On $\mathcal{F}^{-\alpha\delta}$ Continuous Multifunctions

V. Kokilavani
Assistant Professor,
Dept. of Mathematics,
Kongunadu Arts and Science College
Coimbatore

P. Basker
Assistant Professor,
Dept. of Mathematics,
Kalaivani College of Technology
Coimbatore

ABSTRACT

In this paper we introduce the notion of Upper $\mathcal{F}^{-\alpha\delta}$ -Continuous and Lower $\mathcal{F}^{-\alpha\delta}$ -Continuous Multifunctions. The basic properties and characterizations of such functions are established.

Keywords

 $\alpha\delta$ -open sets, $\alpha\delta$ -closed sets, faintly $\alpha\delta$ -continuous multifunctions, $\alpha\delta_{\theta}$ -closed.

1. INTRODUCTION

It is well known that various types of functions play a significant role in the theory of classical point set topology. A great number of papers dealing with such functions have appeared, and a good number of them have been extended to the setting of multifunctions [8]. This implies that both functions and multifunctions are important tools for studying properties of spaces and for constructing new spaces from previously existing ones. R. Devi, V. Kokilavani P. Basker [3] has introduced and studied the notion of $\alpha\delta$ -closed sets in topological spaces. In this paper, we introduce and study upper and lower faintly $\alpha\delta$ -continuous (briefly. $\mathcal{F}^{-\alpha\delta}$ -Continuous) multifunctions in topological spaces. The main purpose of this paper is to define faintly $\alpha\delta$ -continuous multifunctions and to obtain several characterizations and basic properties of such multifunctions.

2. PRELIMINARIES

Throughout this present paper, spaces X and Y always mean topological spaces. Let X be a topological space and A, a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A)), The δ -interior [11] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $Int_{\delta}(A)$.

The subset A is called δ -open [11] if $A = Int_{\delta}(A)$, *i.e.*, a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subset (X, \tau)$ is called δ -closed [11] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x : x \in U \in \tau \Rightarrow int(cl(A)) \cap A \neq \emptyset\}$.

The family of all δ -open (resp. δ -closed) sets in X is denoted by $\delta O(X)$ (resp. $\delta C(X)$). A subset A of X is called α -open [9] if $A \subset int(cl(int(A)))$ and the complement of a α -open are called α -closed. The intersection of all α -closed sets containing A is called the α -closure of A and is denoted by $\alpha cl(A)$, Dually, α -interior of A is defined to be the union of all α -open sets contained in A and is denoted by $\alpha int(A)$.

A point $x \in X$ is called a θ -cluster point of A if $cl(V) \cap A \neq \varphi$ for every open subset V of X containing x. The set of all θ -cluster points of A is called the θ -closure of A and is denoted by $cl_{\theta}(A)$. If $A = cl_{\theta}(A)$, then A is said to be θ -closed [10]. The complement of a θ -closed set is said to be θ -open. Clearly, A is θ -open if and only if for each $x \in A$, there exists an open set U such that $x \in U \subset cl(U) \subset A$. We recall the following definition used in sequel.

DEFINITION 2.1. A subset A of a space X is said to be

- (a) An α -generalized closed [1] (αg -closed) set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ)
- (b) An $\alpha\delta$ -closed [3] set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in (X, τ) .

The complement of a $\alpha\delta$ -closed set is said to be $\alpha\delta$ -open. The intersection of all $\alpha\delta$ -closed sets of X containing A is called $\alpha\delta$ -closure [4] of A and is denoted by $\alpha\delta_{Cl}(A)$. The union of all $\alpha\delta$ -open sets of X contained in A is called $\alpha\delta$ -interior [4] of A and is denoted by $\alpha\delta_{Int}(A)$.

The family of all $\alpha\delta$ -open subsets of (X, τ) will be denoted by $\alpha\delta O(X)$. By a multifunction : $X \to Y$, we mean a point to-set correspondence from X into Y, also we always assume that $F(x) \neq \varphi$ for all $x \in X$. For a multifunction $F: X \to Y$, the upper and lower inverse of any subset A of Y are denoted by $F^+(A)$ and $F^-(A)$ respectively[2], where $F^+(A) = \{x \in X: F(x) \subset A\}$ and $F^-(A) = \{x \in X: F(x) \cap A \neq \varphi\}$. In particular, $F^-(A) = x \in X: y \in F(x)$ for each point $\in Y$. A multifunction $F: X \to Y$ is said to be surjective if F(X) = Y. A multifunction $F: (X, \tau) \to (Y, \sigma)$ is said to be lower $\alpha\delta$ -continuous (resp. upper $\alpha\delta$ -continuous) multifunction if $F^-(A) \in \alpha\delta O(X)$ (resp. $F^+(A) \in \alpha\delta O(X)$) for every $V \in \sigma$.

3. FAINTLY $\alpha\delta$ -CONTINUOUS MULTIFUNCTIONS

DEFINITION 3.1. A multifunction $F: X \rightarrow Y$ is said to be:

- (a) Upper faintly $\alpha\delta$ -continuous (briefly. Upper $\mathcal{F}^{-\alpha\delta}$ -Continuous) at $x \in X$ if for each θ -open subset V of Y containing F(x), there exists $U \in \alpha\delta O(X)$ containing x such that $F(U) \subset V$;
- (b) Lower faintly $\alpha\delta$ -continuous (briefly. Lower $\mathcal{F}^{-\alpha\delta}$ -Continuous) at $x \in X$ if for each θ -open subset V of Y such that $F(x) \cap V \neq \varphi$, there exists $U \in \alpha\delta O(X)$ containing x such that $F(u) \cap V \neq \varphi$ for every $u \in U$;

(c) Upper (resp. Lower) faintly $\alpha\delta$ -continuous if it is Upper (resp. Lower) faintly $\alpha\delta$ -continuous at each point of X.

REMARK 3.2. Since every θ -open set is open, it is clear that every upper (lower) $\alpha\delta$ -continuous multifunction is upper (lower) faintly $\alpha\delta$ -continuous. However, the converse is not true as the following simple example shows.

THEOREM 3.3. For a multifunction $: X \to Y$, the following are equivalent.

- (a) F is Upper $\mathcal{F}^{-\alpha\delta}$ -Continuous;
- (b) For each $x \in X$ and for each θ -open set V such that $x \in F^+(V)$, there exists a $\alpha\delta$ -open set U containing x such that $U \subset F^+(V)$
- (c) For each $x \in X$ and for each θ -closed set V such that $x \in F^+(Y V)$, there exists a $\alpha\delta$ -closed set H such that $x \in X H$ and $F^-(V) \subset H$;
- (d) $F^+(V)$ is $\alpha\delta$ -open for any θ -open subset V of Y;
- (e) $F^-(V)$ is $\alpha \delta$ -closed for any θ -closed subset V of Y;
- (f) $F^-(Y-V)$ is $\alpha\delta$ -closed for any θ -open subset V of Y:
- (g) $F^+(Y-V)$ is $\alpha\delta$ -open for any θ -closed subset V of Y.

PROOF. $(a) \Leftrightarrow (b)$: Clear.

- (b) \Leftrightarrow (c): Let $x \in X$ and V be a θ -closed subset of Y such that $x \in F^+(Y-V)$. By (b), there exists a $\alpha\delta$ -open set U containing x such that $U \subset F^+(Y-V)$. Thus $F^-(V) \subset X-U$. Take H=X-U. Then $x \in X-H$ and H is $\alpha\delta$ -closed. The converse is similar.
- (a) \Leftrightarrow (d): Let $x \in F^+(V)$ and V be a θ -open subset of . By (a), there exists a $\alpha\delta$ -open set U_x containing x such that $U_x \subset F^+(V)$. Thus, $F^+(V) = \cup_{x \in F^+(V)} U_x$. Since any union of $\alpha\delta$ -open sets is $\alpha\delta$ -open, $F^+(V)$ is $\alpha\delta$ -open. The converse is clear
- (d) \Leftrightarrow (g) and (e) \Leftrightarrow (f): Clear. (d) \Leftrightarrow (f): Follows from the fact that $F^-(V) = X - F^+(Y - V)$.

THEOREM 3.4. For a multifunction $F: X \to Y$, the following are equivalent:

- (a) F is Lower $\mathcal{F}^{-\alpha\delta}$ -Continuous;
- (b) For each $x \in X$ and for each θ -open set V such that $x \in F^-(V)$, there exists a $\alpha\delta$ -open set U containing x such that $U \subset F^-(V)$;
- (c) For each $x \in X$ and for each θ -closed set V such that $x \in F^-(Y V)$, there exists a $\alpha \delta$ -closed set H such that $x \in X H$ and $F^+(V) \subset H$;
- (d) $F^-(V)$ is $\alpha\delta$ -open for any θ -open subset V of Y;
- (e) $F^+(V)$ is $\alpha \delta$ -closed for any θ -closed subset V of Y;
- (f) $F^+(Y-V)$ is $\alpha\delta$ -closed for any θ -open subset V of V.
- (g) $F^-(Y V)$ is $\alpha \delta$ -open for any θ -closed subset V of Y.

PROOF. Similar to that of Theorem 3.3.

THEOREM 3.5. Suppose that (X, τ) and (X_i, τ_i) are topological spaces where $i \in I$. Let $F: X \to \prod_{i \in I} X_i$ be a multifunction from X to the product space $\prod_{i \in I} X_i$ and let $P_i: \prod_{i \in I} X_i \to X_i$ be a projection multifunction for each $i \in I$ which is defined by $P_i((x_i)) = \{x_i\}$. If F is upper (lower)

faintly $\alpha\delta$ -continuous, then $P_i \circ F$ is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous for each $i \in I$.

PROOF. Let V_i be a θ -open set in (X_i, τ_i) . Then $(P_i \circ F)^+(V_i) = F^+(P_i^+(V_i)) = F^+(V_i \times \prod_{j \neq i} X_j)$ (resp. $(P_i \circ F)^-(V_i) = F^-(P_i^-(V_i)) = F^-(V_i \times \prod_{j \neq i} X_j)$. Since F is upper (lower) faintly $\alpha\delta$ -continuous and since $V_i \times \prod_{j \neq i} X_j$ is a θ -open set, it follows from Theorems 3.3 and 3.4 that $F^+(V_i \times \prod_{j \neq i} X_j)$ (resp. $F^-(V_i \times \prod_{j \neq i} X_j)$ is a $\alpha\delta$ -open set in (X, τ) . Hence again by Theorems 3.3 and 3.4, $P_i \circ F$ is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous for each $i \in I$.

COROLLARY 3.6. Let $F: X \to Y$ be a multifunction. If the graph multifunction G_F of F is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, then F is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, where $G_F: X \to X \times Y$, $G_F(x) = \{x\} \times F(x)$.

COROLLARY 3.7. Suppose that $(X,\tau), (Y,\sigma), (Z,\eta)$ are topological spaces and $F_1: X \to Y$, $F_2: X \to Z$ are multifunctions. Let $F_1 \times F_2: X \to Y \times Z$ be the multifunction defined by $(F_1 \times F_2)(x) = F_1(x) \times F_2(x)$ for each $x \in X$. If $F_1 \times F_2$ is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, then F_1 and F_2 are upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous. The following lemma can be easily established.

LEMMA 3.8. If $A \times B \in \alpha \delta O(X \times Y)$, then $A \in \alpha \delta O(X)$ and $B \in \alpha \delta O(Y)$.

THEOREM 3.9. Suppose that (X_i, τ_i) and (Y_i, σ_i) are topological spaces for each $i \in I$. Let $F_i : X_i \to Y_i$ be a multifunction for each $i \in I$ and let $F: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$ be the multifunction defined by $F((x_i)) = \prod_{i \in I} F_i(x_i)$. If F is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, then F_i is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous for each $i \in I$.

PROOF. Let V_i be a θ -open subset of Y_i . Then $V_i \times \prod_{j \neq i} X_j$ is a θ -open set. Since F is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, it follows from Theorems 3.4 and 3.5 that $F^+(V_i \times \prod_{j \neq i} Y_j) = F_i^+(V_i) \times \prod_{j \neq i} X_j$ (resp. $F^-(V_i \times \prod_{j \neq i} Y_j) = F_i^-(V_i) \times \prod_{j \neq i} X_j$). Consequently, it follows from Lemma 3.8 that $F_i^+(V_i)$ (resp. $F_i^-(V_i)$) is a $\alpha\delta$ -open set. Thus again by Theorems 3.3 and 3.4, F_i is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous for each $i \in I$.

COROLLARY 3.10. Suppose that $F_1: X_1 \to Y_1$, $F_2: X_2 \to Y_2$ are multifunctions. If $F_1 \times F_2$ is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, then F_1 and F_2 are upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, where $F_1 \times F_2$ is the product multifunction defined as follows: $F_1 \times F_2: X_1 \times X_2 \to Y_1 \times Y_2$, $(F_1 \times F_2)(x_1, x_2) = F_1(x_1) \times F_2(x_2)$, where $x_1 \in X_1$ and $x_2 \in X_2$. Recall that a multifunction $F: X \to Y$ is said to be punctually closed if for each $x \in X$, F(x) is closed. Recall also that a space X is called θ -normal if for any disjoint closed subsets F_1 , F_2 of X, there exist two disjoint θ -open subsets V_1 , V_2 of X containing F_1 , F_2 respectively.

DEFINITION 3.11. A topological space (X, τ) is said to be $T_2^{\#\alpha\delta}$ [5] (resp. θ - T_2 [8]) if for each pair of distinct points x and y of X, there exist disjoint $\alpha\delta$ -open (resp. θ -open) subsets U and V of X containing x and y, respectively.

THEOREM 3.12. Let $F: X \to Y$ be an upper $\mathcal{F}^{-\alpha\delta}$ -Continuous multi-function and punctually closed from a topological space X into a θ -normal space Y such that $F(x) \cap F(y) = \varphi$ for each pair of distinct points x and y of X. Then X is $T_2^{\#\alpha\delta}$.

PROOF. Let x and y be any two distinct points of X. Then $F(x) \cap F(y) = \varphi$. Since Y is θ -normal and F is punctually closed, there exist disjoint θ -open sets U and V containing F(x) and F(y), respectively, but F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous, so it follows from Theorem 3.4 that $F^+(U)$ and $F^+(V)$ are disjoint $\alpha\delta$ -open subsets of X containing x and y, respectively. Hence X is $T_2^{\#\alpha\delta}$.

DEFINITION 3.13. A topological space (X, τ) is said to be θ -compact [5] (resp. $\alpha\delta$ -compact) if every θ -open (resp. $\alpha\delta$ -open) cover of X has a finite subcover. A subset A of a topological space X is said to be θ -compact relative to X if every cover of A by θ -open subsets of X has a finite subcover of A

THEOREM 3.14. Let $F: X \to Y$ be an upper $\mathcal{F}^{-\alpha\delta}$ -Continuous surjective multifunction such that F(x) is θ -compact relative to Y for each $x \in X$. If X is $\alpha\delta$ -compact, then Y is θ -compact.

PROOF. Let $V_{\alpha}: \alpha \in \Lambda$ be a θ -open cover of Y. Since F(x) is θ -compact relative to Y for each $x \in X$, there exists a finite subset $\Lambda(x)$ of Λ such that $F(x) \subset \bigcup_{\alpha \in \Lambda(x)} V_{\alpha}$. Put $V(x) = \bigcup_{\alpha \in \Lambda(x)} V_{\alpha}$. Then V(x) is a θ -open subset of Y containing F(x). Since F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous, it follows from Theorem 3.4 that $F^+(V(x))$ is a $\alpha\delta$ -open subset of X containing $\{x\}$. Thus the family $\{F^+(V(x)): x \in X\}$ is a $\alpha\delta$ -open cover of X, but X is $\alpha\delta$ -compact, so there exist $x_1, x_2, x_3 \ldots x_n \in X$ such that $X = \bigcup_{i=1}^n F^+(V(x_i))$. Hence, $Y = F\left(\bigcup_{i=1}^n F^+(V(x_i))\right) = \bigcup_{i=1}^n F\left(F^+(V(x_i))\right) \subset \bigcup_{i=1}^n V(x_i) = \bigcup_{i=1}^n \bigcup_{\alpha \in \Lambda(x_i)} V_{\alpha}$. Hence, Y is θ -compact.

For a given multifunction $: X \to Y$, the graph multifunction $G_F: X \to X \times Y$ is defined as $G_F(x) = \{x\} \times F(x)$ for every $x \in X$. In [4], it was shown that for a multifunction $F: X \to Y$, $G^+_F(A \times B) = A \cap F^+(B)$ and $G^-_F(A \times B) = A \cap F^-(B)$ where $A \subseteq X$ and $B \subseteq Y$. A multifunction $F: X \to Y$ is said to be a point closed if and only if for each $x \in X$, F(x) is closed in Y.

DEFINITION 3.15. Let $F: X \to Y$ be a multifunction. The multigraph $G(F) = \{(x,y): y \in F(x), x \in X\}$ of F is said to be $\alpha \delta_{\theta}$ -closed if for each $(x,y) \in (X \times Y) - G(F)$, there exist a $\alpha \delta$ -open set U and a θ -open set V containing x and y, respectively, such that $(U \times V) \cap G(F) = \varphi$, *i.e.*, $F(U) \cap V = \varphi$.

THEOREM 3.16. If the graph multifunction $F: X \to Y$ is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous, then F is upper (lower) $\mathcal{F}^{-\alpha\delta}$ -Continuous.

PROOF. We shall only prove the case where F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous. Let $x \in X$ and V be a θ -open set in Y such that $x \in F^+(V)$. Then $G_F(x) \cap (X \times Y) = (\{x\} \times F(x)) \cap (X \times Y) = \{x\} \times (F(x) \cap V) \neq \varphi$ and $X \times V$ is θ -open in $X \times Y$ by Theorem 5 in [3]. Since the graph multifunction G_F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous, there exists an

open set U containing x such that $z \in U$ implies that $G_F(z) \cap (X \times V) \neq \varphi$. Therefore, we obtain $U \subseteq G^+_F(X \times V) = \mathcal{F}^{-\alpha\delta}$ – Continuous $\in \alpha\delta O(X)$ from the above equalities. Consequently, F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous.

THEOREM 3.17. Let $: X \to Y$, be a point closed multifunction. If F is upper faintly $\alpha\delta$ -continuous and assume that Y is regular, then G(F) is θ -closed with respect to X.

PROOF. Suppose $(x,y) \notin G(F)$. Then we have $y \notin F(x)$. Since Y is regular, there exist disjoint open sets V_1 , V_2 of Y such that $y \in V_1$ and $F(x) \in V_2$. By regularity of , V_2 is also θ -open in Y. Since F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous at x, there exists an $\alpha\delta$ -open set U in X containing x such that $F(U) \subseteq V_2$. Therefore, we obtain $x \in U, y \in V_1$ and $(x,y) \in U \times V_1 \subseteq (X \times Y) - G(F)$. So G(F) is θ -closed with respect to X.

THEOREM 3.18. Let $F:(X,\tau) \to (Y,\sigma)$ be a point closed set and upper $\mathcal{F}^{-\alpha\delta}$ -Continuous multifunction. If F satisfies $x_1 \neq x_2 \Rightarrow F(x_1) \neq F(x_2)$ and Y is regular space, then X will be Hausdorff.

PROOF. Let x_1 , x_2 be two distinct points belong to X, then $F(x_1) \neq F(x_2)$. Since F is point closed and Y is regular, for all $y \in F(x_1)$ with $y \notin F(x_2)$, there exists θ -open sets V_1, V_2 containing y and $F(x_2)$ respectively such that $V_1 \cap V_2 = \varphi$. Since F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous and $F(x_2) \subseteq V_2$, there exists an open open set U containing x_2 such that $F(U) \subseteq V_2$. Thus $x \in U$. Therefore, U and X - U are disjoint open sets separating x_1 and x_2 .

THEOREM 3.19. If a multifunction $F: X \to Y$ is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous such that F(x) is θ -compact relative to Y for each $x \in X$ and Y is θ - T_2 , then the multigraph G(F) of F is $\alpha\delta_{\theta}$ -closed.

PROOF. Let $(x,y) \in (X \times Y) - G(F)$. Then $y \in Y - F(x)$. Since Y is $\theta \cdot T_2$, for each $z \in F(x)$, there exist disjoint θ -open subsets U(z) and V(z) of Y containing z and y, respectively. Thus $\{U(z): z \in F(x)\}$ is a θ -open cover of F(x), but F(x) is θ -compact relative to Y, so there exist $z_1, z_2, z_3 \ldots z_n \in F(x)$ such that $F(x) \subset \bigcup_{i=1}^n U(z_i)$. Put $U = \bigcup_{i=1}^n U(z_i)$ and $V = \bigcap_{i=1}^n V(z_i)$. Then U and V are θ -open subsets of Y such that $F(x) \subset U, y \subset V$ and $U \cap V = \varphi$. Since F is upper $\mathcal{F}^{-\alpha\delta}$ -Continuous, it follows from Theorem 3.4 that $F^+(U)$ is a $\alpha\delta$ -open subset of X. Also $x \in F^+(U)$ since $F(x) \subset U$ and $F(F^+(U)) \cap V = \varphi$ since $U \cap V = \varphi$. Hence, G(F) is $\alpha\delta_{\theta}$ -closed.

4. REFERENCES

- Devi R, Maki H and Balachandran K, Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem.Fac.Sci.Kochi Univ. Ser. A Math. 15(1994), 51–63.
- [2] Devi.R and Parimala.M, On Upper and Lower Faintly aψ-Continuous Multifunctions, International Journal of Computer Applications (0975 – 8887) Volume 3 – No. 6, June (2010).
- [3] Devi R , Kokilavani V and Basker P, On Strongly-αδ-Super-Irresolute Functions In Topological Spaces, International Journal of Computer Application, (0975– 8887), Volume-40, No.17, February- (2012).

- [4] Kokilavani V and Basker P, On Perfectly αδ-Continuous Functions In Topological Spaces (Submitted).
- [5] Kokilavani V and Basker P, Application of $\alpha\delta$ -closed sets (Accepted).
- [6] Y. Kucuk, On some characterizations of δ-continuous multifunctions, Demonstratio Math., Vol 28(3)(1995), 587-595.
- [7] P. E. Long and L. L. Herrington, *The τθ topology and faintly continuous functions*, Kyungpook Math. J., 22(1982), 7-14.
- [8] T.Noiri and V.Popa, Almost weakly continuous multifunctions, Demonstration Math., 26(2)(1993), 363-380.

- [9] Njastad O, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961–970.
- [10] S.Sinharoy and S.Bandyopadhyay, On θ-completely regular and locally θ-H-closed spaces, Bull. Cal. Math. Soc., 87 (1995), 19-26.
- [11] N.V.Velicko, *H-closed topological spaces*, Amer. Math. Soc. Transl., 78 (1968), 103 118.
- [12] V.Kokilavani and P.Basker, On $Sober-\mathcal{M}_{\chi}\alpha\delta\mathcal{R}_0$ spaces in \mathcal{M} -structures, International Journal of Scientific and Research Publications, Volume 2, Issue 3, March (2012) ISSN 2250-3153