
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.19, March 2012

13

Validation of UML Class Model through Finite-State

Machine

Vipin Saxena

Department of Computer Science
Babasaheb Bhimrao Ambedkar University

(A Central University)
Viday Vihar, Rae Bareli Road

Lucknow (U.P.),226025, INDIA

Santosh Kumar
Department of Computer Science

Babasaheb Bhimrao Ambedkar University
(A Central University)

Viday Vihar, Rae Bareli Road
Lucknow (U.P.),226025, INDIA

ABSTRACT

The Unified Modeling Language (UML) is an independent to

programming language which has a collection of modeling

tools through which software engineers and researcher

represent the complex research problems in the diagrammatic

form. The various tools represent the static as well as the

dynamic behavior of an object-oriented software system. The

state chart diagram is a well known tool of UML which shows

the dynamic behavior of states of an object-oriented system.

The entire life of an object is represented by this tool. The

state transformation of an object is depending on the three

major components like transition function, action and possible

inputs. The paths through which an object changes its state are

determined by the state chart diagrams. These paths can be

represented in the graphical form with the use of Finite State

Machine (FSM). The graphical representation is very useful

for determining the correctness of the diagram. In the present

work, an approach to validate the UML class model through

FSM is described with a creation of the transition table. For

testing purpose, some test cases are generated to test the

correctness of UML state chart diagram by taking a real case

study of Life Insurance Corporation (LIC) of India. An

approach to verify the correctness of UML diagram is

presented.

Keywords

UML, FSM, Class Diagram, State Diagram, Transition Table.

1. INTRODUCTION
Object Management Group (OMG) has released a standard

modeling language for the scientific community for designing

the object oriented systems and given a new definition for the

modeling of any object-oriented system especially for solution

of the complex research problems. The name of this language

is Unified Modeling Language known as UML and became

very popular in the present scenario.

It is a well known modeling language which provides a lot of

modeling tools and graphical notations for solving complex

the object-oriented problems in the field of software

engineering. It also provides standardization in specifying,

documenting, writing blueprint and visualizing the artifacts of

software-intensive system under development. UML provides

a set of notations for describing the state of any object through

the state chat diagrams which is one of the most versatile tools

for describing the life cycle of an object from its initialization

to termination. State chart diagrams represent the dynamic

behavior of any software system in graphical form, which

shows all the paths through which an object changes its state

during its entire life and these paths further graphically

represented by the use of the concept of Finite State Machine

(FSM).

FSM gives a computational model for dynamic as well as

static behavior of any software system. It is an abstract

machine that produces a finite number of states and it

produces one state at a time by reading input symbols. The

working of FSM is started from the initial state and end on the

final state and it can accept any length of string; if an

automaton reaches its final state by reading input symbols one

by one otherwise it rejects the string. The input is a finite set

of alphabets. The finite-state automata can accept or reject an

input string.

The Object Management Group (OMG) [1, 2] has released the

versions of UML and approved that the UML is a standard

language for modelling; it also described UML profile for

schedulability, performance and time; and also released the

UML specifications versions. G. Booch et al. [3, 4] have

presented the unified modeling user guide which helps to

better understand the functionality of UML tools i.e. used in

modeling. Hopcroft, J.E. et al. [5] have explained the new

form of presentation of the finite state automata in directed

graphs. Lee and Yannakakis [6] have reviewed the

fundamental problems in testing finite state machines and

techniques for solving these problems, tracing progress in the

area from its inception to the present and also discuss

extensions of finite state machines. Luo et al. [7] have

presented a method of generating test sequences for

concurrent programs and communication protocols that are

modeled as communicating nondeterministic finite state

machines (CNFSMs). Mallery [8] has presented a brief review

of FSM based software testing research relevant to FSM Web

as well as a comprehensive literature search of existing

research on testing web applications. E. Roche and Y.

Schabes [9] have described the basic notions of finite-state

automata, finite-state transducers and also describe the

fundamental properties of these machines while illustrating

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.19, March 2012

14

their use. Chow T. S. [10] has proposed a method of testing

the correctness of control structures that can be modeled by a

finite-state machine. Clifford E. C. [11] has proved the RTL

coding styles for efficient and synthesizable Finite State

Machine (FSM) design using IEEE-compliant Verilog

simulators. Bilung Lee and Edward [12] have focused on the

interaction of FSMs and three concurrency models:

synchronous dataflow, discrete-event and synchronous

reactive models.

In the present work, a UML state diagram is converted into

FSM through which the test cases are generated for a real case

study of Life Insurance Corporation of India (LIC) for issuing

the policy to the handicapped people. Test cases are generated

for the validation of UML class model and suitable production

rules are also designed.

2. UML CLASS MODEL FOR ISSUING

 POLICY FOR HANDICAPPED
The UML Class model of issuing policy for handicapped is

presented here through the UML class model concepts. There

are eight major classes with their attributes are represented in

figure 1. The model shows the process of issuing policies for

the handicapped person. The Customer class has multiple

associations with the Plan, New_Business, Medical_Office,

Disability and Mobile_System; the customer chooses a plan

and fills the policy proposal form. The New_Business checks

the policy proposal form and refers the customer to the

Medical_Officer for medical purpose or if the customers have

not fulfill the eligibility criteria then the New_Business class

rejects the policy proposals. The Medical_Officer examines

the customer and gives the medical report with percentage of

disability. The New_Business verifies the disability of the

customer as given by the medical officer and issues a policy

according to the percentage of disability; if the percentage of

disability ≤ 60% then the policy is issued by the LIC_Branch

and deposits the premium amount of the issued policy in the

Main_Branch through the Bank and if the percentage of

disability > 60% then the Customer is referred to the

Main_Branch for issuing policy. All the LIC_Branch offices

are inheriting the functionality of New_Business,

Medical_Officer, Main_Branch and all the Banks associated

with all the LIC_Branch are also inheriting the functionality

of Bank. The premium amount of the policy is auto deducted by

the Main_Branch through the Bank which is linked to the every

LIC‟s branch. The class Bank sends the confirmation of

payment amount to the Main_Branch and then Main_Branch

sends the confirmation of issuing the proposed policy on the

customer‟s Mobile_System and also sends a hard copy

payment receipt policy bond. The customer‟s data is uploaded

online through the software and also stored in the LIC‟s

database. The details and the status of the policy can be

viewed through any hand held devices like smart phones,

PDA‟s, Laptop, etc via internet.

+Verify_Applicatios()

+Refer_to_MO()

-Officer_ID

-Officer_Name

-Designation

-Mobile_No

-Address

New_Business

+Confirm_Disability()

+Percentage_of_Disability()

-Doctor_ID

-Doctor_Name

-Designation

-Mobile_No

-Address

Medical_Officer

+Issue_policy()

+Notifications()

-Division_Code

-Branch_Code

-Branch_Office_Add

Main_Branch

+....()

-Cust_Code

+Cust_Name

-Plan_Code

-Plan_Term

-Policy_No

-Premium_Term

-Date_of_Comm

-Date_of_Birth

+Sex

-Medical_Status

-Earning

-Income p/a

+Address

-Mobile_No

-Premium_Mode

-Premium_Due_Date

-Date_of_Maturity

-Age_at_Maturity

-Naminee

-Age

-Relation

Customer

+..()

-Plan_Code

+Plan_Type

Plan

+Hand_Held_Device()

+Recieve_Notifications()

-Mobile_No

-IEMI_No

-Service_Provider

Mobile_System

+Issue_policy()

+Notifications()

-Branch_Code

-Division-Code

+Branch_Office_Add

LIC_Branch_1

+Deposit_premium()

-Branch_Code

-Bank_Name

-Branch_Office_Add

Bank

+Issue_policy()

+Notifications()

-Branch_Code

-Division_Code

+Branch_Office_Add

LIC_Branch_2

+Issue_policy()

+Notifications()

-Branch_Code

-Division_Code

+Branch_Office_Add

LIC_Branch_N-1

+Issue_policy()

+Notifications()

-Branch_Code

-Division_Code

+Branch_Office_Add

LIC_Branch_N

+..()

-Disability_Code

-Type_of_Disability

-Percentage_of_Disability

Disability

+..()

-Plan_Code

-Plan_Name

Insurance_Plan

+..()

-Plan_code

-Plan_Name

Special_Plan

+..()

-Plan_Code

-Plan_Name

Pension_Plan

+..()

-Plan_code

-Plan_Name

Withdrawl_Plan

-------- ------

*

1

* 1

Interacts with information

* **

1

Sends confirmation regarding policy

Auto deduct premium amount

Select the plan

C
he

ck
s t

he
 p

ro
po

sa
l &

 re
fe

r t
o

M
ed

ic
al

of
fic

er
 o

r r
ej

ec
t i

f n
ot

 el
ig

ib
le

Examine

the

disability

*

*

*

*

1

*

*

*

*

*

Verify the % of

disability

If disability > 60%

1

*

*

*

*

*

Figure 1: UML Class Model of Issuing Policy for Handicapped

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.19, March 2012

15

3. FUNDAMENTALS OF FSM
In the theory of automata, the finite state machine is also

known as deterministic finite automata or simply it is a

mathematical model used to design computer program and

digital logic circuits. A finite state machine „M‟ is defined as:

 M = (Q, Ʃ, δ, q0, F)

Where

 Q denoted as a finite set of state in finite state machine;

 Ʃ denoted as a finite set of input symbols, these symbols

may be any alphabets or numbers;

 A transition function is denoted by δ that takes as

arguments a state and input symbol and returns a state. In

the graph representation of an automata, δ is represented

by an arcs between two states and label of arcs. If q is a

state and a is an input symbol, then δ (q, a) is that state p

such that there is an arc labeled a from q to p2;

 q0 is denoted as initial state, which is one of the state of

Q;

 F is a set the final or accepting state, the set of F is a

subset of Q;

From the above definition of automata, a finite state machine

is constructed, whose states correspond to the variable Q and

all the input symbols & transition in the system are

corresponding to the variable Ʃ and δ, respectively. The initial

state of the system is q0, which is one of the states in Q. Thus

from the above definition, the different form of state machine

and its equivalent transition table are generated.

3.1 Conversion of State Transition

 Diagram into FSM
The state transition diagram is illustrated by taking a sample

state chart diagram of Login Window which is shown below

in the figure 2:

Login Winodw User Name Password
a b

Enter user name Enter password

a' if Wrong user name

b' if Wrong password

Start/Stop

Figure 2: UML State Diagram of Login Window

From the above state diagram, it is assumed that entering a

user name and password either „a‟ or „b‟ is an event. With the

help of above state diagram authors have drawn a finite state

machine according to UML state diagram. The transition

states of UML state diagram are as q0, q1and q2 where q0 is an

initial and final state and „a‟, „a´‟, „b‟ & „b´‟ are the inputs.

The equivalent finite state machine of the above UML state

diagram is as shown in figure 3:

q1q0 q2

 a b

a'

b'

Figure 3: Finite State Machine for Login window

From the above FSM, q0 is an initial as well as the final state

which shows the login window, q1 = enter the user name and

q2 = enter the password. The transition table for the above

finite state machine is created which shown as table 1:

Table 1. Transition Table for Login Window

State/ Input

 „a‟

„a´‟

„b‟

„b´‟

*→q0 q1 - - -

q1 - q0 q2 -

q2 - - - q0

3.2 Case Study of Issuing Policy for

 Handicapped
For illustration purpose, a real case study of Life Insurance

Corporation of India is taken here as represented in the figure

4; each transition is labeled with an input from the user. The

figure1 shows the state transition diagram of issuing policy

for handicapped in LIC of India. In this diagram, state

transformation from one state to another state is shown by an

arrow and the corresponding action like policy proposal,

verification of proposal, referring medical office, confirmation

of disability and issuing a policy are modeled. The alternate

flows have been depicted like refer to Main_Branch for

issuing the policy, if the percentage of disability is greater

than 60% and rejected if not fulfilling the eligibility criteria by

the customer.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.19, March 2012

16

Customer

New_Business Medical_Officer

Main_Branch Bank

Proposal for

policy

Refer for

Medical

Verify the %

of Disab

If % of

Disab <=

60%

If % of Disab

> 60% Deposit Premium

amount

Issue a

policy

Reject if not

eligible

Deposit

Premium amount LIC_Branch

Confirmation of

payment

Start/Stop

Figure 4: State Diagram of Issuing Policy for Handicapped

In this case it is assumed that the Customer is the initial as

well as the final state of opening policy, this state is

equivalent to „q0‟ and the Customer goes to the New_Business

with the policy proposal in LIC_Branch. When the Customer

proposes a policy in LIC_Branch, the state is changing say „a‟

to “LIC_Branch” state (q1) and „b‟ to “New_Business” state

(q2). Here New_Business verifies the policy proposal and

goes back to the final state with the message of not eligible

say „b″‟ or goes to the next state for medical if eligible with

message verifies and refers for medical say „c‟. After

verifying the policy proposal system goes into the new state

called Medical_Officer (q3). When the Medical_Officer

examines and confirms the disability say „c′‟ of Customer

then system goes back to the New_Business (q2). Now

New_Business checks the percentage of disability of the

Customer, if the percentage of disability is less than or equal

to 60% say „b′‟ then the policy is issued by the LIC_Branch

and system will enter into the loop state called „q1‟, and if the

percentage of disability is greater than 60% say„d‟ then the

policy is issued by the Main_Branch and system will enter

into the new state called „q4‟. After issuing the policy, the

premium amount is deposited by the Main_Branch and

LIC_Branch say „f‟ and „e‟ into the Main_Branch account and

system will enter into the new state called „q5‟. As depositing

the premium amount the bank confirms the payment say „g‟

and system goes back into the state „q4‟. After getting the

confirmation of premium payment the Main_Branch issues a

policy say „h‟ and handed over the policy bond with the

premium deposit receipt. The finite state machines for issuing

policy for handicapped in LIC of India through the set of

these states equivalencies can be drawn as shown in the figure

5.

q1 q2q0 q3 q4 q5

b'

b"

c'

h

 a b c

d

f

g

e

Figure 5: Finite State Machine of Issuing Policy for Handicapped

From the above FSM, the transformation of states from one

state to another state on the basis of {a, b, b′, b″, c,

………………… h} events. These events are considered as

terminals for the above finite state machine of issuing policy

for handicapped in LIC of India, and the set of states {q0, q1,

q2, q3, q4, q5} are assumed to be non-terminals for the above

machine, where q0 is the initial as well as the finale state of

the above finite state machine of issuing policy for

handicapped in LIC of India. The various productions can be

induced for the above finite state machine and the

corresponding transition table is as shown below in table 2:

q0 → a q1

q1 → bq2

q1 → eq5

q2→ cq3

q2 → b′q1

q2 → b″q0

q2 → dq4

q3 → c′q2

q4→ fq5

q4→h q0

q5→ gq4

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.19, March 2012

17

Table 2. Transition Table for Issuing Policy for Handicapped

States/Input

„a‟

„b‟

„b′‟

„b″‟

„c‟

„c′‟

„d‟

„e‟

„f‟

„g‟

„h‟

* →q0 q1 - - - - - - - - - -

q1 - q2 - - - - q5 - - -

q2 - - q1 q0 q3 - q4 - - - -

q3 - - - - - q2 - - - - -

q4 - - - - - - - - q5 - q0

q5 - - - - - - - - - q4 -

For verification of the above production rules, some test cases

are generated and described below in brief:

3.2.1 Test Case 1
The LIC has not issue a policy, if the eligibility criteria is not

fulfill by the customer. As shown in the above figure 5, there

is no direct path from state q0 to q4. So, the state q0 must pass

through the states q1 and q2 for issuing a policy.

3.2.2 Test Case 2
The New_Business validates the policy proposals after

verifying the medical status which is given by the medical

officer or the policy proposal is rejected if the eligibility

criterion is not fulfill by the customer. This can be verified by

the following productions:

q2 → cq3

q2 → b″q0

q3 → c′q2

3.2.3 Test Case 3
The policies are issued by the LIC_Branch and Main_Branch

according the disability condition, if the disability ≤ 60% then

the policy is issued by the LIC_Branch and if the disability >

60% then the policy is issued by the Main_Branch. The

following productions verify these aspects:

q2 → b′q1

q2 → dq4

3.2.4 Test Case 4
The premium amount of all issued policies is auto debited in

the LIC Main_Branch‟s account through the bank. The

following productions are verifying it:

q1 → eq5

q4→ fq5

3.2.5 Test Case 5
The confirmation of premium payment and issuing policy is

given by the following production:

q5→ gq4

q4→h q0

4. CONCLUDING REMARKS
From the above work, it is concluded that UML is a powerful

modeling language for modeling the various kinds of the

research problems and one can depict the static as well as the

dynamic behavior of the system. Since, software professionals

are converting their old structured based designs in the form

of object-oriented designs due evolution of graphical user

interface applications, therefore, UML is widely used by

many researchers and software professionals for proposing the

object-oriented designs. The above work is based upon the

presentation of validation technique through FSM for the

UML models which show the dynamic behavior of the

system. The proposed model for issuing the policies to the

handicapped person is validated through various test cases

drawn from the FSM.

5. ACKNOWLEDGMENTS
Thanks are due to University Grants Commission, New Delhi,

for providing Rajiv Gandhi National Fellowship (RGNF) to

carry out the above research work.

6. REFERENCES
[1] OMG, “Unified Modeling Language Specification”,

 http://www.omg.org (Accessed on 12th Sept. 2012),

1997.

[2] OMG, “Unified Modeling Language (UML)–Version

1.5”, OMG document formal/2003-3-01, (2003),

Needham, MA.

[3] G. Booch, J. Rumbaugh and I. Jacobson, “The

Unified Modeling Language user Guide”,

Twelfth Indian Reprint, Pearson Education,

2004.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.19, March 2012

18

[4] G. Booch, J. Rumbaugh and I. Jacobson, “The

Unified Modeling Language User Guide”, China

Machine Press, Beijing, 2006.

[5] Hopcroft, J.E., Ullmann J.D., “Introduction to

Automata Theory”, Languages, and Computation,

Addison-Wesley, 1979.

[6] Lee D., Yannakakis M., “Principles and Methods

of testing Finite State Machines- A Survey”,

Proceeding of the IEEE, Vol. 84, No. 8, 1996, pp.

1090-1126.

[7] Luo G., Von Bochmann G., Petrenko A.F., “Test

Selection based on Communicating

Nondeterministic Finite State Machines using a

Generalized Wp-Method”, IEEE Trans

Software Engineering Vol. 20, No. 2, 1994, pp

149-162.

[8] C. J. Mallery, “On the Feasibility of Using FSM

Approaches to Test Large Web Applications”,

May 2005.

[9] E. Roche and Y. Schabes, “Introduction to Finite-State

Devices in Natural Language

Processing”, Mitsubishi Electric Research Laboratories,

June 1996, (Accessed on http://www.merl.com).

[10] Chow T. S., “Testing Software Design Modeled

 by Finite State Machines”, IEEE Transactions

 on Software Engineering SE-4, 3(1978), 178-

 187.

[11] Clifford E. Cummings, “The Fundamentals of

 Efficient Synthesizable Finite State Machine

 Design using NC-Verilog and BuildGates”,

International

 Cadence User Group 2002 San Jose, CA, Rev 1.2.

[12] Bilung Lee and Edward A. Lee, “Interaction of

 Finite State Machines and Concurrency Models”,

 Proceeding of Thirty Second Annual Asilomar

 Conference on Signals, Systems, and

 Computers, Pacific Grove, California,

 November 1998.

