
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

34

Implementing a Novel Data Structure for Maintaining

Cumulative Frequency of Symbols

Jyotika Doshi

GLS Inst.of Computer Technology
Opp. Law Garden, Ellisbridge
Ahmedabad-380006, INDIA

Savita Gandhi
Dept. of Computer Science; Gujarat University

Navrangpura
Ahmedabad-380009, INDIA

ABSTRACT

A new data structure, namely “cumulative frequency matrix

(CFM)”, is proposed here for maintaining cumulative

frequencies. For an order-0 model having 256 symbols, CFM

is a 2-D array of 16 rows and 16 columns. Two nibbles, say L

for left and R for right, of a byte symbol represents row and

column dimensions respectively. Matrix element (L, R)

represents cumulative frequency of symbol with right nibble

as R among symbols with left nibble as L. Within row, it

stores cumulative frequency of symbols with right nibble

varying from 0 to 15. Adaptive arithmetic coding is a lossless

data compression method. It needs to update cumulative

frequencies at runtime. Various algorithms for maintaining

cumulative frequencies, computing cumulative frequency

interval etc. are discussed here. Practical implementation

shows that proposed data structure is simpler as well as

efficient as compared to other data structures in use.

General Terms

Data Compression, Data Structures, Algorithms, Adaptive

Arithmetic Coding, Cumulative Frequencies

Keywords

Adaptive arithmetic coding, data compression, cumulative

frequency maintenance, data structure, algorithm

1. INTRODUCTION
Arithmetic coding is a lossless coding method that depends on

the probabilities of the symbols. In arithmetic coding,

cumulative probabilities of symbols are used to compute

subintervals in the range [0, 1). In implementations [1,6,8,12-

15] with integer arithmetic, cumulative frequencies are used

instead of cumulative probabilities. Algorithms for adaptive

arithmetic coding need building statistical data model of

cumulative frequencies on fly. Thus data structure for

maintaining cumulative frequencies has a very potential role

to play for algorithms to be efficient.

Shannon theorem [5] guarantees that compression below the

entropy of the source is impossible. One can remove as much

redundancy from one’s data as one likes, but entropy is

proven to be a hard limit. However one can optimize one’s

algorithms in at least two dimensions: memory usage and

speed [6]. Here an attempt is made to improve the speed of

algorithms by suggesting a novel data structure; 2-D matrix.

Adaptive data compression model of arithmetic coding is a

single pass model. It needs an ability to adjust the data model

“on the fly” to the spatially varying statistical nature of data

contents [10]. It uses estimation of probabilities of source

symbols [17] and adapts statistical cumulative frequency data

model dynamically as the symbol is read from file and

encoded. During decoding, decoder creates the same model as

the encoder. Initially both encoder and decoder assume

uniform distribution of all possible symbols in an alphabet.

It has been proven [11] that the compression efficiency of

arithmetic coding with an adaptive model is never

significantly inferior to arithmetic coding with the exact data

model. As compared to static model, an additional cost in

adaptive arithmetic data compression is a task of maintaining

cumulative frequencies dynamically while encoding and

decoding symbol read from file. Other tasks like computing

subintervals while encoding-decoding and searching for

interval segment when decoding remains same.

Speed of adaptive arithmetic coding is strongly affected by

how quickly the cumulative counts can be calculated, so it is

important to use a data structure that makes it easy to compute

cumulative count for a symbol and easy to search the

cumulative counts for a target [10].

2. RELATED DATA STRUCTURES
It is found that various data structures are used to organize

cumulative frequencies for efficient storage and retrieval.

Alexey [7] says that in the practical implementations seen so

far, the cumulative symbol frequency table is represented by

an array of integer numbers containing the sum of frequencies

of all the symbols having indices less than given symbol. The

array is organized in sorted order by value of symbols or by

(non-cumulative) frequencies of symbols. With adaptive

arithmetic coding, encoding a regular symbol needs

corresponding frequency interval to be determined; decoding

needs determining a frequency interval containing a given

point. Both actions are followed by updating the adaptive

model, what's commonly done by updating frequency or

cumulative frequency of symbols.

Various data structures used to organize cumulative frequency

information are discussed here.

2.1 Linear 1-D array
The simplest data structure is an array of cumulative

frequencies arranged in the order of symbols in an alphabet.

Computing cumulative frequency interval is very fast, O(1).

Determining a frequency interval containing a given point can

be done fast enough by binary search in the array. But

updating adaptive model requires a considerable number of

increments to perform. For symbol s, it needs to increment

cumulative frequency of all symbols from s onwards. Thus it

is having linear time complexity of O(|A|) per symbol

processing. Here |A| represents the size of an alphabet. In

order-0 model, |A| is 256.

http://www.codeguru.com/member.php/Alexey+V.+Shanin/

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

35

2.2 MTF array, Moffat’s HEAP, Splay tree
Witten, Neal and Cleary [1] have suggested move-to-front

(MTF) method. List, stored in 1-D array, is reorganized by

moving an element to the head of the list every time a symbol

is processed. List may not remain in sorted order of symbols,

so it requires storing index of symbols in an array in addition

to an array used to store frequency. It needs to use 2|A| words

to store index of symbols and frequency of symbols. It also

has linear space and time complexity of O(|A|). Sorting the

array by frequencies gives effect only for small arrays and

extremely non-uniform distribution of symbols [7].

Moffat [2] described a heap-like binary tree structure. It

requires reorganizing tree to satisfy HEAP properties. Here it

maintains index of symbols in the nodes of the tree. Each leaf

node contains frequency of individual symbol and

intermediate nodes contain weight (total frequency of nodes in

its subtree). Here time complexity is O(log2|A|) and space

requirement is 2A words.

Jones [3] uses splay trees for handling cumulative

frequencies. A splay tree is a self-balancing binary search tree

with the additional property that recently accessed elements

are quick to access again. Accessing a node requires a special

rotating step called splaying that moves recently accessed

node to the root and make the tree “more balanced”. It

performs basic operations such as insertion, look-up and

removal in O(log2|A|) amortized time. Like MTF, splay-tree

data structure is more useful when the symbols are repeating

in sequence.

In all these MTF, HEAP and Splay-tree techniques, the

attempt is made to keep most frequent symbols in quickly-

referenced positions. It requires extensive data reorganization

in the data structure to move most frequent symbol in head

position. These methods work well for highly skewed

distribution of symbols but are less efficient for more uniform

distributions.

2.3 Heap as described by Solomon
Solomon [9] describes a heap-like binary tree structure.

Solomon’s HEAP data structure uses nodes with three

elements (symbol, frequency, total frequency in left subtree).

Heap property is to be fulfilled using frequency element.

Obviously HEAP is housed in 1-D array of these nodes. When

a symbol is read, it needs to reorganize Heap to keep the array

in sorted order of frequency of symbol. It also requires

computing total frequency of symbols in left subtree for each

symbol being processed. Worst case number of iterations is

O(log2|A|) but each iteration is too heavy in computation.

2.4 Binary Indexed Tree (BIT)
Fenwick [4] presented a binary-indexed-tree (BIT) data

structure housed in 1-D array that stores partial cumulative

frequencies of symbols. BIT is an elegant data structure for

less skewed distribution. Here each node contains the

cumulative sum of specific range of counts. BIT preserves

symbol ordering; i.e. information for symbol s is stored at

index s+1. It does not need to reorganize tree.

Elements of an array in BIT are stored as follows:

Considering symbols starting with value 0 and index from1, it

stores actual frequencies of symbols at odd index positions

(2i-1). At even index, it stores partial sum of frequencies of

some specific number of previous symbols. At index j = 4i-2

(i.e. at 2,6,10,…), it stores sum of the frequency of two

immediately preceding symbols; at j = 8i-4 (i.e. at

4,12,20,…), the value stored is the sum of the frequency of

immediately preceding four symbols; at j = 16i–8 (i.e. at

8,24,40,…), the value stored is the sum of the frequency of

immediately preceding eight symbols; and so on [4, 16].

Table 1(a) gives a sample data considering 16 symbols in an

alphabet for easy understanding of tree organization. SumN

denotes sum of frequency of N preceding symbols. Tree is an

array having partial cumulative frequency of symbols. HghCF

is upper bound (high count) of cumulative frequency interval

of symbol. Note that only tree array is a data structure used in

algorithm. Other rows are given for better understanding only.

Table 1(a)

Frequency, Cumulative frequency (CF), partial

cumulative frequency (Tree) information

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

freq 1 3 5 2 8 3 2 5 7 0 0 2 3 0 0 2

Sum1 1 5 8 2 7 0 3 0

Sum2 4 11 7 3

Sum4 11 9

Sum8 29

Sum16 43

Tree 1 4 5 11 8 11 2 29 7 7 0 9 3 3 0 43

HghCF 1 4 9 11 19 22 24 29 36 36 36 38 41 41 41 43

Table 1(b)

Symbols involved in partial CF at even index

index 2 4 6 8 10 12 14 16

symbols

involved

 1..2 1..4 5..6 1..8 9..10 9..12 13..14 1..16

Using BIT, cumulative frequency counts can be updated in

logarithmic time by using the following algorithm. Suppose

that s is some symbol number in the range 1 ≤ s ≤ n. For

example, updating frequency at position 3 needs to update

frequencies at index 4, 8, 16 and so on. Similarly computing

cumulative frequency of symbol needs to add some partial

cumulative frequencies. For example, to compute cumulative

frequency of symbol at position 13, it needs to add elements at

index 13, 12 and 8. For these operations, to get next index to

operate upon, Fenwick has defined backward(s) and

forward(s) to be used while computing cumulative

frequencies and updating array elements respectively.

Function backward(s) computes next index in backward

direction, it is an integer obtained from s by subtracting the

binary number corresponding to the rightmost one-bit in s; i.e.

by converting right-most occurrence of bit 1 to 0. For

example, the binary representation of 13 is 1101, so

backward(13) = 12 (1100 in binary); backward(12) = 8 (1000

in binary); and backward(8) = 0. Similarly, forward(s)

computes next index in forward direction, it is an integer to be

at s + 2i where i is again the position of the rightmost one-bit

in s. For example, forward(13) = 14, forward(14) = 16, and

forward(16) = 32. Both backward and forward can be readily

implemented using bitwise operations if integers are

represented in two’s-complement form: backward(i) as either

“i - (i AND - i)” or “i AND (i-1)”; and forward(i) as “i + (i

AND - i)”, where AND is a bitwise logical “and” operator. If

one does not want to depend on 2’s complement arithmetic,

one can compute next index based on explanation given in

previous paragraph. It is also available at codeguru [7].

The advantage of using BIT over above methods is that it is

not required to reorganize the data structure and it provides

http://dictionary.sensagent.com/Self-balancing_binary_search_tree/en-en/
http://dictionary.sensagent.com/Amortized_analysis/en-en/

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

36

logarithmic access with time complexity O(log2|A|) per

symbol. It uses only |A| = 256 words to store cumulative

frequencies. It is shown by Fenwick [4] that BIT is more

efficient than MTF, HEAP and Splay tree.

3. PROPOSED DATA STRUCTURE
In this paper, a new data structure is proposed for efficient

management of cumulative frequency information. It is

Cumulative Frequency Matrix (CFM) that stores partial

cumulative frequency of 256 symbols of an order-0 alphabet.

In order-0 model, a single byte symbol takes values from 0 to

255. Left nibble and right nibble, each of 4 bits, are used as

two dimensions for row and column respectively. Both

nibbles take values from 0 to 15. Thus CFM data structure

uses 16 rows and 16 columns in a matrix.

CFM stores partial cumulative frequencies, i.e. cumulative

frequency of symbols within a specific row only. Matrix

element (L, R) represents the partial cumulative frequency of

symbol within all symbols in row L; here L is the left nibble

and R is the right nibble of a symbol. Obviously last element

in each row is the total number of symbols occurred in that

row; i.e. total symbols with left nibble L in row L. All

elements in a row are in sorted order as they represent

cumulative frequencies within row. This property helps to

make search faster using bisection method.

4. CONCEPT USING 16 SYMBOLS
To understand the concept, consider 16 symbols in an

alphabet. Each symbol is of 4 bits. Let most significant two

bits be represented as L and least significant two bits as R. For

example, in binary number (1011)2, L is (10)2 and R is (11)2.

Here algorithms are considered for various operations on

cumulative frequencies as needed in adaptive arithmetic data

compression. These operations include: (1) initialize data

structure (2) update statistical data model, i.e. adapting

cumulative frequencies (3) compute cumulative frequency

interval for a given symbol; to be used when encoding (4) find

cumulative frequency interval for a given target; to be used

when decoding.

4.1 Initializing CFM Data Structure:
Initially all symbols are assumed to have uniform distribution

with frequency 1. Initial CFM is as shown in table 2(b) with

all rows {1,2,3,4}. Note that frequency matrix in table 2(a) is

given just for better understanding only. It is not required by

any algorithm. Algorithm for initializing CFM is given in

section 5.1.

Table 2(a) Initial Frequency

L\R (00)2 (01)2 (10)2 (11)2

(00)2 1 1 1 1

(01)2 1 1 1 1

(10)2 1 1 1 1

(11)2 1 1 1 1

Table 2(b)Initial Cumu.Freq.

L\R (00)2 (01)2 (10)2 (11)2

(00)2 1 2 3 4

(01)2 1 2 3 4

(10)2 1 2 3 4

(11)2 1 2 3 4

4.2 Adapting Statistical Model
When a symbol is read, CFM needs to be updated. As CFM

stores cumulative frequency of symbols within row, it simply

requires to increment elements from column R = rightNibble

onwards in row L = leftNibble. Note that it has no effect on

elements in other rows. For example, consider occurrences of

sequence of binary symbols 0010, 0101, 0000, 1111. See an

effect on cumulative frequency matrix in Table 3 to 6.

Algorithm for updating CFM is given in section 5.2.

 Table 3(a) Frequency

after reading 00102

L\R (00)2 (01)2 (10)2 (11)2

(00)2 1 1 2 1
(01)2 1 1 1 1
(10)2 1 1 1 1
(11)2 1 1 1 1

Table 3(b) Cumu. Freq.

after reading 00102

L\R (00)2 (01)2 (10)2 (11)2

(00)2 1 2 4 5

(01)2 1 2 3 4

(10)2 1 2 3 4

(11)2 1 2 3 4

Table 4(a) Frequency

 after reading 01012

L\R (00)2 (01)2 (10)2 (11)2

(00)2 1

1 2 1

(01)2 1 2 1 1

(10)2 1 1 1 1

(11)2 1 1 1 1

Table 4(b) Cumu. Freq.

after reading 01012

L\R (00)2 (01)2 (10)2 (11)2

(00)2 1

2 4 5

(01)2 1 3 4 5

(10)2 1 2 3 4

(11)2 1 2 3 4

Table 5(a) Frequency

after reading 00002

L\R (00)2 (01)2 (10)2 (11)2

(00)2 2 1 2 1

(01)2 1 2 1 1

(10)2 1 1 1 1

(11)2 1 1 1 1

Table 5(b) Cumu. Freq.

after reading 00002

L\R (00)2 (01)2 (10)2 (11)2

(00)2 2 3 5 6

(01)2 1 3 4 5

(10)2 1 2 3 4

(11)2 1 2 3 4

Table 6(a) Frequency

after reading 11112

L\R (00)2 (01)2 (10)2 (11)2

(00)2 2 1 2 1

(01)2 1 2 1 1

(10)2 1 1 1 1

(11)2 1 1 1 2

Table 6(b) Cumu. Freq.

after reading 11112

L\R (00)2 (01)2 (10)2 (11)2

(00)2 2 3 5 6

(01)2 1 3 4 5

(10)2 1 2 3 4

(11)2 1 2 3 5

4.3 Computing lower and upper bound of

cumulative frequency interval
When encoding a symbol, arithmetic coding algorithm needs

to compute cumulative frequency interval corresponding to

the symbol. To understand how it can be computed, consider

CFM representing the symbols read at some point of time as

shown in table 7(b). Table 8 represents symbols, its frequency

and cumulative frequency according to data in CFM. Note

that table 7(a) and table 8 are given only for better

understanding and they are not required by any algorithm.

For computing interval, consider an example with symbol 9.

To have lower bound, i.e. lowCount, use previous symbol 8;

compute its nibbles L and R. For symbol 8, L=10 and R=00.

Remember that the last column in each row contains

cumulative frequency of symbols in the corresponding row.

So adding elements in last column of previous rows will give

cumulative frequency of all symbols whose left nibble is less

than L. Here adding elements from last column in previous

rows, i.e. row 00 and row 01, results in 20+25=45. Refer table

7(b). Now add cumulative frequency of symbol in current

row, i.e. add element at (L,R) to get lowCount for symbol s.

Here 45+4=49 is the lowCount for symbol 9. To get

highCount of symbol, if R=last column then add element at

(L+1, 0); otherwise add element at (L, R+1). Here it is

45+10=55. Thus a cumulative frequency interval (lowCount,

HighCount] can be computed for a symbol. Refer an

algorithm given in section 5.3.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

37

Table 7(a)

Frequencies

L\R (00)2 (01)2 (10)2 (11)2

(00)2 7 3 6 4

(01)2 5 4 7 9

(10)2 4 6 2 3

(11)2 3 4 8 5

Table 7(b)

Cumulative Frequencies

L\R (00)2 (01)2 (10)2 (11)2

(00)2 7 10 16 20

(01)2 5 9 16 25

(10)2 4 10 12 15

(11)2 3 7 15 20

Table 8

Symbols (S), Frequencies (F), Cumu. Frequencies (CF)

S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F 7 3 6 4 5 4 7 9 4 6 2 3 3 4 8 5

CF 7 10 16 20 25 29 36 45 49 55 57 60 63 67 75 80

4.4 Finding cumulative interval in which a

given target value falls
During decoding, arithmetic coding algorithm needs to find a

cumulative frequency interval within which a given target

code value lies. For example, consider target value 50. For

target 50, symbol to be decoded should be 9 and interval

should be (49 , 55]; i.e. lowCount 49 and highCount 55.

To find cumulative frequency interval for given target, keep

on adding values in last column from first row onwards till

sum exceeds target. Here 20+25 = 45 < target 50, but

20+25+15 = 60 > target 50. It means that target interval is

somewhere in 3rd row. Now search in this row for element

greater than remaining target (here 50-45=5). In given

example, it is in second column. Thus interval is between

(45+4, 45+10] and corresponding symbol to be decoded is 9.

An algorithm for this operation is given in section 5.4.

5. ALGORITHMS
Here algorithms are considered for performing four operations

as discussed in section 4, but here total symbols to be

considered are 256; size of an alphabet of order-0 model.

Each symbol is of single byte taking values from 0 to 255.

Two nibbles of the symbol are of 4 bits each. Values of nibble

range from 0 to 15. Thus required CFM data structure is a 2-D

array of 16x16=256 words that stores partial cumulative

frequencies of various symbols.

5.1 Initializing Data Structure
Assuming uniform distribution of symbols initially, each row

in cumulative frequency matrix is initialized with elements

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. In table 9, first

column and first row represents row (LeftNibble) and column

(RightNibble) index respectively in 2-D array of CFM.

Table 9

Initial Cumulative Frequencies

L\R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

… … … … … … … … … … … … … … … … …

14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Algorithm: Initialize CFM data structure

dimSize = 16

row = 0

While (row < dimSize)

Begin

cf = 1

col = 0

While (col < dimSize)

Begin

 CFM(row,col) = cf

 col = col + 1

 cf = cf + 1

End

row = row + 1

 End

5.2 Adapting Statistical model
In adaptive arithmetic coding, after encoding symbol,

cumulative frequencies are updated. Here CFM needs to be

updated for encoded symbol, say s. It requires incrementing

cumulative frequency elements in single row only

corresponding to left nibble of symbol s. Note that use of

pointer arithmetic can improve speed while accessing

contiguous elements.

Algorithm: adapt model, i.e. update CFM

dimSize = 16

row = s/dimSize // left nibble

col = s mod dimSize // right nibble, remainder

While (col < dimSize)

Begin

 CFM(row,col) = CFM (row,col) + 1

End

5.3 Computing lower and upper bound of

cumulative frequency interval
While encoding a symbol, arithmetic coding method needs

computation of lowCount (lower bound) and highCount

(upper bound) of cumulative frequency interval for a symbol.

Algorithm: compute cumulative frequency interval for a

given symbol

dimSize = 16

LowCount = 0, lastCol = dimSize - 1

If symbol=0 then

Begin

 highCount=CFM(0,0)

 Stop

End

s = symbol-1

row = s/dimSize // left nibble

col = s mod dimSize // right nibble

// sum of last column from 0 to row-1

sum=0, i=0

While (i < row) Begin

sum = sum + CFM(i,lastCol)

 End

// add element in current row

LowCount = sum + CFM(row,col)

If (col = lastCol) then

 HighCount = sum + CFM(row+1,0)

Else HighCount = sum + CFM(row, col+1)

5.4 Finding cumulative interval in which a

given target value falls
While decoding in arithmetic coding method, a coded value is

read and it needs to find a cumulative frequency interval

where this target value lies. A symbol corresponding to this

interval is then considered to be a symbol to be decoded.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

38

 Algorithm: Find cumulative frequency interval in which

target value lies

dimSize = 16

If target > CFM(0,0) then

Begin

 lowCount=0, highCount=CFM(0,0)

 Stop

End

 //add last column of rows if sum < target

lastCol = dimSize -1, row=0, sum = CFM(0,lastCol)

While (target > sum)

Begin

 row = row + 1

 sum = sum + CFM(row,lastCol)

End

sum = sum – CFM(row,lastCol)

// search within row for first element > remaining target

// note: can use bisection search

col=0, target = target - sum

While (target > CFM(row,col))

Begin

 col = col + 1

End

highCount = sum + CFM(row,col)

If col = 0 then

 lowCount = sum

Else

 lowCount = sum + CFM(row, col-1)

Here, using last value of row and col, a symbol to be decoded

can be computed as row*16 + col.

Note that in the second while loop, bisection search can be

used to search within a row because row elements are in

increasing order. Also note that search in first loop can be

enhanced using an additional 1-D array of 16 elements to

contain cumulative frequency of symbols with left nibble as

index. But doing so will increase an overhead of updating this

array also with CFM while adapting the model at the time of

encoding/decoding symbols. Thus overall time of all

operations combined together may not be affected.

6. PERFORMANCE ANALYSIS
Algorithms using various data structures are analyzed for time

and space complexity as shown in tables 10 and 11. In an

analysis, |A| is used for size of alphabet and n is used for the

number of bytes in source file.

Fenwick [4] has shown that, as compared to MTF, splay and

Moffat’s HEAP data structure, BIT is using less space and is

very efficient for all probability distributions, whether skewed

or not. So these three structures are not considered while

analyzing.

Data structures considered here for comparison are:

(1) Linear 1-D array (inefficient, but a basic data structure)

(2) HEAP as given by Solomon [9]

(3) Fenwick’s [4] Binary Indexed Tree (BIT)

(4) Proposed Cumulative Frequency Matrix (CFM)

As seen in table 10, linear 1-D array is very inefficient having

linear space and time complexity.

HEAP as suggested by Solomon [9] performs its operations in

logarithmic time O(n*log2|A|), but still it may not be as

efficient as BIT because of its too heavy iterations in terms of

computation.

CFM performs in O(n*√|A|) time whereas BIT performs in

O(n*log2|A|). For order-0 model, CFM requires 16 iterations

in the worst case; whereas BIT requires 9. For example, in

BIT, for first symbol, adapting cumulative frequencies require

to update the values at index 1, 2, 4, 8, 16, 32, 64, 128 and

256. Worst case in CFM is a symbol with right nibble 0 and it

requires 16 consecutive values to be updated in single row.

But with BIT, computing next index in iterations is very

complex and time consuming if they are not implemented

using 1’s or 2’s compliment and bitwise operation. Thus

practically CFM may perform with better or equal efficiency.

Space complexity analysis is given in table 11. CFM and BIT

data structure have same space complexity O(|A|). It can be

observed that HEAP data structure requires almost three times

the space as compared to CFM and BIT.

7. EXPERIMENTAL RESULTS
C Program is developed to compare performance of

algorithms for various operations considering order-0 model.

Algorithms are implemented using four data structures: linear

1-D array, Solomon’s HEAP, Fenwick’s BIT and proposed

CFM. Results of practical implementation using 1-D linear

array are obviously very inefficient, so not shown here.

Table 10.Time Complexity Analysis

Operation Linear 1-D HEAP [Solomon] BIT

[Fenwick]

CFM [Proposed]

Initialize data structure O(|A|) O(|A|) for symbol, O(|A|) for

frequency, O(|A|) for total

frequency in left subtree

O(|A|) O(|A|)

Adapting model when a

symbol is read

O(n*|A|) Searching farthest node:

O(n*log2|A|), Updating total

frequency in left subtree:

O(n*log2|A|)

O(n*log2|A|) O(n*√|A|)

Compute cumulative

frequency interval for a

given symbol

O(n) O(n*log2|A|) O(n*log2|A|) O(n*√|A|)

Find cumulative frequency

interval in which target

value falls

O(n*log2|A|) using

bisection search

O(n*log2|A|) O(n*log2|A|) within last column: O(n*√|A|),

within row O(n*log2 √|A|) using

bisection search

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

39

Table 11.Space Complexity Analysis

Linear

1-D

HEAP [Solomon] BIT

[Fenwick]

CFM

[Proposed]

O(|A|)

O(|A|) for symbol,

O(|A|) for frequency,

O(|A|) for total freq. in

left subtree

O(|A|) O(|A|)

256

words

256 bytes for symbols,

total 512 words for

freq. and cumu. freq. in

left subtree

256 words 256 words

Practical implementation using Fenwick’s BIT data structure

is done using two methods of computing next index in

iteration. We have named these two implementations as BIT1

and BIT2.

In BIT1, index for next iteration is computed using backward

and forward functions as described in section 2.4. It is

dependent on whether machine is using 1’s complement or 2’s

complement integer arithmetic.

In BIT2, index to be used in next iterations is computed using

starting value and step value for loop variables as given by

Alexey [7]. Note that this implementation does not require the

knowledge of machine architecture implementing 1’s or 2’s

complement as it is not using forward or backward functions.

Thus Experimental results are shown in table 12 for practical

implementation of algorithms HEAP (using Heap data

structure), BIT1 (using BIT data structure and forward-

backward functions), BIT2 (using BIT data structure but not

using forward-backward functions) and CFM (using CFM

data structure).

In implementations, total execution time of three operations as

required during arithmetic encoding is considered here. These

operations are: initializing data structure, adapting data model,

computing cumulative frequency interval of a given symbol.

Anyways, initialization is independent of the size of source.

Several files are taken into consideration for testing. Some of

the test files are selected from Calgary and Canterbury corpus,

a widely used benchmark and also from web site

compression.ca/act/act_files.html.

8. ANALYSIS OF EXPERIMENTAL

RESULTS
It is seen that HEAP is not that efficient even when its time

complexity is O(n*log2|A|) which is same as that of BIT. It is

all due to the cost of maintaining HEAP property (array sorted

by frequency of symbols) that requires searching farthest node

in array according to frequency of symbols, computing weight

of left subtree and rearranging nodes as per frequency of

symbols. It has the worst performance among these four

algorithms.

Runtime of BIT2 is comparatively higher than BIT1.

Remember that it is independent of 1’s or 2’s complement.

Now comparing BIT1 and CFM, it is seen that there is no

significant difference in their performance. This can also be

observed from figure 1 where the lines of both CFM and BIT1

are overlapping. To highlight the non-significant difference

between these two, figure 2 is included with bars showing

performance of only CFM and BIT1.

Table 12.Execution Time (seconds)

No. File name Size Bytes HEAP BIT1 BIT2 CFM

1 act2may2.xls 1348036 0.6044 0.2747 0.3846 0.2747

2 calbook2.txt 610856 0.4396 0.1648 0.2198 0.1099

3 cal-obj2 246814 0.1648 0.0549 0.1099 0.0549

4 cal-pic 513216 0.2198 0.1648 0.1099 0.1099

5 cycle.doc 1483264 1.1538 0.3297 0.4396 0.3297

6 every.wav 6994092 4.0110 1.4835 2.1429 1.5385

7 family1.jpg 198372 0.2198 0.0549 0.1099 0.0549

8 frymire.tif 3706306 2.6374 0.7143 1.0989 0.7692

9 kennedy.xls 1029744 0.4945 0.2198 0.2747 0.2198

10 lena3.tif 786568 0.8791 0.1648 0.2747 0.1648

11 linux.pdf 8091180 4.5604 1.6484 2.4725 1.7033

12 linuxfil.ppt 246272 0.2198 0.0549 0.0549 0.0549

13 monarch.tif 1179784 1.2637 0.2747 0.3846 0.2198

14 pine.bin 1566200 1.2637 0.3297 0.4396 0.3297

15 sadvchar.pps 1797632 1.4286 0.3846 0.5495 0.3846

16 shriji.jpg 4493896 3.0220 0.9341 1.4286 0.9341

17 world95.txt 3005020 2.0330 0.6044 0.9341 0.6593

Figure 1. Execution Time (sec)

Figure 2.Execution Time (sec) of BIT1 and CFM

9. COMPARISON OF BIT AND CFM
As seen in section 8, there is no significant difference in the

runtime of CFM and BIT implemented using BIT1. So they

are compared here with respect to other factors like simplicity,

ease of implementation, dependence on 1’s or 2’s complement

arithmetic, ability to exploit pointer arithmetic and possibility

of overflow in cumulative frequency values.

Following are the advantages of using CFM over BIT1.

As compared to BIT, CFM data structure is much simpler to

understand and easier to implement.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

40

In BIT, operations are not performed on consecutive

elements; whereas in CFM, operations are performed on

consecutive elements of an array. Thus in BIT, computing the

index of next element to operate upon is very complex. In

CFM, computing next index is simply to increment it.

Algorithm BIT1 requires negation operation while computing

next index using backward and forward functions. Negation

operation is dependent on implementation of 1’s or 2’s

complement arithmetic on machines. CFM is totally

independent of such implementations on machines.

Another advantage of using CFM over BIT is an ability to use

pointer arithmetic to access next consecutive element in an

array and achieve better performance.

One more advantage of CFM over BIT is the reduced chances

of overflow in cumulative frequency values. As a result, it

hardly requires re-adjusting frequencies. In CFM, partial

cumulative frequencies are sum of at the most 16 symbols

within a row; whereas in BIT, it contains sum of 2, 4, 8, 16,

32, 64, 128 and 256 symbols. Thus sum in BIT may exceed

the word capacity earlier as compared to sum of maximum 16

elements in CFM.

10. CONCLUSION
Main advantages of using CFM data structure is its simplicity,

ease of practical implementation, independence of machine

architecture, possibility of exploiting pointer arithmetic to

increase execution speed and reduced chances of word

overflow in cumulative frequency.

CFM is extremely easy to understand and very convenient in

implementation without compromising in performance.

11. ACKNOWLEDGMENT
I thank Ms. Lata Gohil, Assistant Professor at GLS Institute of

Computer Technology, for providing her valuable inputs

while coding and testing algorithms using various data

structures.

12. REFERENCES
[1] I.H.Witten, R.Neal and J.G.Cleary, “Arithmetic

compression for data compression”, CACM, 30, (6),

520-540 (1987)

[2] A.Moffat, “Linear time adaptive coding”, IEEE Trans

Info. Theory, 36, (2), 401-406 (1990)

[3] D.W.Jones, Application of splay trees to data

compression”, Comm ACM, 31, (8), 996-1007 (1988)

[4] Peter M. Fenwick, “A New Data Structure for

Cumulative Frequency Tables”, Software – Practice and

Experience, Vol 24(3), 327-336 (March 1994)

[5] W. Weaver and C.E. Shannon. The Mathematical Theory

of Communication. University of Illinois Press, Urbana,

Illinois, 1949. Republished in paperback 1963.

[6] Eric Bodden, Malte Clasen, Joachim Kneis, “Arithmetic

Coding revealed-A guided tour from theory to praxis”,

Sable Technical Report No. 2007-5, May 2007, available

at http://www.bodden.de/legacy/arithmetic-coding/

[7] Alexey V. Shanin, “Optimizing Tip on Adaptive

Arithmetic Coding”, January 2002 available at

http://www.codeguru.com/cpp/cpp/algorithms/compressi

on/article.php/c5089/Optimizing-Tip-on-Adaptive-

Arithmetic-Coding.htm

[8] Paul G. Howard, Jeffrey S. Vitter, “Analysis of

Arithmetic Coding for Data Compression”, Information

Processing and Management, Vol. 28, No. 6, pp. 749-764

(1992)

[9] David Solomon, “Data Compression – The Complete

Reference”, 3rd edition, Springer, 2004

[10] Ian H. Witten, Alistair Moffat, Timothy C. Bell,

“Managing Gigabytes-Compressing and Indexing

Documents and Images”, 2nd edition, Morgan Kaufmann

Publishers

[11] Bin Zhu, En-hui Yang, Ahmed H. Tewfik, “Arithmetic

Coding with Dual Symbol Sets and Its Performance

Analysis”, IEEE transactions on Image Processing, Vol.

8, No. 12, 1999, pp 1667

[12] Ida Mengyi Pu, Fundamental Data Compression,

Butterworth-Heinemann, 2006

[13] P. G. Howard and J. S. Vitter, “Practical implementation

of arithmetic coding,” in Image and Text Compression, J.

A. Storer, Ed. Norwell, MA: Kluwer Academic, 1992,

pp. 85–112.

[14] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic

coding revisited,” ACM Trans. Inf. Syst., vol. 16, no. 3,

pp. 256–294, 1998.

[15] Ranjan Bose, Saumitr Pathak, “A Novel Compression

and Encryption Scheme Using Variable Model

Arithmetic Coding and Coupled Chaotic System”, IEEE

Transaction on Circuits and Systems – I: Regular

Papers, Vol. 53, no. 4, 2006, pp 848-857

[16] Algorithm Tutorials available at

http://community.topcoder.com

[17] Amir Said, “Introduction to Arithmetic Coding - Theory

and Practice”, Hewlett-Packard Laboratories Report,

HPL-2004-76, Palo Alto, CA, April 2004 available at

http://www.hpl.hp.com/techreports

http://www.bodden.de/legacy/arithmetic-coding/
http://www.codeguru.com/member.php/Alexey+V.+Shanin/
http://www.codeguru.com/cpp/cpp/algorithms/compression/article.php/c5089/Optimizing-Tip-on-Adaptive-Arithmetic-Coding.htm
http://www.codeguru.com/cpp/cpp/algorithms/compression/article.php/c5089/Optimizing-Tip-on-Adaptive-Arithmetic-Coding.htm
http://www.codeguru.com/cpp/cpp/algorithms/compression/article.php/c5089/Optimizing-Tip-on-Adaptive-Arithmetic-Coding.htm
http://www.citeulike.org/user/vivianniu/author/Howard:PG
http://www.citeulike.org/user/vivianniu/author/Vitter:JS

