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ABSTRACT 
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basic properties and characterizations of such functions are 

established. 
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1. INTRODUCTION 
It is well known that various types of functions play a 

significant role in the theory of classical point set topology. A 

great number of papers dealing with such functions have 

appeared, and a good number of them have been extended to 

the setting of multifunctions [8]. This implies that both 

functions and multifunctions are important tools for studying 

properties of spaces and for constructing new spaces from 

previously existing ones. R. Devi, V. Kokilavani P. Basker [3] 

has introduced and studied the notion of 𝛼𝛿-closed sets in 

topological spaces. In this paper, we introduce and study 

upper and lower faintly 𝛼𝛿-continuous (briefly. ℱ−𝛼𝛿 -

Continuous) multifunctions in topological spaces. The main 

purpose of this paper is to define faintly 𝛼𝛿-continuous 

multifunctions and to obtain several characterizations and 

basic properties of such multifunctions.  

 

2. PRELIMINARIES 
Throughout this present paper, spaces X and Y always mean 

topological spaces. Let X be a topological space and A, a 

subset of X. The closure of A and the interior of A are denoted 

by 𝑐𝑙(𝐴) and i𝑛𝑡(𝐴), respectively. A subset A is said to be 

regular open (resp. regular closed) if 𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴)) (resp. 

𝐴 = 𝑐𝑙(𝑖𝑛𝑡(𝐴)), The 𝛿-interior [11] of a subset A of X is the 

union of all regular open sets of X contained in A and is 

denoted by 𝐼𝑛𝑡𝛿(𝐴).  

The subset A is called 𝛿-open [11] if 𝐴 = 𝐼𝑛𝑡𝛿(𝐴), i.e., a set is 

𝛿-open if it is the union of regular open sets. The complement 

of a 𝛿-open set is called 𝛿-closed. Alternatively, a set 𝐴 ⊂
 𝑋, 𝜏  is called 𝛿-closed [11] if 𝐴 = 𝑐𝑙𝛿(𝐴), where 𝑐𝑙𝛿 𝐴 =

  𝑥 ∶ 𝑥 ∈ 𝑈 ∈ 𝜏 ⇒  𝑖𝑛𝑡 𝑐𝑙 𝐴  ⋂𝐴 ≠ 𝜑 .  

The family of all 𝛿-open (resp. 𝛿-closed) sets in 𝑋 is denoted 

by 𝛿𝑂(𝑋) (resp. 𝛿𝐶(𝑋)). A subset 𝐴 of 𝑋 is called 𝛼-open [9] 

if 𝐴 ⊂  𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡 𝐴 )) and the complement of a 𝛼-open are 

called 𝛼-closed. The intersection of all 𝛼-closed sets 

containing A is called the  𝛼-closure of A and is denoted by 

𝛼𝑐𝑙(𝐴), Dually, 𝛼-interior of A is defined to be the union of 

all 𝛼-open sets contained in A and is denoted by 𝛼𝑖𝑛𝑡 (𝐴).  

A point 𝑥 ∈  𝑋 is called a 𝜃-cluster point of 𝐴 if 𝑐𝑙(𝑉 ) ∩
𝐴 ≠  𝜑 for every open subset 𝑉 of 𝑋 containing 𝑥. The set of 

all 𝜃-cluster points of 𝐴 is called the 𝜃-closure of 𝐴 and is 

denoted by 𝑐𝑙𝜃(𝐴). If 𝐴 = 𝑐𝑙𝜃(𝐴), then 𝐴 is said to be 𝜃-

closed [10]. The complement of a 𝜃-closed set is said to be 𝜃-

open. Clearly, 𝐴 is 𝜃-open if and only if for each 𝑥 ∈  𝐴, 

there exists an open set 𝑈 such that 𝑥 ∈  𝑈 ⊂  𝑐𝑙(𝑈)  ⊂  𝐴.  

We recall the following definition used in sequel. 

DEFINITION 2.1. A subset 𝐴 of a space 𝑋 is said to be 

(a) An 𝛼-generalized closed [1] (𝛼𝑔-closed) set if 

𝛼𝑐𝑙(𝐴)  ⊆  𝑈 whenever 𝐴 ⊆  𝑈 and 𝑈 is 𝛼-open in 

(𝑋, 𝜏) 

(b) An 𝛼𝛿-closed [3] set if 𝑐𝑙𝛿(𝐴) ⊆  𝑈 whenever 

𝐴 ⊆  𝑈 and 𝑈 is 𝛼𝑔-open in (𝑋, 𝜏). 

The complement of a 𝛼𝛿-closed set is said to be 𝛼𝛿-

open. The intersection of all 𝛼𝛿-closed sets of X containing A 

is called 𝛼𝛿-closure [4] of A and is denoted by 𝛼𝛿𝐶𝑙 𝐴 . The 

union of all 𝛼𝛿-open sets of X contained in A is called 𝛼𝛿-

interior [4] of A and is denoted by 𝛼𝛿𝐼𝑛𝑡  𝐴 .  
 

The family of all 𝛼𝛿-open subsets of (𝑋, 𝜏) will be 

denoted by 𝛼𝛿𝑂(𝑋). By a multifunction ∶  𝑋 →  𝑌 , we mean 

a point to-set correspondence from 𝑋 into 𝑌 , also we always 

assume that 𝐹 (𝑥)  ≠  𝜑 for all 𝑥 ∈  𝑋. For a multifunction 

 𝐹 ∶  𝑋 →  𝑌 , the upper and lower inverse of any subset 𝐴 of 

𝑌 are denoted by 𝐹+ 𝐴  and 𝐹− 𝐴  respectively[2], where 

𝐹+ 𝐴 = { 𝑥 ∈  𝑋 ∶  𝐹 (𝑥)  ⊂  𝐴} and 𝐹− 𝐴 =  { 𝑥 ∈  𝑋 ∶
 𝐹 (𝑥)  ∩  𝐴 ≠  𝜑 }. In particular, 𝐹− 𝐴 =  𝑥 ∈ 𝑋 ∶  𝑦 ∈
 𝐹 (𝑥) for each point  ∈  𝑌 . A multifunction 𝐹 ∶  𝑋 →  𝑌 is 

said to be surjective if 𝐹 (𝑋)  =  𝑌. A multifunction 𝐹 ∶  (𝑋,
𝜏)  → (𝑌, 𝜎) is said to be lower 𝛼𝛿-continuous (resp. upper 

𝛼𝛿-continuous) multifunction if  𝐹− 𝐴 ∈ 𝛼𝛿𝑂(𝑋) (resp. 

𝐹+ 𝐴 ∈ 𝛼𝛿𝑂(𝑋)) for every 𝑉 ∈  𝜎. 

 

3. FAINTLY 𝜶𝜹-CONTINUOUS 

     MULTIFUNCTIONS 
DEFINITION 3.1. A multifunction 𝐹 ∶  𝑋 →  𝑌 is said to 

be: 

(a) Upper faintly 𝛼𝛿-continuous (briefly. Upper ℱ−𝛼𝛿 -

Continuous) at 𝑥 ∈  𝑋 if for each 𝜃-open subset 𝑉 

of 𝑌 containing  

𝐹 (𝑥), there exists 𝑈 ∈ 𝛼𝛿𝑂(𝑋) containing 𝑥 such 

that  𝐹(𝑈)  ⊂  𝑉 ; 

(b) Lower faintly 𝛼𝛿-continuous (briefly. Lower ℱ−𝛼𝛿 -

Continuous) at 𝑥 ∈  𝑋 if for each 𝜃-open subset 𝑉 

of 𝑌 such that 𝐹 (𝑥)  ∩  𝑉 ≠  𝜑, there exists 

𝑈 ∈ 𝛼𝛿𝑂(𝑋) containing 𝑥 such that 𝐹 (𝑢)  ∩  𝑉 ≠
𝜑 for every 𝑢 ∈  𝑈; 
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(c) Upper (resp. Lower) faintly 𝛼𝛿-continuous if it is 

Upper (resp. Lower) faintly 𝛼𝛿-continuous at each 

point of 𝑋. 

 

REMARK 3.2. Since every 𝜃-open set is open, it is clear 

that every upper (lower) 𝛼𝛿-continuous multifunction is upper 

(lower) faintly 𝛼𝛿-continuous. However, the converse is not 

true as the following simple example shows. 

 

THEOREM 3.3. For a multifunction ∶  𝑋 →  𝑌 , the 

following are equivalent. 

(a) 𝐹 is Upper ℱ−𝛼𝛿 -Continuous; 

(b) For each 𝑥 ∈  𝑋 and for each 𝜃-open set 𝑉 such that 

𝑥 ∈ 𝐹+(𝑉), there exists a 𝛼𝛿-open set 𝑈 containing 

𝑥 such that 𝑈 ⊂ 𝐹+(V) 

(c) For each 𝑥 ∈  𝑋 and for each 𝜃-closed set 𝑉 such 

that 𝑥 ∈ 𝐹+(𝑌 − 𝑉) , there exists a 𝛼𝛿-closed set 𝐻 

such that 𝑥 ∈  𝑋 − 𝐻 and 𝐹−(𝑉) ⊂  𝐻 ; 

(d) 𝐹+ 𝑉  is 𝛼𝛿-open for any 𝜃-open subset 𝑉 of 𝑌; 

(e) 𝐹−(𝑉) is 𝛼𝛿-closed for any 𝜃-closed subset 𝑉 of 𝑌; 

(f) 𝐹−(𝑌 − 𝑉) is 𝛼𝛿-closed for any 𝜃-open subset 𝑉 of 

𝑌; 

(g) 𝐹+ 𝑌 − 𝑉  is 𝛼𝛿-open for any 𝜃-closed subset 𝑉 of 

𝑌. 

PROOF. (𝑎)  ⇔  (𝑏): Clear. 

 

(𝑏)  ⇔  (𝑐): Let 𝑥 ∈  𝑋 and 𝑉 be a 𝜃-closed subset of 𝑌 such 

that 𝑥 ∈ 𝐹+(𝑌 − 𝑉). By (𝑏), there exists a 𝛼𝛿-open set 𝑈 

containing 𝑥 such that 𝑈 ⊂ 𝐹+(𝑌 − 𝑉 ). Thus 𝐹−(𝑉) ⊂  𝑋 −
𝑈. Take 𝐻 =  𝑋 −  𝑈. Then 𝑥 ∈  𝑋 −  𝐻 and 𝐻 is 𝛼𝛿-closed. 

The converse is similar. 

 

(𝑎)  ⇔  (𝑑): Let 𝑥 ∈ 𝐹+(𝑉) and 𝑉 be a 𝜃-open subset of  . 

By (𝑎), there exists a 𝛼𝛿-open set 𝑈𝑥  containing 𝑥 such that 

𝑈𝑥 ⊂ 𝐹+(𝑉). Thus, 𝐹+ 𝑉 =∪𝑥 ∈𝐹+(𝑉) 𝑈𝑥 . Since any union of 

𝛼𝛿-open sets is 𝛼𝛿-open, 𝐹+ 𝑉  is 𝛼𝛿-open. The converse is 

clear. 

 

(𝑑)  ⇔  (𝑔) and (𝑒)  ⇔  (𝑓): Clear. 

(𝑑)  ⇔  (𝑓): Follows from the fact that 𝐹− 𝑉 =  𝑋 −
 𝐹+(𝑌 − 𝑉). 

 

THEOREM 3.4. For a multifunction 𝐹 ∶  𝑋 →  𝑌 , the 

following are equivalent: 

 

(a) 𝐹 is Lower ℱ−𝛼𝛿 -Continuous; 

(b) For each 𝑥 ∈  𝑋 and for each 𝜃-open set 𝑉 such that 

𝑥 ∈ 𝐹−(𝑉), there exists a 𝛼𝛿-open set 𝑈 containing 

𝑥 such that 𝑈 ⊂ 𝐹−(𝑉 ); 

(c) For each 𝑥 ∈  𝑋 and for each 𝜃-closed set 𝑉 such 

that 𝑥 ∈ 𝐹−(𝑌 − 𝑉) , there exists a 𝛼𝛿-closed set 𝐻 

such that 𝑥 ∈  𝑋 −  𝐻 and 𝐹+(𝑉) ⊂  𝐻; 

(d) 𝐹− 𝑉  is 𝛼𝛿-open for any 𝜃-open subset 𝑉 of 𝑌; 

(e) 𝐹+(𝑉) is 𝛼𝛿-closed for any 𝜃-closed subset 𝑉 of 𝑌; 

(f) 𝐹+(𝑌 − 𝑉) is 𝛼𝛿-closed for any 𝜃-open subset 𝑉 of 

𝑌; 

(g) 𝐹− 𝑌 − 𝑉  is 𝛼𝛿-open for any 𝜃-closed subset 𝑉 of 

𝑌. 

PROOF. Similar to that of Theorem 3.3. 

 

THEOREM 3.5. Suppose that (𝑋, 𝜏) and (𝑋𝑖 , 𝜏𝑖) are 

topological spaces where 𝑖 ∈ 𝐼. Let 𝐹: 𝑋 →  𝑋𝑖𝑖∈𝐼  be a 

multifunction from 𝑋 to the product space  𝑋𝑖𝑖∈𝐼  and let 

𝑃𝑖 :  𝑋𝑖𝑖∈𝐼 → 𝑋𝑖  be a projection multifunction for each 𝑖 ∈ 𝐼 

which is defined by 𝑃𝑖  𝑥𝑖  = {𝑥𝑖}. If 𝐹 is upper (lower) 

faintly 𝛼𝛿-continuous, then 𝑃𝑖 ∘ 𝐹  is upper (lower) ℱ−𝛼𝛿 -

Continuous for each 𝑖 ∈ 𝐼. 
 

PROOF. Let 𝑉𝑖  be a 𝜃-open set in (𝑋𝑖 , 𝜏𝑖). Then  𝑃𝑖 ∘

𝐹 + 𝑉𝑖 = 𝐹+  𝑃𝑖
+ 𝑉𝑖  = 𝐹+(𝑉𝑖 ×  𝑋𝑗𝑗≠𝑖 ) (resp.  𝑃𝑖 ∘

𝐹 − 𝑉𝑖 = 𝐹− 𝑃𝑖
− 𝑉𝑖  = 𝐹−(𝑉𝑖 ×  𝑋𝑗𝑗≠𝑖 ). Since 𝐹 is 

upper (lower) faintly 𝛼𝛿-continuous and since 𝑉𝑖 ×  𝑋𝑗𝑗≠𝑖  is 

a 𝜃-open set, it follows from Theorems 3.3 and 3.4 that 

𝐹+(𝑉𝑖 ×  𝑋𝑗𝑗≠𝑖 ) (resp. 𝐹−(𝑉𝑖 ×  𝑋𝑗𝑗≠𝑖 ) is a 𝛼𝛿-open set in 

(𝑋, 𝜏). Hence again by Theorems 3.3 and 3.4, 𝑃𝑖 ∘ 𝐹 is upper 

(lower) ℱ−𝛼𝛿 -Continuous for each 𝑖 ∈ 𝐼. 
 

COROLLARY 3.6.  Let 𝐹 ∶  𝑋 →  𝑌 be a multifunction. If 

the graph multifunction 𝐺𝐹  of 𝐹 is upper (lower) ℱ−𝛼𝛿 -

Continuous, then 𝐹 is upper (lower) ℱ−𝛼𝛿 -Continuous, where 

𝐺𝐹 : 𝑋 → 𝑋 ×  𝑌, 𝐺𝐹(𝑥) = {𝑥} × 𝐹(𝑥). 

 

COROLLARY 3.7.  Suppose that (𝑋, 𝜏 ), (𝑌, 𝜎), (𝑍, 𝜂) are 

topological spaces and 𝐹1 ∶  𝑋 →  𝑌 , 𝐹2 ∶  𝑋 →  𝑍 are 

multifunctions. Let 𝐹1  × 𝐹2 ∶  𝑋 →  𝑌 ×  𝑍 be the 

multifunction defined by (𝐹1  × 𝐹2) 𝑥 = 𝐹1(𝑥)  × 𝐹2(𝑥) for 

each 𝑥 ∈ 𝑋. If 𝐹1  × 𝐹2 is upper (lower) ℱ−𝛼𝛿 -Continuous, 

then 𝐹1 and 𝐹2 are upper (lower) ℱ−𝛼𝛿 -Continuous. The 

following lemma can be easily established. 

 

LEMMA 3.8.  If 𝐴 ×  𝐵 ∈ 𝛼𝛿𝑂(𝑋 ×  𝑌), then 𝐴 ∈
𝛼𝛿𝑂(𝑋) and 𝐵 ∈ 𝛼𝛿𝑂(𝑌). 

 

THEOREM 3.9. Suppose that (𝑋𝑖 , 𝜏𝑖) and (𝑌𝑖 , σ𝑖) are 

topological spaces for each 𝑖 ∈ 𝐼. Let 𝐹𝑖 ∶  𝑋𝑖  →  𝑌𝑖  be a 

multifunction for each 𝑖 ∈ 𝐼 and let 𝐹: 𝑋𝑖𝑖∈𝐼 →  𝑌𝑖𝑖∈𝐼  be 

the multifunction defined by 𝐹((𝑥𝑖))  =   𝐹𝑖(𝑥𝑖)𝑖∈𝐼 . If 𝐹 is 

upper (lower) ℱ−𝛼𝛿 -Continuous, then 𝐹𝑖  is upper (lower) 

ℱ−𝛼𝛿 -Continuous for each 𝑖 ∈ 𝐼. 
 

PROOF. Let 𝑉𝑖  be a 𝜃-open subset of 𝑌𝑖 . Then 𝑉𝑖 ×  𝑋𝑗𝑗≠𝑖  

is a 𝜃-open set. Since 𝐹 is upper (lower) ℱ−𝛼𝛿 -Continuous, it 

follows from Theorems 3.4 and 3.5 that 𝐹+ 𝑉𝑖 ×  𝑌𝑗𝑗≠𝑖  =

𝐹𝑖
+ 𝑉𝑖 ×  𝑋𝑗𝑗≠𝑖  (resp. 𝐹− 𝑉𝑖 ×  𝑌𝑗𝑗≠𝑖  = 𝐹𝑖

− 𝑉𝑖 ×
 𝑋𝑗𝑗≠𝑖  ). Consequently, it follows from Lemma 3.8 that 

𝐹𝑖
+ 𝑉𝑖  (resp. 𝐹𝑖

− 𝑉𝑖 ) is a 𝛼𝛿-open set. Thus again by 

Theorems 3.3 and 3.4, 𝐹𝑖  is upper (lower) ℱ−𝛼𝛿 -Continuous 

for each 𝑖 ∈ 𝐼. 
 

COROLLARY 3.10. Suppose that 𝐹1 ∶  𝑋1  →  𝑌1, 

𝐹2 ∶  𝑋2  →  𝑌2 are multifunctions. If 𝐹1  × 𝐹2 is upper (lower) 

ℱ−𝛼𝛿 -Continuous, then 𝐹1  and 𝐹2 are upper (lower) ℱ−𝛼𝛿 -

Continuous, where 𝐹1  × 𝐹2 is the product multifunction 

defined as follows: 𝐹1  × 𝐹2: 𝑋1  × 𝑋2 → 𝑌1  × 𝑌2, (𝐹1  ×
𝐹2) 𝑥1 , 𝑥2   = 𝐹1(𝑥1)  × 𝐹2(𝑥2), where 𝑥1  ∈  𝑋1 and 

𝑥2  ∈  𝑋2. Recall that a multifunction 𝐹 ∶  𝑋 →  𝑌 is said to be 

punctually closed if for each 𝑥 ∈  𝑋, 𝐹 (𝑥) is closed. Recall 

also that a space 𝑋 is called 𝜃-normal if for any disjoint closed 

subsets 𝐹1   , 𝐹2 of 𝑋, there exist two disjoint 𝜃-open subsets 

𝑉1   , 𝑉2 of 𝑋 containing 𝐹1   , 𝐹2 respectively. 

 

DEFINITION 3.11.  A topological space (𝑋, 𝜏 ) is said to 

be 𝑇2
#𝛼𝛿  [5] (resp. 𝜃-𝑇2 [8]) if for each pair of distinct points 𝑥 

and 𝑦 of 𝑋, there exist disjoint 𝛼𝛿-open (resp. 𝜃-open) subsets 

𝑈 and 𝑉 of 𝑋 containing 𝑥 and 𝑦, respectively. 
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THEOREM 3.12. Let 𝐹: 𝑋 → 𝑌 be an upper ℱ−𝛼𝛿 -

Continuous multi-function and punctually closed from a 

topological space 𝑋 into a 𝜃-normal space 𝑌 such that 

𝐹(𝑥) ∩ 𝐹(𝑦) = 𝜑 for each pair of distinct points 𝑥 and 𝑦 of 

𝑋. Then 𝑋 is 𝑇2
#𝛼𝛿 . 

 

PROOF. Let 𝑥 and 𝑦 be any two distinct points of 𝑋. Then 

𝐹(𝑥) ∩ 𝐹(𝑦) = 𝜑. Since 𝑌 is 𝜃-normal and 𝐹 is punctually 

closed, there exist disjoint 𝜃-open sets 𝑈 and 𝑉 containing 

𝐹 (𝑥) and 𝐹 (𝑦), respectively, but 𝐹 is upper ℱ−𝛼𝛿 -

Continuous, so it follows from Theorem 3.4 that 𝐹+(𝑈) and 

𝐹+(𝑉) are disjoint 𝛼𝛿-open subsets of 𝑋 containing 𝑥 and 𝑦, 

respectively. Hence 𝑋 is 𝑇2
#𝛼𝛿 . 

 

DEFINITION  3.13. A topological space (𝑋, 𝜏) is said to 

be 𝜃-compact [5] (resp. 𝛼𝛿-compact) if every 𝜃-open (resp. 

𝛼𝛿-open) cover of 𝑋 has a finite subcover. A subset 𝐴 of a 

topological space 𝑋 is said to be 𝜃-compact relative to 𝑋 if 

every cover of 𝐴 by 𝜃-open subsets of 𝑋 has a finite subcover 

of 𝐴. 

 

THEOREM 3.14. Let 𝐹 ∶  𝑋 →  𝑌 be an upper ℱ−𝛼𝛿 -

Continuous surjective multifunction such that 𝐹 (𝑥) is 𝜃-

compact relative to 𝑌 for each 𝑥 ∈  𝑋. If 𝑋 is 𝛼𝛿-compact, 

then 𝑌 is 𝜃-compact. 

 

PROOF.  Let 𝑉𝛼 ∶ 𝛼 ∈ 𝛬 be a 𝜃-open cover of 𝑌. Since 𝐹(𝑥) 

is 𝜃-compact relative to 𝑌 for each 𝑥 ∈  𝑋, there exists a finite 

subset 𝛬(𝑥) of 𝛬 such that 𝐹 𝑥 ⊂∪𝛼∈𝛬(𝑥) 𝑉𝛼 . Put 𝑉 𝑥 =

∪𝛼∈𝛬(𝑥) 𝑉𝛼 . Then 𝑉(𝑥) is a 𝜃-open subset of 𝑌 containing 

𝐹(𝑥). Since 𝐹 is upper ℱ−𝛼𝛿 -Continuous, it follows from 

Theorem 3.4 that 𝐹+ 𝑉 𝑥   is a 𝛼𝛿-open subset of 𝑋 

containing  𝑥 . Thus the family  𝐹+ 𝑉 𝑥  ∶  𝑥 ∈  𝑋  is a 

𝛼𝛿-open cover of 𝑋, but 𝑋 is 𝛼𝛿-compact, so there exist 

𝑥1 , 𝑥2, 𝑥3  .  .  . 𝑥𝑛 ∈ 𝑋 such that 𝑋 =  𝐹+ 𝑉 𝑥𝑖  
𝑛
𝑖=1  . 

Hence, 𝑌 = 𝐹   𝐹+ 𝑉 𝑥𝑖  
𝑛
𝑖=1   =  𝐹  𝐹+ 𝑉 𝑥𝑖   

𝑛
𝑖=1 ⊂

 𝑉 𝑥𝑖 
𝑛
𝑖=1 =  ∪𝛼∈𝛬(𝑥𝑖) 𝑉𝛼

𝑛
𝑖=1 . Hence, 𝑌 is 𝜃-compact.  

 

For a given multifunction ∶ 𝑋 → 𝑌 , the graph 

multifunction 𝐺𝐹 : 𝑋 → 𝑋 × 𝑌 is defined as 𝐺𝐹(𝑥)  =  {𝑥}  ×
 𝐹 (𝑥) for every 𝑥 ∈ 𝑋. In [4], it was shown that for a 

multifunction 𝐹 ∶  𝑋 →  𝑌, 𝐺+
𝐹(𝐴 × 𝐵) = 𝐴 ∩ 𝐹+ 𝐵  and 

𝐺−
𝐹(𝐴 × 𝐵) = 𝐴 ∩ 𝐹− 𝐵  where 𝐴 ⊆  𝑋 and 𝐵 ⊆  𝑌 . A 

multifunction 𝐹 ∶  𝑋 →  𝑌 is said to be a point closed if and 

only if for each 𝑥 ∈  𝑋, 𝐹 (𝑥) is closed in 𝑌. 

 

DEFINITION 3.15.  Let 𝐹: 𝑋 → 𝑌 be a multifunction. The 

multigraph 𝐺 𝐹 =   𝑥, 𝑦 : 𝑦 ∈  𝐹  𝑥 , 𝑥 ∈ 𝑋  of 𝐹 is said to 

be 𝛼𝛿𝜃 -closed if for each  𝑥, 𝑦 ∈  𝑋 × 𝑌 − 𝐺(𝐹), there 

exist a 𝛼𝛿-open set 𝑈 and a 𝜃-open set 𝑉 containing 𝑥 and 𝑦, 

respectively, such that (𝑈 × 𝑉) ∩  𝐺(𝐹) = 𝜑, i.e., 𝐹 (𝑈) ∩
𝑉 = 𝜑. 

 

THEOREM 3.16.  If the graph multifunction 𝐹 ∶  𝑋 →  𝑌 

is upper (lower) ℱ−𝛼𝛿 -Continuous, then 𝐹 is upper (lower) 

ℱ−𝛼𝛿 -Continuous. 

 

PROOF. We shall only prove the case where F is upper 

ℱ−𝛼𝛿 -Continuous. Let 𝑥 ∈  𝑋 and 𝑉 be a 𝜃-open set in 𝑌 

such that 𝑥 ∈ 𝐹+ 𝑉 . Then 𝐺𝐹(𝑥) ∩ (𝑋 × 𝑌) = ({𝑥} ×
𝐹(𝑥)) ∩ (𝑋 × 𝑌) = {𝑥} × (𝐹(𝑥) ∩ 𝑉) ≠ 𝜑 and 𝑋 × 𝑉 is 𝜃-

open in 𝑋 ×  𝑌 by Theorem 5 in [3]. Since the graph 

multifunction 𝐺𝐹  is upper ℱ−𝛼𝛿 -Continuous, there exists an 

open set 𝑈 containing 𝑥 such that 𝑧 ∈  𝑈 implies that 

𝐺𝐹(𝑧) ∩ (𝑋 × 𝑉) ≠ 𝜑. Therefore, we obtain 𝑈 ⊆ 𝐺+
𝐹(𝑋 ×

𝑉) =  ℱ−𝛼𝛿 − Continuous ∈ 𝛼𝛿𝑂(𝑋) from the above 

equalities. Consequently, 𝐹 is upper ℱ−𝛼𝛿 -Continuous. 

 

THEOREM 3.17.  Let ∶  𝑋 →  𝑌 , be a point closed 

multifunction. If 𝐹 is upper faintly 𝛼𝛿-continuous and assume 

that 𝑌 is regular, then 𝐺(𝐹) is 𝜃-closed with respect to 𝑋. 

 

PROOF. Suppose (𝑥, 𝑦) ∉ 𝐺(𝐹). Then we have 𝑦 ∉  𝐹 (𝑥). 

Since 𝑌 is regular, there exist disjoint open sets 𝑉1   , 𝑉2 of 𝑌 

such that 𝑦 ∈ 𝑉1 and 𝐹 (𝑥) ∈ 𝑉2. By regularity of  , 𝑉2 is also 

𝜃-open in 𝑌 . Since 𝐹 is upper ℱ−𝛼𝛿 -Continuous at 𝑥, there 

exists an 𝛼𝛿-open set 𝑈 in 𝑋 containing 𝑥 such that 𝐹(𝑈) ⊆
𝑉2. Therefore, we obtain 𝑥 ∈  𝑈, 𝑦 ∈ 𝑉1 and (𝑥, 𝑦) ∈ 𝑈 ×
𝑉1 ⊆ (𝑋 × 𝑌) − 𝐺(𝐹). So 𝐺(𝐹) is 𝜃-closed with respect to 𝑋. 

 

THEOREM 3.18.  Let 𝐹: (𝑋, 𝜏) → (𝑌, 𝜎) be a point closed 

set and upper ℱ−𝛼𝛿 -Continuous multifunction. If 𝐹 satisfies 

𝑥1 ≠ 𝑥2 ⇒  𝐹 (𝑥1)  ≠ 𝐹 (𝑥2) and 𝑌 is regular space, then 𝑋 

will be Hausdorff. 

 

PROOF. Let 𝑥1, 𝑥2 be two distinct points belong to 𝑋, then 

𝐹 (𝑥1)  ≠ 𝐹 (𝑥2). Since 𝐹 is point closed and 𝑌 is regular, for 

all 𝑦 ∈ 𝐹 (𝑥1) with 𝑦 ∉ 𝐹 (𝑥2), there exists 𝜃-open sets 𝑉1, 𝑉2 

containing 𝑦 and 𝐹 (𝑥2) respectively such that 𝑉1 ∩ 𝑉2 = 𝜑. 

Since 𝐹 is upper ℱ−𝛼𝛿 -Continuous and 𝐹 (𝑥2)  ⊆ 𝑉2, there 

exists an open open set 𝑈 containing 𝑥2 such that 𝐹(𝑈) ⊆ 𝑉2. 

Thus 𝑥 ∈ 𝑈. Therefore, 𝑈 and 𝑋 − 𝑈 are disjoint open sets 

separating 𝑥1 and 𝑥2. 

 

THEOREM 3.19. If a multifunction 𝐹 ∶  𝑋 →  𝑌 is upper 

ℱ−𝛼𝛿 -Continuous such that 𝐹 (𝑥) is 𝜃-compact relative to 𝑌 

for each 𝑥 ∈  𝑋 and 𝑌 is 𝜃-𝑇2, then the multigraph 𝐺(𝐹) of 𝐹 

is 𝛼𝛿𝜃 -closed. 

 

PROOF. Let  𝑥, 𝑦 ∈  𝑋 ×  𝑌 − 𝐺(𝐹). Then 𝑦 ∈ 𝑌 −
𝐹(𝑥). Since 𝑌 is 𝜃-𝑇2, for each 𝑧 ∈ 𝐹(𝑥), there exist disjoint 

𝜃-open subsets 𝑈(𝑧) and 𝑉(𝑧) of 𝑌 containing 𝑧 and 𝑦, 

respectively. Thus {𝑈(𝑧) ∶  𝑧 ∈  𝐹 (𝑥)} is a 𝜃-open cover of 

𝐹 (𝑥), but 𝐹 (𝑥) is 𝜃-compact relative to 𝑌 , so there exist 

𝑧1 , 𝑧2 , 𝑧3  .  .  . 𝑧𝑛 ∈ 𝐹(𝑥) such that 𝐹  𝑥 ⊂   𝑈(𝑧𝑖)
𝑛
𝑖=1 . Put 

𝑈 =  𝑈(𝑧𝑖)
𝑛
𝑖=1   and  𝑉 = ⋂ 𝑉(𝑧𝑖)

𝑛
𝑖=1 . Then 𝑈 and 𝑉 are 𝜃-

open subsets of 𝑌 such that 𝐹 (𝑥)  ⊂  𝑈, 𝑦 ⊂  𝑉 and 𝑈 ∩ 𝑉 =

𝜑. Since 𝐹 is upper ℱ−𝛼𝛿 -Continuous, it follows from 

Theorem 3.4 that 𝐹+(𝑈) is a 𝛼𝛿-open subset of 𝑋. Also 

𝑥 ∈ 𝐹+(𝑈)  since 𝐹 (𝑥)  ⊂  𝑈 and 𝐹  𝐹+ 𝑈  ∩ 𝑉 = 𝜑 since 

𝑈 ∩  𝑉 = 𝜑. Hence, 𝐺(𝐹) is 𝛼𝛿𝜃 -closed. 
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