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ABSTRACT 

Non-parametric time-frequency analysis for multicomponent 

nonstationary signals is an important issue in signal 

processing, especially in the biomedical field. Due to the 

nonstationary, multicomponent nature of the biomedical ECG 

signal, the use of time-frequency analysis can be very useful 

to identify the exact multicomponent structure of this 

biological signal. In this paper, three time-frequency 

techniques are applied for analyzing a supraventricular ECG 

signal. These three time-frequency techniques are the Choi–

Williams distribution, the Bessel distribution and the Born-

Jordan distribution. Their performance over supraventricular 

ECG signal as well as over a monocomponent frequency 

modulation signal in additive Gaussian noise was compared. 

The results showed that the Choi–Williams technique gives a 

good performance as compared to other time-frequency 

techniques. 

Keywords 

Nonstationary signal, Time-frequency techniques, 

electrocardiogram, supraventricular arrhythmia, QRS 

complex. 

1. INTRODUCTION 
The electrocardiogram (ECG) is a complementary 

examination quickly available, whose usefulness in terms of 

diagnosis and prognosis is major. This biological signal gives 

a representation containing information about the condition of 

the heart. To understand this signal, it helps to understand 

how the heart works. The shape and size of its main 

components P wave, QRS complex and T wave and the time 

intervals between these various components contains useful 

information about the nature of disease afflicting the heart. 

The change in the shape of ECG waveform and heart rate is 

generally reflected by the presence of cardiac abnormalities 

[1-4].   

Time domain processing is a commonly selected and more 

intuitive option for analyzing biological signals such as 

electrocardiogram (ECG) by skilled physicians [1-5], but, this 

domain does not always present all the features of ECG 

signals then the abnormalities may not always be obvious. 

The limits of the time-domain analysis have motivated the use 

of frequency domain techniques for analysis, like Fourier 

transform [6]. The development of the Cooley–Tukey 

algorithm has made Fourier techniques more widely available 

[7]. However, Fourier analysis presents a big problem. This 

spectral technique done on the entire signal find out which 

frequencies the signal contains, but you do not know when 

these frequencies appear in this signal. The effects of each 

frequency are analyzed as if they were spread over the entire 

signal. While the Fourier transform is a very useful concept 

and exhibit good results in stationary conditions, the most 

useful signals encountered in real-world situations are 

nonstationary. Therefore, this analysis is very limited since 

the environment is predominantly nonstationary because it 

cannot provide localized time information [8]. 

As all biological signals, especially the ECG signal, belong to 

the family of multicomponent nonstationary signals, which 

frequency contents change over time [9]. Their analysis with 

Fourier transform cannot be interesting, because their spectral 

characteristics as function of time can be extremely difficult 

to obtain. Due to the high mortality rate and many forms of 

heart diseases [9], early detection and precise discrimination 

of ECG arrhythmia are important and essential for the 

treatment of patients. A complete analysis of this type of 

biological signals requires a proper time-frequency technique 

that can resolve the problem of the Fourier transform and 

uncover the multicomponent nature of these signals. 

In the field of mathematical signal processing and biomedical 

engineering, time-frequency analysis presents one of the 

major recent developments [11,12]. Time-frequency analysis 

is motivated by the analysis of nonstationary signals whose 

spectral characteristics change in time. In nonstationary 

conditions, time-frequency analysis stands as a sophisticated 

approach. Various time-frequency techniques that provide 

both spectral as well as time localized information have been 

important tools for the analysis of nonstationary signals, 

especially the ECG signal [13-21]. 

In the time-frequency analysis, the instantaneous frequency 

presents an important concept, especially when analyzing 

multicomponent signals. The instantaneous frequency notion 

can be found in [11,12,22]. Every time-frequency technique 
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presents an energy concentration around the instantaneous 

frequency of each component in the time-frequency plane. As 

such, it can be employed to evaluate the frequency variation 

of the ECG signal as function of time. 

Parametric and non-parametric techniques present the two 

major categories of the time-frequency techniques. In signal 

processing, non-parametric time-frequency techniques are an 

important issue for analyzing multicomponent nonstationary 

signals [20,23]. The Cohen’s Class is the most generalized 

and significant class of time frequency techniques [11]. 

However, time-frequency techniques of multicomponent 

signals have a major weakness, they suffer from the presence 

of cross-terms [11,12,22]. The cross-terms can obscure the 

interesting real features in the signal. The time-frequency 

resolution (energy concentration) is an important issue for 

both mono and multicomponent signals [24]. Significant 

efforts have been applied to define which time frequency 

technique can decrease the effect of cross-terms while 

ameliorating the time frequency resolution [11,12,22]. 

However, there is always a compromise between these two 

concepts, time and frequency. Despite of the rich literature, 

the time-frequency techniques have different performances in 

this respect and the choice of a particular technique is not an 

easy task it is application dependent.  

This paper presents a comparative study of the following 

time-frequency techniques, the Choi–Williams distribution, 

the Born-Jordan distribution and the Bessel distribution, 

belonging to Cohen's class and their behavior for analyzing 

the abnormal Electrocardiogram signal. This abnormal signal 

was taken from a patient with supraventricular arrhythmia.  

The paper is organized as follows. We first summarize the 

mathematical time-frequency methods of the Choi–Williams 

distribution, the Born-Jordan distribution and the Bessel 

distribution. After that, we will discuss about the normal and 

supraventicular ECG signals. Then, an extensive performance 

comparison of the three time-frequency techniques over noisy 

monocomponent linear frequency modulation signal will be 

presented. After that, the analysis results of the three time-

frequency techniques over a supraventicular ECG signal we 

will discuss. Finally, a brief concluding section provides the 

main results presented in this work.  

2. TIME-FREQUENCY TECHNIQUES 
Time domain and frequency domain present two extremes of 

a large set of signal analysis methods. The best time 

resolution is obtained by the time domain, but without any 

information about the frequency concept. The frequency 

domain gives the best frequency resolution where, however, 

we cannot identify the temporal localization of the frequencies 

constituting the signal.  

To surpass the weakness of the time and frequency domain, 

the time-frequency techniques are receiving growing interest 

offering their ability to move continuously between time and 

frequency domain. Therefore, a proper time-frequency 

technique can overcome the limits of the time and frequency 

domain and expose the nonstationary and multicomponent 

nature of the ECG signals. 

Since many aspects of the physical condition of human heart 

are reflected in the waveforms of ECG, it is important for the 

processing techniques to detect the different components (P 

and T waves and especially the QRS complex) of this type of 

the biomedical signal for a good patient diagnostic. However, 

the multicomponent signals analysis by the time-frequency 

techniques suffers from the presence of cross-terms, these 

terms are arising in the middle between the time-frequency 

components.  Therefore, a time-frequency technique that 

reduces the cross-terms is needed [13-21]. 

In this comparative work, we study the behavior and the 

performance of the following time-frequency techniques in 

analyzing a supraventricular arrhythmia ECG signal. These 

techniques are the Choi–Williams distribution, the Bessel 

distribution, the Born-Jordan distribution. 

2.1. The Choi–Williams distribution 
The Choi-Williams distribution CWD(t,f) is one of Cohen’s 

generalized class of time-frequency techniques, this method 

adopts an exponential kernel to reduce the cross-terms 

magnitude. It was a significant step in the field of time-

frequency analysis where it opened the way for optimizing 

resolution with cross-terms reduction [25,26]: 
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Where the parameter σ is real and can control the amount of 

cross-terms attenuation and time and frequency resolution. 

We can have a good performance in reducing cross-terms 

with high resolution but there is always a compromise 

between these two requirements decided by the factor σ. The 

amplitude of the cross-terms is directly proportional to the 

parameter σ. If the cross-terms are suppressed too much, we 

will lose automatically in resolution in the time frequency 

plane. 

2.2. Born-Jordan distribution (BJD) 
The Born-Jordan distribution (BJD) performs well for signals 

with constant frequency whereas it does not perform as well 

for signal with frequency modulation. The BJD of a signal s(t) 

is expressed by the following equation [27,28]:   

   














dxde

xsxstBJD

j

t

t
s

2

*2

2

*

)
2

()
2

(
1

),(










        (2) 

2.3. The Bessel Distribution  
Bessel distribution (BD) applied to a signal s is defined by the 

following equation [29]: 
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Where τ is time lag, and α is a positive scaling factor with a 

recommended value α≤0.5. 

 By using Reduced Interference Distribution (RID) kernel 

design technique as described by Jeong and William in 

[29,30]. The Reduced Interference Distribution with a kernel 
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based on the Bessel function of the first kind is given by the 

following expression (RIDB): 
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Where s is the original signal, s* is the conjugate of the 

original signal, t is time instants, g is time smoothing window, 

and h is frequency smoothing window.  

3. CARDIAC SIGNALS  
An Electrocardiogram (ECG) is a recording of electrical 

activity produced by the heart. Fluently, ECG signals are 

handled in the medical field for monitoring, diagnosis, and the 

treatment of patients suffering from heart diseases. ECG trace 

is most usually obtained with the electrodes attached in a 

variety of standard positions to make easier the detection of 

the abnormalities. A normal ECG signal consists chiefly of P 

wave, QRS complex and T wave. Understanding these 

various components allows obtaining important knowledge 

about the function of the patient's heart. Cardiologists can use 

minute features of the ECG signals to collect useful 

diagnostic information [2-5]. 

An electrocardiogram consists principally by the P wave, 

QRS complex and T wave which are generated by the heart 

beating, these different components have a well-known 

signature. Sometimes in the time domain, these waves have 

similar morphologies. Time frequency analysis of such signal, 

which take account both time and frequency concepts, can 

afford some parameters which behave differently than that of 

the time or frequency domain techniques [2-5].  

The figure 1 presents a normal ECG with its principal 

components, P and T waves and QRS complex: 

 
Fig 1: A normal ECG signal 

An arrhythmia is an abnormality of cardiac rhythm, it refers to 

any change from the normal sequence of electrical impulses. 

Arrhythmias differ in their population frequency, anatomical 

substrate, physiological mechanism, etiology, natural history, 

prognostic significance, and response to treatment. The heart 

can beat too slow, too fast, or with an irregular rhythm 

[31,32]. In this study, a supraventricular arrhythmia ECG 

signal was treated.  

Supraventricular arrhythmia occurs in the upper areas of the 

heart. It has irregular shapes of QRS complexes [31]. 

The figure 2 shows the time-domain ECG signal of a patient 

with supraventricular arrhythmia. This supraventricular 

arrhythmia data was obtained from [33]. The sampling 

frequency for this abnormal ECG signal was 128 samples/s, 

the signal length is 4 seconds. The shape of the QRS complex 

in this signal is abnormal at the QR part. A time frequency 

representation is needed to deal with this problem and detect 

the change that occurs in a narrow duration of time. 

  
Fig 2: Time-domain ECG signal from a patient with 

supraventricular arrhythmia 

4. DISCUSSION AND RESULTS 

4.1 Time-frequency comparison over noisy 

frequency modulation signal 
In this section, an analytic frequency modulation signal is 

considered to analyze the performance of the three time-

frequency techniques. The monocomponent signal is given by 

the following equation: 

                      )(*)( )( tnoiseeats ti  
                    (6) 

Where the amplitude a is constant, υ(t) is the analytic signal 

phase and noise(t) is a white Gaussian noise with complex-

values. 

The derivative of the phase represents the instantaneous 

frequency of the signal s(t) given by the following expression: 
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As around the instantaneous frequency all time-frequency 

techniques show an energy concentration, then the estimation 

of the instantaneous frequency will be a solution of the 

following optimization problem:  
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Where W(t,f) is the time-frequency distribution obtained by 

equation 1 , 2 or 4 and fs = 1/T is the sampling frequency. 

The bias and the variance of the estimate present the most 

important factors that decide the quality of estimation. These 

two notions can be defined by the following expressions:  
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Where ( )if t  and )(tf i



are the instantaneous frequency 

and instantaneous frequency estimate respectively. 

For the Quadratic class of time-frequency distribution, this 

bias is zero for linear frequency modulation signal, and 

therefore a Cramer–Rao bound (CRB) exists for the variance. 

For this study a linear frequency modulation test signal with 

the following expression was considered:
( )( ) i ts t ae  ,      

υ(t) = 2π(fot+ βt2/2), with a = 1, fo=0.05fs, β=0.4fs. From the 

equation 7, the instantaneous frequency is: f=fo+βt. For this 

time-frequency analysis, N=512 samples was selected as 

length signal with the sampling frequency equal to N Hz, 

whereas the total duration of the signal was 1 second. Using 

different signal-to-noise ratio (SNR), Gaussian white noise 

samples were added to the test signal.  

Table 1. Performance of the different time-frequency 

techniques of a linear frequency modulation signal 

SNR 

(dB) 

Var-dB / Choi-

Williams 

distribution 

Var-dB /  

Born-Jordan 

distribution 

Var-dB / 

Bessel 

distribution 

-5 -60.04 -39.47 -44.37 

-4 -61.16 -42.95 -55.71 

-3 -62.39 -47.37 -56.97 

-2 -63.56 -60.72 -58.17 

-1 -64.70 -62.00 -59.33 

0 -65.80 -63.21 -60.46 

1 -66.88 -64.38 -61.56 

2 -67.95 -65.51 -62.64 

3 -68.00 -66.61 -63.70 

4 -68.84 -67.70 -64.76 

5 -69.97 -68.77 -65.80 

6 -71.09 -69.82 -66.84 

7 -72.11 -70.87 -67.86 

8 -73.13 -71.91 -68.89 

9 -74.34 -72.94 -69.91 

10 -76.16 -73.96 -70.53 

The different results of the three time-frequency techniques 

over monocomponent signal are shown in the Table 1. The 

Choi–Williams distribution present a distinguished 

performance compared to other time-frequency techniques, 

where this time-frequency gives the minimum instantaneous 

frequency variance.  

 
Fig 3: Performance of the different time-frequency 

techniques over a linear monocomponent frequency 

modulation signal 

From the figure 3, we can note that the Choi-Williams time-

frequency technique gave a minimal variance for all SNR's. 

The difference in performance between Choi-Williams time-

frequency and other time-frequency techniques is more 

evident for low SNR's. 

4.2 Time-frequency comparison over a 

supraventricular ECG signal 
The figures 4 presents the time-frequency image of the 

abnormal ECG signal obtained from a patient with 

supraventricular arrhythmia (figure 2). This time-frequency 

image is obtained by the calculation of the Choi-Williams 

distribution by using equation 1. 

 
Fig 4: Time-frequency image of the supraventricular 

arrhythmia ECG signal (figure 2) using Choi-Williams 

distribution  

The figures 5 presents the time-frequency image of the 

abnormal ECG signal obtained from a patient with 

supraventricular arrhythmia (figure 2). This time-frequency 

image is obtained by the calculation of the Born-Jordan 

distribution by using equation 2. 
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Fig 5: Time-frequency image of the supraventricular 

arrhythmia ECG signal (figure 2) using Born-Jordan 

distribution 

The figures 6 presents the time-frequency image of the 

abnormal ECG signal obtained from a patient with 

supraventricular arrhythmia (figure 2). This time-frequency 

image is obtained by the calculation of the Bessel distribution 

by using equation 3. 

 
Fig 6: Time-frequency image of the supraventricular 

arrhythmia ECG signal (figure 2) using Bessel distribution 

First the abnormal ECG signal collected from a patient with 

supraventricular arrhythmia (figure 2) was converted by 

Hilbert transform into its analytical form and processed using 

the different time-frequency techniques.  

A supraventricular rhythm is due to abnormal impulses arising 

from the atria [31]. The QRS complexes of the abnormal 

signal (figure 2) have irregular shapes. 

From the figures 4 to 6, we can note that the different time-

frequency techniques are able to identify the three QRS 

complexes of the abnormal ECG signal. However, only the 

Choi-Williams distribution manage to track the change in the 

frequency components of each QRS complex as marked by 

‘QRS1’ and ‘QRS11’ with clearly and with good resolution. 

Due to its high time-frequency resolution and cross-terms 

control, the Choi-Williams time-frequency technique expected 

to be efficient in analyzing the ECG signal than the other 

techniques, especially with the Bessel distribution treated in 

[13]. 

5. CONCLUSION 
The principal aim of this paper was to present a comparative 

performance study of three time-frequency techniques applied 

to an abnormal ECG signal in order to identify the existing 

anomaly. The three time-frequency techniques that have been 

the subject of this study are the Choi–Williams distribution, 

the Born-Jordan distribution, the Bessel distribution.  

For the supraventricular arrhythmia ECG signal, only the 

Choi-Williams technique which can identify and reveal the 

true structure of the QRS complexes, where there are two 

components with narrow separation in frequency. Due to its 

high time-frequency resolution and cross-terms control, the 

Choi-Williams time-frequency technique expected to be 

efficient in analyzing the abnormal ECG signal. 
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