size networks and it is not suitable for time limited

applications such as real time multicasting.

Table 2. The number of trees generated by PSO, GA and

EIWD.

Graph No. PSO GA EIWD

1 42 105 5

2 54 160 5

3 52 100 5

4 82 120 21

5 50 130 5

6 258 515 6

7 42 275 5

8 48 185 5

9 56 275 17

10 72 780 5

11 142 585 60

12 144 260 22

13 468 1100 72

14 342 4020 205

15 94 1380 27

16 110 885 10

17 144 925 42

18 338 1250 500

average 141 725 56.5

To determine the number of elitist IWDs (Ne), we ran EIWD

algorithm with different number of elitist IWDs and calculate

the average relative error on 18 test cases of OR-library.

Figure 4 shows that the best value for Ne is 5. Thus, in all

experiments we set Ne as 5.

Fig 4. Average relative error versus number of elitist

IWDs

In the next experiment, we examine the effect of parameter

adaptation on the performance of the EIWD algorithm. At

first, we used trial and error procedure to find parameter

setting that results in optimal trees for all test cases of B-

problem set. Then, we ran EIWD algorithm on C-problem set

of OR-library by using these values and by using learning

automata for parameter adaptation. C-problem set is a set of

large and hard networks with 500 nodes in the OR-library.

The results are average of 5 runs of the algorithms with 50

iterations in each run. Table 3 shows that using learning

automata for parameter adaptation improve the performance

of the algorithm. In fact, using learning automata causes that

algorithms adapt better to the particular instance's

characteristics. The proposed algorithm also obtained better

results compared to genetic algorithm.

Table 3: The effect of learning automata for parameter

adaptation

Graph

No.

Optimal

Cost

GA EIWD

With

constant

parameters

EIWD

With

parameter

adaptation

1 85 0 0 0

2 144 0 0 0

3 754 0.50 0.13 0.05

4 1079 0.44 0.18 0.17

5 1579 0.10 0.19 0.09

6 55 0 0 0

7 102 0 0 0

8 509 1.14 1.18 0.63

9 707 1.27 1.41 1.27

10 1093 0.36 0.64 0.64

11 32 0 0 0

12 46 0.43 0 0

13 258 1.36 1.16 1.16

14 323 1.42 1.55 1.55

15 556 1.04 0.54 0.54

16 11 2.73 0 0

17 18 1.11 4.44 1.11

18 113 4.78 6.19 4.78

19 146 5 7.53 5.14

20 267 2.02 0.75 0.22

In summary, EIWD algorithm provides an acceptable trade

off between solution quality and solution time.

6. CONCLUSION AND FUTURE WORKS
In this paper, we extended the IWD algorithm for solving

Steiner tree problem in graphs. In our extended version, at the

end of each iteration instead of the best IWD of the iteration,

prescribed numbers of the best IWDs (called elitist IWDs)

perform global soil updating. In addition, to overcome the

problem of premature convergence, when all elitist IWDs

produce the same tree the amount of soil on all edges of the

graph is set to the initial value and then the global soil

updating is done for the best resulted tree.

To assess the performance of the proposed algorithm, the B-

problem set of the OR-library is used. Experimental results

show that our algorithm is able to find optimal solutions for

0

0.02

0.04

0.06

0.08

1 2 3 4 5

av
e

ra
ge

 o
f

re
la

ti
ve

 e
rr

o
r

number of elitist IWDs

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.5, March 2012

20

all test instances in B-problem set from Beasley. Compare to

GA and PSO which are able to obtain optimal solutions for all

test cases in the OR-library, the proposed algorithm has much

faster convergence speed. This indicates that the EIWD

algorithm is an efficient approach in real time multicast

routing.

In addition, we improved the performance of EIWD algorithm

for solving Steiner tree problem by hybridizing it with

learning automata for parameter adaptation. Experimental

results on C-problem set of the OR-library showed that this

hybrid algorithm achieved better results.

Adapting the EIWD algorithm to Euclidian and Rectilinear

Steiner tree problems and other variations of the problem such

as Steiner forest or prize collecting Steiner forest problem,

will be an interesting future research field. In addition, the

EIWD algorithm has quick convergence that can be

advantageous for time constrained problems. This future helps

to extend proposed algorithm for solving dynamic Steiner tree

problem.

7. REFERENCES
[1] Li, K., Shen, C., Jaikaeo, C. and Sridhara, V. 2008. Ant-

based Distributed Constrained Steiner Tree Algorithm

for Jointly Conserving Energy and Bounding Delay in

Ad hoc Multicast Routing, ACM Transactions on

Autonomous and Adaptive Systems, 3, 1.

[2] Hu, X., Zhang, J. and Zhang, L. 2009. Swarm

Intelligence Inspired Multicast Routing: An Ant Colony

Optimization Approach, EvoWorkshops, 51-60.

[3] Shah-Hosseini, H. 2007. Problem Solving by Intelligent

Water Drops, in Proceedings of IEEE Congress on

Evolutionary Computation, Singapore, 3226-3231.

[4] Shah-Hosseini, H. 2009. The Intelligent Water Drops

Algorithm: A Nature-Inspired Swarm-Based

Optimization Algorithm, International Journal of Bio-

Inspired Computation, 1 , 71-79.

[5] Shah-Hosseini, H. 2009. Optimization with the Nature-

Inspired Intelligent Water Drops Algorithm, In Santos,

W.P.D. ed. Evolutionary computation. Tech, Vienna,

Austria, 297-320.

[6] Shah-Hosseini, H. 2011. An Intelligent Water Drop

Algorithm for Solving Economic Load Dispatch

Problem, International Journal of Electrical and

Electronics Engineering, 5, 1.

[7] Hougardy, S., and Promel, H. J. 1999. A 1.598

Approximation Algorithm for the Steiner Problem in

Graphs, ACM-SIAM Symposium on Discrete Algorithm,

USA, 448-453, 1999.

[8] Laarhoven, V. and William, J. 2010. Exact and Heuristic

Algorithms for the Euclidean Steiner Tree Problem, PhD

thesis., University of Iowa.

[9] Cormen, T. H., Leiserson, C. E., Rivest, R.L., and Stein,

C. (2001), Introduction to Algorithms, 2nd edn. MIT

Press, Cambridge.

[10] Karp, R. M. 1972. Reducibility among combinatorial

problems, In Complexity of Computer Computation,

Plenum Press, New York, 8-103.

[11] Garey, M. R., Graham, R. L. and Johnson, D.S. 1977.

The Complexity of Computing Steiner Minimal Trees,

SIAM Journal of Applied Mathematics, 32, 4, 835-859.

[12] Garey, M.R. and Johnson, D.S. 1977. The Rectilinear

Steiner Tree Problem is NP-complete, SIAM Journal on

Applied Mathematics, 32, 4, 826-834.

[13] Esbensen, H. 1995. Computing Near-Optimal Solutions

to the Steiner Problem in a Graph Using a Genetic

Algorithm, Networks, 26, 173-185.

[14] Robins, G. and Zelikovski, A. 2000. Improved Steiner

Tree Approximation in Graphs, In Proc. 11th ACM-

SIAM Symposium on Discrete Algorithms, pp. 770-779,

2000.

[15] Diane, M., and Plesnik, J. 1999. Three New Heuristics

for the Steiner Problem in Graphs, Acta Math., LX, 105-

121.

[16] Rayward-smith, V. J., and Clare, A. 1986. On Finding

Steiner vertices, Networks, 16, 283-294.

[17] Kapsalis, A., Rayward-smith, V. J., and Smith, J. D.

1993. Solving the Graphical Steiner Tree Problem Using

Genetic Algorithms, Journal of the Operational Research

Society, 44 , 397-406.

[18] Ding, S., and Ishii, N. 1995. An Online Genetic

Algorithm for Dynamic Steiner Tree Problem,

Symposium on Computational Geometry, 337-343.

[19] Zhan, Z., and Zhang, J. 2009. Discrete Particle Swarm

Optimization for Multiple Destination Routing Problems,

In Proceedings of EvoWorkshops, 117-122.

[20] Ma, X. and Liu, Q. 2010. A Particle Swarm Optimization

for Steiner Tree Problem, In Sixth International

Conference on Natural Computation, ICNC 2010, 2561-

2565.

[21] Tashakori, M., Adibi, P., Jahanian, A. and Norallah, A.

(2004), ‘Solving Dynamic Steiner Tree Problem by

Using Ant Colony System’, in 9th Annual Conference

of Computer Society Of Iran, Tehran, Iran.

[22] Meybodi, M. R., and Beigy, H. 2002. A Note on

Learning Automata Based Schemes for Adaptation of BP

Parameters, Journal of Neurocomputing, 48, 957-974.

[23] Noferesti, S., and Rajaei, M. 2011. A Hybrid Algorithm

Based on Ant Colony System and Learning Automata for

Solving Steiner Tree Problem, International Journal of

Applied Mathematics and Statistics, 22.

[24] Beasley, J. E. 1990. OR-Library: Distributing Test

Problems by Electronic Mail, Operational Research.

SOC., 41 ,11, 1096-1072.

[25] Noferesti, S., and Rajayi, M. 2009. Solving Steiner Tree

Problem by Using Learning Automata, Computational

Intelligence and Software Engineering, CiSE 2009, 1-4.

http://researchr.org/alias/qing-liu
http://researchr.org/publication/MaL10a-0
http://researchr.org/publication/MaL10a-0
http://researchr.org/publication/MaL10a-0
http://researchr.org/publication/icnc-2010
http://researchr.org/publication/icnc-2010
http://researchr.org/publication/icnc-2010
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362500
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362500
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362500

