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ABSTRACT 

In this paper, a hybrid algorithm based on modified intelligent 

water drops algorithm and learning automata for solving 

Steiner tree problem is proposed. Since the Steiner tree 

problem is NP-hard, the aim of this paper is to design an 

algorithm to construct high quality Steiner trees in a short 

time which are suitable for real time multicast routing in 

networks. The global search and fast convergence ability of 

the intelligent water drops algorithm make it efficient to the 

problem. To achieve better results, we used learning automata 

for adjusting IWD parameters. IWD has several parameters. 

The appropriate selections of these parameters have large 

effects on the performance and convergence of the algorithm. 

Experimental results on the OR-library test cases show that 

the proposed algorithm outperforms traditional heuristic 

algorithms and other iteration based algorithms with faster 

convergence speed.  

General Terms 
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1. INTRODUCTION 
Multicasting is the ability of a communication network which 

allows a source node to communicate with multiple 

destination nodes. One way to establish a multicast session is 

to build a multicast tree connecting the members of the 

multicast group. This multicast tree is rooted at the source 

node and spans all destination nodes such that the 

communication cost becomes minimized. Multicast routing 

problem has many applications such as audio and video 

conferencing and multiplayer games. Recently, with the high 

demand of real time communication services, most 

researchers have focused on developing algorithms that 

produce high quality multicast trees with low computational 

cost. One of the most popular algorithms for building 

multicast trees in networks is Steiner tree algorithms [1,2].  

The Steiner minimum tree (SMT) is the shortest network 

spanning a set of nodes called terminals with the use of 

additional points named Steiner points. The determination of a 

Steiner tree is NP-complete and hard even to approximate 

In this paper a hybrid algorithm based on intelligent water 

drops (IWD) algorithm and learning automata is proposed for 

solving the Steiner tree problem in graphs. The IWD 

algorithm was first introduced in [3] and has been used for 

some of well-known NP-hard combinatorial optimization 

problems such as the travelling salesman problem (TSP) [4], 

multiple knapsack problems (MKP), n-queen puzzle, 

automatic multilevel thresholding [5] and economic load 

dispatch [6] and reached promising results. We use the 

modified IWD algorithm called EIWD in which some elitist 

IWDs perform global soil updating instead of the best-

iteration IWD. In order to overcome the problem of premature 

convergence, when all elitist IWDs produce the same tree the 

amount of soil on all edges of the graph is set to the initial 

value and then global soil updating is done for the best 

resulted tree. Also, to achieve better results learning automata 

are used for adjusting IWD parameters. Simulation results 

show that these extensions improve the original IWD 

algorithm for solving Steiner tree problem.  

The rest of the paper is organized as follows. Section 2, 

formally defines the Steiner tree problem and reviews the 

previous works to solve it. A brief description of the IWD 

algorithm and the proposed algorithm for solving Steiner tree 

problem is given in section 3. Section 4 describes learning 

automata based approach for adaptation of IWD parameters. 

Simulation results are presented in Section 5. Finally section 6 

concludes the paper. 

2. THE STEINERT TREE PROBLEM 

AND RELATED WORKS 
Two famous special cases of the Steiner tree problem are the 

Euclidean Steiner tree and rectilinear Steiner tree. In both 

problems the task is to find a shortest tree connecting given 

points in the plane. The only difference in these special cases 

is the metric used to measure distances. In the Euclidean 

Steiner tree problem distances are measured by the L2, i.e. the 

Euclidean metric, while in the rectilinear Steiner tree problem 

distances are measured by the L1 metric [7,8]. These two 

special cases of the Steiner tree problem have been studied 

intensely. However, Steiner tree problems arising in practical 

applications usually involve cost functions that do not satisfy 

the L1 or L2 metric. This motivates the study of the Steiner 

tree Problem in graphs. Since in the Steiner tree in graphs we 

do not have any restrictions on the length function for the 

edges in the graph, we can model any Steiner tree problem in 

any metric by a Steiner tree problem in graphs. 

The Steiner tree problem in graphs is formally defined as 

follows: Given an edge-weighted graph G = (V, E) and a 

subset of vertices called terminals, the goal is to find a 

minimum-weight connected subgraph of G that includes all 

terminals. It has been proven that the resulting subgraph is 

always a tree and it is known as the Steiner tree. The cost of a 

Steiner tree is defined as the total cost of all links included in 

the tree.  

http://mathworld.wolfram.com/NP-CompleteProblem.html
http://mathworld.wolfram.com/Subgraph.html
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If the resulted tree just contained terminals, the tree is a 

minimum spanning tree and many well-known polynomial 

time algorithms such as Prim’s algorithm [9] have been 

proposed for solving this problem. However in general, the 

tree may include some auxiliary non-terminal points called 

Steiner vertices or Steiner points. Steiner points are used to 

decrease the overall cost of the tree. As an example, consider 

the graph of figure 1. In this figure, terminals are numbered 

with 1, 2, 3 and 4. The Steiner minimal tree includes two 

Steiner points which are highlighted and has a cost of 8. 

 
Fig 1: An example of the Steiner tree in graph 

The Steiner tree problem is NP-hard even in Euclidean or 

rectilinear metrics [10-12]. A lot of works have been done to 

find exact algorithms as well as heuristic approaches to solve 

the Steiner tree problem. Exact algorithms usually based on 

dynamic programming and branch and cut algorithms [7] 

require significant computational effort and they aren’t 

appropriate for most practical applications such as multicast 

routing in networks. Therefore much more previous efforts 

were heuristic algorithms [7, 13-15] such as the shortest path 

heuristic (SPH), the distance network heuristic (DNH) and the 

average distance heuristic (ADH) [16]. Most of the traditional 

heuristic algorithms either need long computational time or 

generate low quality solutions.  

After introducing evolutionary algorithms, genetic algorithms 

have been successfully used for building Steiner trees [17-18]. 

These algorithms reach good results but may encounter the 

long computational time to obtain the solutions because they 

have to iterate many generations to converge. In recent years, 

swarm intelligence approaches such as particle swarm 

intelligence (PSO) [19-20] and ant colony optimization 

(ACO) [2,21]  have been successfully applied to the Steiner 

tree problem. In this paper we pursue these approaches and 

use the modified IWD algorithm with learning automata for 

parameter adaptation. 

3. THE IWD ALGORITHM 
Intelligent Water Drops or IWD is a new swarm intelligence 

technique based on observation of natural water drops moving 

in rivers, lakes and seas. Natural water drops which follow in 

a river often find good paths among lots of possible paths. 

These near optimal or optimal paths are obtained by 

cooperation among the water drops and the water drops with 

the riverbeds.  

In IWD algorithm, water drops move from source to 

destination in discrete time steps. Each IWD has two 

attributes: soil and velocity and begins its trip with an initial 

velocity and zero soil. During its trip, each IWD removes 

some soil from the riverbed and transfers soil from one place 

to another place. The amount of soil which an IWD is 

gathered from the bed depends on its velocity. Faster water 

drops can gather and transfer more soil. In addition, when an 

IWD encounters several paths, it needs a mechanism to select 

among them. Water drops prefer to select the paths which 

have low soil [4-5]. In the following, we introduce the IWD 

algorithm to solve the Steiner tree problem in graphs. 

3.1 The IWD Algorithm for Solving 

Steiner Tree Problem 
In the first step, the SMT problem should be represented in a 

suitable way for IWD algorithm. For this reason, the 

candidate Steiner points in the original graph are numbered 

from 1 to m. Where m is the number of non-terminal nodes. 

Then a new directed graph (V,E) is constructed where the 

node set V denotes the candidate Steiner points of the original 

graph and edge set E denotes the directed edges between 

nodes. Every node ni has exactly two directed links to the next 

node ni+1 called above and below links.  

Each IWD begins constructing its solution from the first node 

n1, then travels from node n1 to n2 and continues its trip until it 

reaches the last node nm+1. It means that when an IWD is in 

node ni, the next node will be ni+1. Selecting the above link by 

the IWD in node ni means that the ith non-terminal node will 

be in the Steiner tree. In contrast, selecting the below link 

means the node ni will not be in the final tree. On the other 

hand, each IWD is responsible for extracting appropriate set 

of Steiner points. The IWD algorithm for solving Steiner tree 

problem is as follows: 

1. The static and dynamic parameters of the IWD algorithm 

are set to appropriate values. We choose the following 

parameter values. For velocity updating the parameters are 

av=1, bv=0.01 and cv=1 and for soil updating the parameters 

are as=1, bs=0.01 and cs=1. The initial soil on each link is set 

to 10000. The initial velocity and soil of each IWD is set to 

200 and 0 respectively. The global soil updating parameter 

 𝜌𝑖𝑤𝑑  is set to 0.9. 𝜌𝑠  is set to 1.9. The local soil updating 

parameters 𝜌 is chosen as a negative value -0.9. These 

values are the same values used in [4]. 

2. The number of water drops is equal to the number of non-

terminal nodes. As be mentioned, the role of each IWD is to 

construct a solution by selecting some of candidate Steiner 

points. Thus, each IWD has a list of selected nodes S which 

is empty at first. 

3. At the start of each iteration, all IWDs are placed on the first 

node n1. 

4. The IWD in node i chooses the link l to reach the next node 

i+1 according to the following probability: 

𝑃𝑖 ,𝑙
𝐼𝑊𝐷 =

𝑓 𝑠𝑜𝑖𝑙 𝑖 ,𝑙 

𝑓 𝑠𝑜𝑖𝑙 𝑖 ,𝑎𝑏𝑜𝑣𝑒  +𝑓 𝑠𝑜𝑖𝑙 𝑖,𝑏𝑒𝑙𝑜𝑤  
                                               (1) 

f(𝑠𝑜𝑖𝑙𝑖,𝑙 ) = 
1

𝜀𝑠+𝑔(𝑠𝑜𝑖𝑙𝑖,𝑙)
                                                       (2) 

𝑔 𝑠𝑜𝑖𝑙𝑖,𝑙 =  
𝑠𝑜𝑖𝑙𝑖,𝑙           𝑖𝑓 𝑚𝑖𝑛𝑗∈{𝑎𝑏𝑜𝑣𝑒 ,𝑏𝑒𝑙𝑜𝑤 }𝑠𝑜𝑖𝑙𝑖,𝑗 ≥ 0

𝑠𝑜𝑖𝑙𝑖,𝑙 −𝑚𝑖𝑛𝑗 ∈{𝑎𝑏𝑜𝑣𝑒 ,𝑏𝑒𝑙𝑜𝑤 }𝑠𝑜𝑖𝑙𝑖,𝑗        𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
              (3) 

Where 𝑃𝑖,𝑙
𝐼𝑊𝐷  is the probability of selecting link l to move to 

the next node and s is a small positive number which 

prevents division by zero in function f(.). 𝑠𝑜𝑖𝑙𝑖,𝑙  represents 

the amount of soil on the output link l of node i. If an IWD 

selects the link above, node i is added to its set S. 

5. Whenever an IWD travels from node i to the next node 

through link l, its velocity is updated as follows: 

𝑣𝑒𝑙𝐼𝑊𝐷 𝑡 + 1 = 𝑣𝑒𝑙 𝑡 +
𝑎𝑣

𝑏𝑣+𝑐𝑣 .𝑠𝑜𝑖𝑙 𝑖,𝑙
∝   𝑙𝜖 𝑎𝑏𝑜𝑣𝑒, 𝑏𝑒𝑙𝑜𝑤              (4) 
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Where 𝑣𝑒𝑙𝐼𝑊𝐷(𝑡 + 1) is the updated velocity of the IWD.  

is set to 3 by using trial and error procedure. av,bv and cv are 

constant parameters. 

6. The amount of soil which the IWD removes from the 

current link l between node i to node i+1 is calculated by: 

∆𝑠𝑜𝑖𝑙𝑖,𝑙 =
𝑎𝑠

𝑏𝑠 + 𝑐𝑠 . 𝑡𝑖𝑚𝑒𝜃 𝑖, 𝑙, 𝑣𝑒𝑙𝐼𝑊𝐷  

𝑡𝑖𝑚𝑒 𝑖, 𝑙, 𝑣𝑒𝑙𝐼𝑊𝐷 =
1

𝑣𝑒𝑙𝐼𝑊𝐷

                              (5) 

Where 𝑡𝑖𝑚𝑒 𝑖, 𝑙, 𝑣𝑒𝑙𝐼𝑊𝐷   represents the time is needed to 

travel from node i to node i+1 via link l with the velocity 

velIWD . as, bs and cs are constant parameters. 

7. The soil of the path traversed by each IWD and the soil of 

each IWD are updated by the following equations. 

𝑠𝑜𝑖𝑙𝑖,𝑙 = (1 − 𝜌). 𝑠𝑜𝑖𝑙𝑖,𝑙 − 𝜌. ∆𝑠𝑜𝑖𝑙𝑖,𝑙                                                  (6) 

𝑠𝑜𝑖𝑙𝐼𝑊𝐷 = 𝑠𝑜𝑖𝑙𝐼𝑊𝐷 + ∆𝑠𝑜𝑖𝑙𝑖,𝑙                                             (7) 

Where 𝑠𝑜𝑖𝑙𝐼𝑊𝐷  is the amount of soil that the IWD carries 

and 𝜌 is a constant parameter. 

8. Each IWD follows step 2-6 repeatedly till it reaches the last 

node. Then the modified Prim’s algorithm is run to 

construct a minimum spanning tree to connect destination 

nodes including terminals and selected Steiner points S of 

each IWD. In this process one of the terminal nodes is 

selected randomly. Then, other destination nodes are added 

to the tree one by one until all destination nodes are 

included in the tree. Each destination node is added to the 

tree by the shortest path which only includes destination 

nodes. If there is no such path, intermediate nodes are also 

added into the tree. The constructed tree may include non-

terminal nodes in its leaves. Therefore the tree must be 

pruned and non-terminal leaves must be deleted. To find out 

the redundant nodes, a depth first search is performed on the 

tree. During this search, the non-terminal nodes with degree 

1 are deleted. 

9. The reverse of the Steiner tree cost is used to measure the 

fitness of IWDs. Then, the best IWD of the current iteration 

is determined. The best IWD is the IWD with the minimum 

Steiner tree cost. We named this IWD as the best-iteration 

IWD and called its tour as TIB. 

10. A local search is performed on the best IWD of the 

current iteration. The local search treats each edge in Steiner 

tree according to the following steps (Ding and Ishii 1995): 

 Delete the edge and depart the tree into two parts. Use 

depth-first search to delete redundancy nodes in two 

parts, and then calculate the sum of links included in 

two parts. 

 Assume the two parts as two nodes sets, find the 

shortest path between two nodes sets. 

 If the path cost is smaller than that of source tree, 

replace the old edge by the new path, otherwise, the 

edge is taken as the part of Steiner tree. 

11. The soil on the path of the best-iteration IWD is updated 

as: 

𝑠𝑜𝑖𝑙𝑖,𝑗 = 𝜌𝑠 . 𝑠𝑜𝑖𝑙𝑖,𝑗 − 𝜌𝑖𝑤𝑑 .
1

𝑁𝐼𝐵−1
. 𝑠𝑜𝑖𝑙𝐼𝐵

𝐼𝑊𝐷     ∀ 𝑖, 𝑗 𝜖𝑇𝐼𝐵    (8) 

Where 𝑠𝑜𝑖𝑙𝐼𝐵
𝐼𝑊𝐷  is the soil gathered by the best-iteration 

IWD. 𝑁𝐼𝐵  is the number of Steiner points chosen by the 

best-iteration IWD. 𝜌𝑠  and 𝜌𝑖𝑤𝑑  are constant parameters. 

12. The total-best solution 𝑇𝑇𝐵  is updated by the current 

iteration-best solution 𝑇𝐼𝐵  as follows: 

𝑇𝑇𝐵 =  
𝑇𝐼𝐵     𝑖𝑓 𝑓(𝑇𝐼𝐵) ≥ 𝑓(𝑇𝑇𝐵)

𝑇𝑇𝐵                      𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
                                     (9) 

Where f(.) represents the fitness function. 

13. The algorithm is repeated for the prescribed number of 

iterations and global best solution is chosen as the minimum 

Steiner tree. 

3.2 The Extended IWD Algorithm 
In the original IWD algorithm, only the best IWD of each 

iteration performs global soil updating. However, in the 

extended IWD algorithm, Ne elitist IWDs are selected and 

they perform global soil updating at the end of each iteration. 

The elitist IWDs are IWDs of the current iteration with the 

smallest values for the Steiner tree cost. In addition, the local 

search is performed by elitist IWDs instead of the best-

iteration IWD. To overcome the premature convergence, 

another extension to the original IWD algorithm is done. 

When all elitist IWDs of the iteration produce the same tree, 

the amount of soil on all edges of the graph is set to the initial 

value and then the global soil updating is done for the best 

resulted tree until this iteration. Therefore we changed the 

IWD algorithm for solving Steiner tree problem as follows: 

1-7. Follow steps 1 to 7 of the IWD algorithm sequentially. 

8. Calculate Steiner tree cost for each IWD and sort IWDs 

according to their Steiner tree cost in ascending order and 

select the first Ne IWDs from the resulted list. 

 9. Local search is performed on elitist IWDs. 

10.The global-best solution TTB  is updated such as IWD 

algorithm. 

11. If all elitist IWDs produce the same tree, the amount of 

soil on all edges of the graph is set to 10000 and the soil on 

the path of the global-best solution TTB  is updated as: 

soili,j = ρs . soili,j − ρiwd .
1

N IB −1
. soilIB

IWD  ∀ i, j ϵTTB       (10) 

Otherwise, the soil on the path of each elitist IWD e with 

the tour Te
IB  is updated as: 

soili,j = ρs . soili,j − ρiwd .
1

N IB
e −1

. soilIB
e    ∀(i, j)ϵTe

IB        (11) 

 

Where soilIB
e  is the soil is gathered by the elitist IWD e. NIB

e  

is the number of Steiner points chosen by the elitist IWD e. 

ρs  and ρiwd  are constant parameters. 

12. The algorithm is repeated for the predefined number of 

iterations and global best solution is chosen as the minimum 

Steiner tree. 

The flowchart of the EIWD algorithm is shown in Figure 2. 

4. USING LEARNING AUTOMATA FOR 

PARAMETER ADAPTATION OF EIWD 

ALGORITHM 

Intelligent Water Drops algorithm has several parameters such 

as global soil updating parameter ρiwd , local soil updating 

parameter ρ, velocity updating parameters , av, bv and cv and 

soil updating parameters , as, bs and cs. The efficiency of the 

IWD algorithm is greatly dependent on tuning its parameters. 

Usually, the optimal (or near optimal) parameters are chosen 

by the trial-and-error procedure or using the past experience. 

As the number of trials necessary to fine-tune the parameters 

is usually quite high, it is often the case that limited time is 

used for each algorithm run.  

Several researches have suggested using learning automata for 

automatically adjusting the parameters of different algorithms 

and obtained good results [22-23]. In this paper, we improve 

http://www.mathworks.com/help/techdoc/ref/sort.html
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the performance of IWD algorithm by using learning automat 

for adaptation of α, , ρs , ρiwd  and ρ parameters. These 

parameters have a great impact on the algorithm performance 

and convergence. We use learning automata to show how the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Flowchart of the EIWD algorithm for solving Steiner tree problem 

state of the algorithm should influence the parameters. During 

the runs, the algorithm may learn what is the relation between 

the algorithm state, and the optimal parameter values. 

4.1 Learning Automata 
An automaton is a machine designed to automatically follow a 

predetermined sequence of operations or respond to encoded 

instructions. A finite number of actions can be performed in a 

random environment. When a specific action is performed, the 

environment provides a random response which is either 

favorable or unfavorable. The objective in the design of the 

automaton is to determine how the choice of the action at any 

stage should be guided by past actions and responses. 

Learning automata can be classified into two main families, 

fixed and variable structure learning automata.  

The proposed algorithm is implemented with different kinds 

of learning automata. Simulation results show that the Krylov 

automaton produces better results than other fixed structure 

learning automata and variable structure learning automata. In 

[23] is shown that how we can choose the best automaton for 

parameter adaptation of ant colony optimization for solving 

Steiner tree problem. In the following, we briefly describe 

Krylov automaton which we use in this paper. 

4.2 Krylov Learning Automata 
The Krylov automaton has 2N states and two actions. It keeps 

an account of the number of successes and failures received 

for each action. For favorable response the automaton moves 

deeper into the memory of the corresponding action and for 

unfavorable response moves out of it. The state transition 

graph of Krylov automaton is shown in Figure 3. 

 

       
a. favorable response 

 
b. unfavorable response 

Fig 3: The state transition graph for Krylov automaton 
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Table 1. Comparison of IWD and EIWD with other algorithms 

Graph 

No. 

Optimal 

Cost 
|nodes| |Edges| |Terminals| SDG SPH ADH ACS NLA GA PSO IWD EIWD 

1 82 50 63 9 0 0 0 0 0 0 0 0 0 

2 83 50 63 13 84.3 0 0 0 0 0 0 0 0 

3 138 50 63 25 1.45 0 0 0 0 0 0 0 0 

4 59 50 100 9 8.43 5.08 5.08 2.7 0 0 0 0 0 

5 61 50 100 13 4.92 0 0 0 0 0 0 0 0 

6 122 50 100 25 4.92 3.28 1.64 1.8 0 0 0 0 0 

7 111 75 94 13 0 0 0 0 0 0 0 0 0 

8 104 75 94 19 0 0 0 0 0 0 0 0 0 

9 220 75 94 38 27.2 0 0 0.05 0 0 0 0 0 

10 86 75 150 13 3.95 4.65 4.65 3.84 0 0 0 0 0 

11 88 75 150 19 2.27 2.27 2.27 1.59 1.8 0 0 0.23 0 

12 174 75 150 38 0 0 0 0.11 0 0 0 0 0 

13 165 100 125 17 6.06 7.88 2.24 0 4.2 0 0 0.61 0 

14 235 100 125 25 1.28 2.55 0.43 0.09 0 0 0 0 0 

15 318 100 125 50 2.20 0 0 0 0 0 0 0 0 

16 127 100 200 17 7.87 3.15 0 0.16 1.2 0 0 0 0 

17 131 100 200 25 34.5 3.82 3.05 1.22 1.3 0 0 0 0 

18 218 100 200 50 4.59 1.83 0 1.42 0 0 0 0.46 0 

4.3 Parameter Adaptation by Using Krylov 

Automaton  
To adjust IWD parameters we used 5 learning automata. Each 

automaton is used for setting one decision parameter. Legal 

values for decision parameters are as follows. 

∝, θ ∈  2,3,4                                                                      (12) 

ρ ∈  −0.5, −0.6,−0.7,−0.8, −0.9  

ρs ∈ {1.5, 1.6, 1.7, 1.8, 1.9, 2 ,2.1 ,2.2} 

ρiwd = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

The actions of an automaton are legal values of the 

correspond parameter. At the start of the algorithm, selected 

actions of learning automata (IWD parameters) and the depth 

associated with each action (N) are chosen randomly form the 

set of allowable values. At the beginning of each iteration of 

the IWD algorithm, each learning automaton selects one of its 

actions. The values of selected actions are used by all water 

drops to produce Steiner trees. At the end of the iteration, cost 

of the best-iteration tree is given to learning automata as the 

response of the environment. If the best-iteration tree cost is 

less than the global-best tree cost until this iteration, selected 

actions by each of the five automata are rewarded. Otherwise 

selected actions are penalized. 

5. Experimental results  
In the first experiment, we ran the IWD and EIWD on the B-

problem set from OR-library [24]. The results are the average 

date of 10 runs for each test instance with 50 iterations for 

each run. Table 1 compares the performance of the proposed 

algorithms with seven reported algorithms for building Steiner 

tree in graphs while the details of DNH1, SPH2 and ADH3 

have been illustrated in [16]. Ant colony optimization (ACS), 

learning automata approach (NLA) and particle swarm 

intelligence technique are described in [21], [25] and [19] 

respectively.  

The format of Table 1 is as follows: The first column is used 

to express the graph number in B-problem set from Beasley. 

The second column gives the optimal cost of Steiner tree, the 

next three columns indicate the number of nodes, edges and 

terminals of each graph and other columns give relative error 

for each algorithm. The relative error criterion calculated as 

follows. 

relative− error =
C−Copt

Copt
                                                        (13) 

Where Copt is the optimal solution of a given problem and C is 

the solution by a certain algorithm. In this experiment, we 

used trial and error procedure to select the best values for 

IWD parameters. These values are ∝= 3, θ = 3, ρ =
−0.9,  ρs = 1.9 and ρiwd = 0.9. 

Table 1 shows that EIWD gets better results compared to 

IWD. The EIWD obtained the optimal solution for all 

instances. Even though the IWD can’t succeed in obtaining 

the optimal solution on problems B11, B13 and B18, the 

relative error values are very small and the algorithm 

outperforms other algorithms expect for GA and PSO.In the 

second experiment, we compare the convergence speed of the 

best algorithms of the previous experiment. Table 2 shows the 

                                                           
1
 Distance network heuristic 

2 Shortest path heuristic 
3 Average distance heuristic 
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number of generated Steiner trees by GA and PSO before 

finding out the optimal tree. As can be seen, our proposed 

algorithm has much faster convergence speed than others. The 

EIWD generates average 57 trees to find the optimal solutions 

which is only 7% of the GA and 40% of the PSO. In 

conclusion, although GA and PSO find out the optimal 

solutions but they require excessive execution time especially 

for large size networks and it is not suitable for time limited 

applications such as real time multicasting.  

Table 2. The number of trees generated by PSO, GA and 

EIWD. 

Graph No. PSO GA EIWD 

1 42 105 5 

2 54 160 5 

3 52 100 5 

4 82 120 21 

5 50 130 5 

6 258 515 6 

7 42 275 5 

8 48 185 5 

9 56 275 17 

10 72 780 5 

11 142 585 60 

12 144 260 22 

13 468 1100 72 

14 342 4020 205 

15 94 1380 27 

16 110 885 10 

17 144 925 42 

18 338 1250 500 

average 141 725 56.5 

To determine the number of elitist IWDs (Ne), we ran EIWD 

algorithm with different number of elitist IWDs and calculate 

the average relative error on 18 test cases of OR-library. 

Figure 4 shows that the best value for Ne is 5. Thus, in all 

experiments we set Ne as 5. 

 

Fig 4. Average relative error versus number of elitist 

IWDs 

In the next experiment, we examine the effect of parameter 

adaptation on the performance of the EIWD algorithm. At 

first, we used trial and error procedure to find parameter 

setting that results in optimal trees for all test cases of B-

problem set. Then, we ran EIWD algorithm on C-problem set 

of OR-library by using these values and by using learning 

automata for parameter adaptation. C-problem set is a set of 

large and hard networks with 500 nodes in the OR-library. 

The results are average of 5 runs of the algorithms with 50 

iterations in each run. Table 3 shows that using learning 

automata for parameter adaptation improve the performance 

of the algorithm. In fact, using learning automata causes that 

algorithms adapt better to the particular instance's 

characteristics. The proposed algorithm also obtained better 

results compared to genetic algorithm. 

Table 3: The effect of learning automata for parameter 

adaptation 

Graph 

No. 

Optimal 

Cost 

GA EIWD 

With 

constant 

parameters 

EIWD 

With 

parameter 

adaptation 

1 85 0 0 0 

2 144 0 0 0 

3 754 0.50 0.13 0.05 

4 1079 0.44 0.18 0.17 

5 1579 0.10 0.19 0.09 

6 55 0 0 0 

7 102 0 0 0 

8 509 1.14 1.18 0.63 

9 707 1.27 1.41 1.27 

10 1093 0.36 0.64 0.64 

11 32 0 0 0 

12 46 0.43 0 0 

13 258 1.36 1.16 1.16 

14 323 1.42 1.55 1.55 

15 556 1.04 0.54 0.54 

16 11 2.73 0 0 

17 18 1.11 4.44 1.11 

18 113 4.78 6.19 4.78 

19 146 5 7.53 5.14 

20 267 2.02 0.75 0.22 

In summary, EIWD algorithm provides an acceptable trade 

off between solution quality and solution time. 

6. CONCLUSION AND FUTURE WORKS 
In this paper, we extended the IWD algorithm for solving 

Steiner tree problem in graphs. In our extended version, at the 

end of each iteration instead of the best IWD of the iteration, 

prescribed numbers of the best IWDs (called elitist IWDs) 

perform global soil updating. In addition, to overcome the 

problem of premature convergence, when all elitist IWDs 

produce the same tree the amount of soil on all edges of the 

graph is set to the initial value and then the global soil 

updating is done for the best resulted tree. 

To assess the performance of the proposed algorithm, the B-

problem set of the OR-library is used. Experimental results 

show that our algorithm is able to find optimal solutions for 
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all test instances in B-problem set from Beasley. Compare to 

GA and PSO which are able to obtain optimal solutions for all 

test cases in the OR-library, the proposed algorithm has much 

faster convergence speed. This indicates that the EIWD 

algorithm is an efficient approach in real time multicast 

routing. 

In addition, we improved the performance of EIWD algorithm 

for solving Steiner tree problem by hybridizing it with 

learning automata for parameter adaptation. Experimental 

results on C-problem set of the OR-library showed that this 

hybrid algorithm achieved better results. 

Adapting the EIWD algorithm to Euclidian and Rectilinear 

Steiner tree problems and other variations of the problem such 

as Steiner forest or prize collecting Steiner forest problem, 

will be an interesting future research field. In addition, the 

EIWD algorithm has quick convergence that can be 

advantageous for time constrained problems. This future helps 

to extend proposed algorithm for solving dynamic Steiner tree 

problem. 
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