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ABSTRACT 

In this paper, two evolutionary algorithms- Invasive Weed 

Optimization (IWO) based power system stabilizer (PSS) and 

particle swarm optimization (PSO) based power system 

stabilizer is designed for multi-machine power system to 

compare their tuning performances. IWO is a derivative-free 

real parameter optimization technique that mimics the 

ecological behavior of colonizing weeds. PSO is also a 

derivative-free and flexible optimizer which is powered by the 

behavior of organism, such as bird flocking. Eigen-value 

based objective function is considered for the tuning of PSSs 

to enhance system damping of electromechanical mode. The 

performance of proposed IWO-based PSS and PSO-based 

PSS is tested and demonstrated under different disturbances 

for a four machine example power system. The Eigen value 

analysis and non-linear time domain simulation results shows 

that both IWO-based PSS and PSO-based design can 

successfully damp out the oscillations and thus improve the 

stability of the system. However, the abilities like faster 

convergence and greater shifting of critical modes to the left 

of s-plane keeps the choice of IWO based design in front of 

PSO based design for the system under consideration.  

General Terms 

Power system stability, Multi-machine system, Optimization. 

Keywords 
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1. INTRODUCTION 
Newer approaches are being tried by the power system 

engineers to maximize power transfer among different areas 

in a stable manner. Usually the transmission networks are 

overdesigned to run the operation of the overall system safely. 

Constraints like thermal limit, rotor angle stability limit and 

voltage stability limit influences the consideration of safety 

limit [1]. Presence of low frequency oscillation among the 

interconnected group of generators creates serious threat to 

the proper operation of the overall system. Usually plant mode 

and interconnected mode of oscillations with frequency 

ranges of 0.7-2.0 Hz and 0.1-0.8 Hz respectively are observed 

[2]. Substantial efforts have been made to realize the impact 

of Power System Stabilizer (PSS) in damping low frequency 

oscillation and thus improve the small signal stability of 

power system [3]. The effectiveness of PSSs from both cost 

and operational point of view has ensured wide use of it by 

the utilities. Different modern control theory based 

approaches have been applied to PSS design problem. These 

contain optimal control, fuzzy & neuro-fuzzy control, variable 

structure control and adaptive control [4-7]. It is shown in [8] 

that appropriate selection of conventional PSS parameters 

result in satisfactory performance under system disturbances. 

Sequential and simultaneous tuning based approaches are 

used in [9]. In sequential design of PSS only one 

electromechanical mode is considered for damping among 

many available modes. It is shown that the optimal parameters 

designed for a certain mode in this fashion can create adverse 

effect on some other modes of the system and the overall 

performance may not be optimal. The PSS tuning problem is 

formulated as non-linear non differentiable optimization 

problem in [10] which is found to be very hard to solve using 

traditionally differentiable optimization algorithms. Several 

random exploration techniques like Genetic Algorithm (GA), 

Simulated Annealing (SA), Tabu Search (TS), and 

Evolutionary Programming (EP) has been successfully used 

[11-15] to optimize the PSS parameters. These techniques 

have gained acceptance because of their ability and 

effectiveness of searching an optimal solution in a problem 

space. A frequency domain based approach [16] is found to be 

more appropriate where the PSS design problem is formulated 

as a multi-objective optimization problem and GA is used to 

optimize them. Even though GA is found to be very 

satisfactory in searching global or near global optimal result 

of the problem, the long run-time constraint limits the use of 

this. Lately a derivative- free, meta-heuristic optimization 

algorithm named as Invasive Weed Optimization (IWO) is 

proposed [17] which imitate the ecological behavior of the 

colonizing weeds. Successfully utilization of IWO has been 

found since then in different optimization problems like 

tuning of a robust controller [17], optimal positioning of 

piezoelectric actuators [18], designing an E-shaped MIMO 

antenna [20], designing the encoding sequences for DNA 

computing [21], developing a recommender system [22] and 

studying electricity market dynamics [23]. PSO was 

introduced by Kennedy and Eberhart in 1995 [24]. In contrast 

to the traditional evolutionary algorithms, PSO keeps track of 

the information regarding both position and velocity of the 

particle [25]. Several upgraded PSO algorithms are 

implemented and applied in [26-27].     

In this paper the optimizing capability of IWO and PSO is 

compared for designing the PSSs parameters for obtaining the 
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best performance of a multi-machine power system. The 

problem of PSS design is first formulated as a constrained 

optimization problem where an eigenvalue based objective 

function is used for tuning purpose. IWO and PSO algorithms 

are then utilized to solve the problem. To investigate and 

compare the performances of these two algorithms an 

example four machine power system has been considered. 

Both eigenvalue analysis and nonlinear time domain 

simulations have been performed to justify their application 

under different loading conditions.  

2. PROBLEM STATEMENT 

2.1 System Model and PSS Structure 
A multi-machine power system can be modeled by a system 

of nonlinear equations of the form  

  ( , )X f X U                        (1) 

where X is the vector of state variables and U is the vector of 

input variables. In this work a two-axis synchronous generator 

model [28] given in the appendix is used for the simulation 

purpose. The linearized model of the power system around an 

operating point is usually employed for PSS design problem. 

Therefore for an m machine npss stabilizer power system the 

state equation of Eq. (1) becomes 

X A X B U    
                      (2) 

Where, A is 4 4m m state matrix, X  is 4 1m X state 

vector, B is 4m X npss input matrix, U  is 

1npss X input vector. Matrix A equals
f

x




, matrix B 

equals
f

u




; both evaluated at 0x  which is the operating point 

around which the system under study is linearized.  

In this paper widely used speed based PSS design is 

considered where the stabilizing signal is assumed to be 

proportional to the speed. The structure of PSS is shown in 

Fig. 1. It consists of a gain block with gain Kpssi , a signal 

washout block and two-stage phase compensation blocks. 

Hence, the transfer function of the ith PSS is given by:  

 

1 3
, ,

2 4

(1 )(1 )

1 (1 )(1 )

wi i i
pss i pss i i

wi i i

sT sT sT
U K

sT sT sT


 
 

  
             (3)  

                          

Where, Δωi and Upssi are the deviation of synchronous speed 

and the stabilizer control signal which is added to the 

excitation system reference. The signal washout block time 

constant Twi allows the signal associated with oscillations in 

rotor speed to pass unchanged, and restricts the steady state 

changes to modify the terminal voltages. So from the washout 

block function the value of Tw is generally not critical and 

may be in the range of 0.5 to 20 seconds. In this paper, it is 

fixed to 10s. The phase compensation block with time 

constants T1, T2 and T3, T4 supplies the required phase-lead to 

compensate for the phase lag between input and the output 

signals. The five PSS parameters consisting of the four time 

constants T1 to T4 and the gain Kpss need to be optimally 

chosen for each generator to guarantee optimal system 

performance under various system configurations and system 

loadings to ensure the robustness of the technique.  
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Fig 1: Power system stabilizer structure 

 

2.2 Objective Function 
To select the best stabilizer parameters that enhance the power 

system dynamic performance the most, an eigenvalue based 

objective function is considered as given in Eq. 4. 

   J = - min (real (eigenvalues) / abs (eigenvalues ) )           (4) 

 
   

So the objective here is to maximize the minimum of the 

damping ratio for a certain parameter set. Maximizing the 

minimum damping ratio will help the cause of improving the 

system overall damping. The problem constraints are the 

stabilizer parameter bounds in this case. Therefore, the design 

problem can be formulated as the following optimization 

problem:  

  Maximize J                   (5) 

Subject to,  

≤ ≤                          (6) 

  

≤ ≤                           (7) 

 

≤ ≤                           (8) 

                      

≤ ≤                          (9) 

                               

≤ ≤                          (10) 

 
where i is the number of stabilizers considered and J is the 

objective function defined in equation (4). In this work both 

Invasive Weed Optimizer and Particle Swarm Optimizer are 

used to search for the optimum parameter settings of the given 

stabilizers and a comparative study is done.  

3. INVASIVE WEED OPTIMIZATION 
Invasive Weed Optimization is a bio-inspired numerical 

stochastic optimization algorithm that simply simulates 

natural behavior of weeds in colonizing and finding suitable 

place for growth and reproduction. Some of the distinctive 

properties of IWO in comparison with other evolutionary 

algorithms are the way of reproduction, spatial dispersal, and 

competitive exclusion [17]. 

The IWO process begins with initializing a population. That 

is, a population of initial solutions is randomly generated over 

the solution space. Then members of the population produce 

seeds depending on their comparative fitness in the 

population. In other words, the number of seeds for each 

member varies linearly between Smin for the worst member 

and Smax for the best member. These seeds are then randomly 

scattered over the search space by normally distributed 

random numbers with mean equal to zero and an adaptive 

standard deviation. The equation for determining the standard 
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deviation (SD) for each generation is presented as:                                                      

max

max

( )
( )

( )

n

iter initial final finaln

iter iter

iter
   


       (11)                      

where itermax is the maximum number of iterations, iter is the 

SD at the current iteration and n is the nonlinear modulation 

index. The produced seeds, accompanied by their parents are 

considered as the potential solutions for the next generation. 

Finally, a competitive exclusion is conducted in the algorithm, 

i.e. after a number of iterations the population reaches its 

maximum, and an elimination mechanism is adopted. The 

seeds and their parents are ranked together and those with 

better fitness survive and become reproductive. A flow chart 

describing the IWO algorithm is presented in Fig. 2.  

3.1 Selection of IWO Control Parameters 
The convergence of the algorithm depends on the selection of 

three parameters, the initial SD, „ initial ‟, the final SD,          

„
final ‟ and the nonlinear modulation index „n‟. These three 

must be tuned in such a way that the proper value of SD in 

each iteration is achieved, according to (11). High value of 

initial  helps the algorithm search the whole search space 

aggressively whereas a finer optimum solution can be 

achieved by decreasing the parameter
final . Maximum and 

minimum numbers of seeds are the other two criteria than 

influence the performance of the algorithm. A value between 

3 and 5 for the maximum and 0 for the minimum yields good 

results as found in many examples [28]. Finally the maximum 

number of plants should also be chosen for IWO. It was found 

that a value between 10 and 20 gives excellent performance 

[28]. 

4. PARTICLE SWARM OPTIMIZATION 
The particle swarm concept originated as a simulation of 

simplified social system. The original intent was to 

graphically simulate the choreography of bird of a bird block 

or fish school. However, it was found that particle swarm 

model can be used as an optimizer. 

One of the widely used population based optimization 

approach, Particle Swarm Optimization (PSO) has a good 

number of advantages over its counterparts.  It shares many 

similarities with the other population based approach like 

Genetic Algorithm (GA) in initiating the solution by 

generating some random particles and then updating them in 

search of the optimum value. Unlike GA, it does not employ 

any evolutionary operator like mutation and crossover. Rather 

the particles fly through a predefined search space and with 

each generation move closer to the optimal value.  Compared 

to GA it has fewer parameters to adjust and easier to 

implement. One strong feature of PSO is its fast convergence 

which makes it comparable with other algorithm.  

PSO has memory, i.e. all the particles remember its previous 

best position (local best) as well as the best position of the 

group (global best). As the initial population is maintained, 

there is no need for applying operators to the population, 

which saves both time and memory. Along with that, PSO 

works on a „constructive manner‟ between the particles, in 

complete contrast with the other artificial algorithms which 

are based on the concept of “Survival of the Fittest”. 

The PSO starts with a population of random solution 

“particles” in an N-dimensional space. The ith particle is 

represented by Xi = (xi1, xi2, …,xiN). Each particle keeps track 

of its coordinates in the solution space which are associated 

with the fittest solution it has achieved so far. The value of the 

fitness for particle i (pbset) is also stored as Pi= (pi1, pi2, 

…,piN). The global version of the PSO keeps track of the 

overall best value (gbest), and its corresponding location, 

obtained thus far by any particle in the population. 

PSO consists of, at each step, changing the velocity of each 

particle toward its pbest an gbest according to equation (12). 

The velocity of particle i represented as Vi = (vi1, vi2, …,viN). 

Acceleration is weighted by a random term, with separate 

random numbers being generated for acceleration towards 

pbest and gbest. The position of the ith particle is then updated 

according to equation (13).  

1 2* * ()*( ) * ()*( )in in in in gn gnv w v c rand p x c rand p x    

      
(12) 

 in in inx x v 
   

(13)                                 

where, pin = pbest and pgn  = gbest 

.   
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Fig 2: Invasive Weed Optimization algorithm flowchart 

4.1 Steps of PSO algorithm 
Step 1: Define the problem space and set the boundaries, i.e. 

equality and inequality constraints. 
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Step 2: Initialize an array of particles with the random 

positions and their associated velocities inside the problem 

space. 

Step 3: Check if the current position is inside the problem 

space or not. If not, adjust the positions so as to be inside the 

problem space. 

Step 4: Evaluate the fitness of each particle. 

Step 5: Compare the current fitness value with the particle‟s 

previous best value (pbest []). If the current fitness value is 

better, assign the current value to pbest [] and assign the 

current coordinates to pbest x[ ][n] coordinates. 

Step 6: Determine the current global minimum among the 

particle‟s best position. 

Step 7: If the current global minimum is better than gbest, 

assign the current value to gbest[] and assign the current 

coordinates to gbest [][n] coordinates. 

Step 8: Change the velocities according to equation (12). 

Step 9: Move each particle to the new position according to 

equation (13) and return to Step 3. 

Step 10: Repeat Step3-Step9 until the stopping criteria is 

satisfied. 

4.2 Selection of PSO Control Parameters 
The convergence of the PSO algorithm depends on the 

selection of the initial inertia weight and maximum allowable 

velocity. In this work the initial inertial weight and number of 

intervals in each space dimensions are being taken as 0.9 and 

30 respectively. The number of particles and decrement 

constant are set at 20 and 0.99 correspondingly. The algorithm 

was set to stop if, i) the number of iterations reaches 500 or, 

ii) there is no change in gbest for the last 50 iterations. 

5. SIMULATION RESULTS 
The single-line diagram of two-area, 4-machine test system, 

as shown in Figure 3, is used to examine both local and inter 

area oscillations control problems. The system consists of four 

generators, G1 and G2 for area 1 and G3 and G4 for area 2. 

The system loads L7 and L9 are present at buses 7 and 9 

respectively. Detail system data can be obtained from [29]. 

For illustration and comparison purpose all four generators are 

assumed to have PSSs installed. It is also decided that all four 

time constants for each PSS along with the PSS gain will be 

tuned to obtain the optimum value. So the number of 

parameters to be optimized for this work is 20. The maximum 

and minimum ranges for the gains and different time 

constants for optimization purpose are set at [0-50] and [0.01-

1.0] respectively. The IWO and PSO algorithms are then 

applied to find out the optimized value of parameters for the 

objective function in (4). The final values of the optimized 

parameters for IWO and PSO are listed in Table II and III 

respectively.  

5.1 Eigen value Analysis and Nonlinear 

Simulation Results 
Three different cases as nominal, light and heavy loading are 

considered over a wide range of loading conditions for the 

comparison purpose. The system loading levels at these cases 

are given in Table I. The IWO algorithm runs several times 

and then optimal set of PSS parameters are selected. The 

eigenvalues and the damping ratio of electromechanical 

modes without PSS is given in Table IV, the eigenvalues and 

the damping ratio of electromechanical modes with IWO-

based PSS and PSO-based PSS are shown in Table V and VI.  

From table IV we observe that without the PSS installed there 

are few eigenvalues in the right side of s-plane which will 

cause severe oscillation in the system. This fact is clear from 

the fact that an eigenvalue in the right half plane exhibits 

negative damping ratio and thus deteriorates the damping 

performance of the overall system. The positive eigenvalues 

along with their negative damping ratios are highlighted in 

Table IV. From Table V and VI it is found that both IWO and 

PSO based PSS can successfully remove the negative 

damping impact by shifting all the eigenvalues to the left of s-

plane. Furthermore, for the nominal loading case the 

maximum damping ratio for IWO-PSS is 4.24 and that for the 

PSO-PSS is 0.9858.  The superiority of IWO based PSS is 

also confirmed for non-nominal loading conditions, too. The 

convergence of IWO and PSO algorithms are shown in 

figures 4 and 5 respectively. It is found that PSO converges 

more rapidly compared to IWO for all three loading levels 

considered in this paper.   

For illustration purpose a three-phase bolted fault at bus 7 

near the end of line 5-7 is considered for the non linear time 

domain simulations. The different loading conditions 

considered here are the same for the eigenvalue analysis. The 

rotor angle variations, angular speed variations and active 

power variations for nominal, heavy and light loading for Gen 

2 are shown in Fig. 6-14. The stabilizer control signal for 

different case scenarios are shown in Fig. 15-17. From these 

figures it can be concluded that both IWO and PSO are robust 

enough to overcome the severe fault conditions and restore 

the system states to their original levels within a very short 

duration under different loading levels.  

  

Table I: Loading conditions (in per unit) 

Load Nominal Heavy Light 

P Q P Q P Q 

A 17.67 -2.50 20.00 -3.50 15.67 -2.50 

B 9.67 -1.00 9.67 -1.00 9.67 -1.00 

 

 

Table II: Optimal IWO-based PSS parameters with 

objective function 

 

Gen 
   Load 

K T1 T2 T3 T4  

G1 45.6522 0.0832 0.3830 0.8059 0.0100  

Nominal G2 11.5510 0.2823 0.3637 0.7101 0.5891 

G3 40.7216 0.1494 0.0580 0.3501 0.4679 

G4 32.6851 0.2146 0.6437 0.4617 0.0100 

       

G1 43.7651 0.0933 0.4003 0.7565 0.0100  

Light G2 21.7023 0.4274 0.6020 0.6774 0.5842 

G3 31.0260 0.3345 0.8982 0.9922 0.6685 

G4 32.0563 0.1162 0.7226 0.9368 0.0100 

       

G1 43.2862 0.3769 0.6014 0.1388 0.0606  

Heavy G2 23.9369 0.6120 0.3851 0.1756 0.0100 

G3 50.0 0.1461 0.3731 0.5570 0.0100 

G4 19.0656 0.3590 0.3761 0.5329 0.5408 
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Table III: Optimal PSO-based PSS parameters with 

objective function 

 

Gen 
   Load 

K T1 T2 T3 T4  

G1  25.1278 0.7046 0.5180 0.2525 0.2510  

Nominal G2  32.2625 0.7938 0.0100 0.2381 0.7352 

G3  45.933 0.2244 0.7593 0.6734 0.0558 

G4 34.9249 0.3479 0.7863 0.7213 0.6287 

       

G1 25.7064 0.3754 0.1750 0.4922 0.2970  

Light G2 12.6109 0.3848 0.7143 0.5770 0.7505 

G3 18.4842 0.5608 0.1995 0.8107 0.6669 

G4 5.7285 0.7553 0.5024 0.4345 0.5782 

       

G1 19.1365 0.1217 0.2903 0.6341 0.0599  

Heavy G2 12.7617 0.7039 0.6842 0.3510 0.5055 

G3 20.9238 0.3146 0.3774 0.4985 0.5637 

G4 29.5106 0.7487 0.0180 0.0842 0.5464 

 
 

Table IV: Eigen values and damping ratios without PSS 

Nominal Heavy Light 

-0.589±7.463i, 0.078 

-0.515±7.292i, 0.070 

 0.104±4.051i,-0.025        

-89.88±0.061i,1471.2             

 0.127±4.068i,-0.031 

-0.343±7.656i, 0.044 

-0.514±7.303i, 0.070      

 0.091±4.047i,-0.022 

-0.706±7.303i, 0.096 

-0.535±7.278i, 0.074          

 
Table V: Eigen values and damping ratios with           

IWO-based PSS  

Nominal Heavy Light 

-31.59±40.93i,0.772 

-7.22±14.88i,  0.485 

-5.83±10.26i,  0.568 

-2.48±4.10i,    0.605 

-4.41±2.90i,    1.521 

-1.55±1.99i,    0.779 

-1.06±0.25i,    4.24  

-41.88±20.94i, 2.00 

-29.15±7.52i,  3.876 

-4.99±11.33i   0.440 

-2.08±5.28i,    0.394 

-1.62±3.69i,    0.439 

-1.33±1.15i,    1.156 

-29.01±41.70i,0.696   

-5.95±13.43i,  0.443  

-7.34±10.32i,  0.711 

-7.03±4.31i,    1.631 

-1.78±2.58i,    0.689 

-2.04±0.23i,    8.869 

-1.37±0.27i,    5.074 

-1.10±0.09i,    12.22 

 

Table VI: Eigen values and damping ratios                     

with PSO-based PSS 

Nominal Heavy Light 

-4.05±13.15i,0.2945 

-2.74±11.79i,0.2263 

-5.47±3.422i,0.8479 

-2.326±3.43i,0.5606 

-3.467±0.45i,0.9917 

-2.240±1.37i,0.8522 

-1.446±0.24i,0.9858 

-29.30±18.06i,0.8512 

-10.58±14.24i,0.5967 

-6.518±8.766i,0.5967 

-7.778±2.524i,0.9512 

-6.062±3.529i,0.8642 

-2.472±3.326i,0.5967 

-2.331±3.133i,0.5968 

-1.570±0.286i,0.9838 

-5.46±13.74i,0.369 

-3.16±11.32i,0.268 

-2.35±3.808i,0.526 

-1.74±3.215i,0.477 

-2.63±1.088i,0.924 

-1.25±0.375i,0.957 

 

 

 

 

Fig 3: Four-Machine, Two Area System 
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Fig 5: Variation of objective functions, J for                     

PSO-based PSS 
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        Fig 7: Rotor angle response in heavy loading for Gen2 
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Fig 8: Rotor angle response in light loading for Gen2 
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Fig 9: Rotor speed response in nominal loading for Gen2  

 

0 1 2 3 4 5 6
0.995

1

1.005

1.01

1.015
angular speed variation (t)

Time(sec)

o
m

e
g
a
(r

a
d
/s

e
c)

 

 

without pss

PSO-based pss

IWO-based pss

 

Fig 10: Rotor speed response in heavy loading for Gen2 
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Fig 11: Rotor speed response in light loading for Gen2  
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Fig 12: Active power output in nominal loading for Gen2 
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Fig 13: Active power output in heavy loading for Gen2 
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Fig 14: Active power output in light loading for Gen2 
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Fig 15: Stabilizer control signal (Upss) in nominal loading 

for Gen 2 
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Fig 16: Stabilizer control signal (Upss) in heavy loading 

for Gen 2 
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Fig 17: Stabilizer control signal (Upss) in heavy loading 

for Gen 2 

 

6. CONCLUSION 
In this paper the performance comparison of the Invasive 

Weed Optimization and Particle Swarm Optimization 

technique is investigated for the design of Power System 

Stabilizers for the damping of low frequency oscillation of a 

four machine example power system. An eigenvalue value 

objective function is selected for optimizing the PSS 

performance. Both eigenvalue based and non-linear time 

domain simulation is carried out for three different loading 

conditions. It is found that IWO algorithm converges quicker 

than the PSO. Eigenvalue based analysis shows that the 

shifting of the critical modes to the left of s-plane is more in 

case of IWO compared to PSO. The nonlinear time domain 

simulation conforms to the results obtained in the eigenvalue 

analysis.  

 

 

Appendix: Machine Model 

 

 = ωb(ωi- 1) 

i = (Pm- Pei –Di (ωi -1))/Mi 

qi = ( Efdi - (xdi –x’di )idi –E’qi ) / T’doi 

di = (( xqi –x’di )iqi – E’di ) / T’qoi 

Tei  = E’qiiqi – (xqi – x’di)idiiqi  

 

δ rotor angle 

ω rotor speed 

Pm mechanical input power 

Pe electrical output power 

E’q internal voltage behind x’di 

Efd equivalent excitation voltage 

Te electric torque 

T’do time constant of excitation circuit 

Tqo regulator time constant 

vref reference voltage 

v terminal voltage 
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