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ABSTRACT 

A new data structure, namely “cumulative frequency matrix 

(CFM)”, is proposed here for maintaining cumulative 

frequencies. For an order-0 model having 256 symbols, CFM 

is a 2-D array of 16 rows and 16 columns.  Two nibbles, say L 

for left and R for right, of a byte symbol represents row and 

column dimensions respectively. Matrix element (L, R) 

represents cumulative frequency of symbol with right nibble 

as R among symbols with left nibble as L. Within row, it 

stores cumulative frequency of symbols with right nibble 

varying from 0 to 15. Adaptive arithmetic coding is a lossless 

data compression method. It needs to update cumulative 

frequencies at runtime. Various algorithms for maintaining 

cumulative frequencies, computing cumulative frequency 

interval etc. are discussed here. Practical implementation 

shows that proposed data structure is simpler as well as 

efficient as compared to other data structures in use. 
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1. INTRODUCTION 
Arithmetic coding is a lossless coding method that depends on 

the probabilities of the symbols. In arithmetic coding, 

cumulative probabilities of symbols are used to compute 

subintervals in the range [0, 1). In implementations [1,6,8,12-

15] with integer arithmetic, cumulative frequencies are used 

instead of cumulative probabilities. Algorithms for adaptive 

arithmetic coding need building statistical data model of 

cumulative frequencies on fly. Thus data structure for 

maintaining cumulative frequencies has a very potential role 

to play for algorithms to be efficient. 

Shannon theorem [5] guarantees that compression below the 

entropy of the source is impossible. One can remove as much 

redundancy from one’s data as one likes, but entropy is 

proven to be a hard limit. However one can optimize one’s 

algorithms in at least two dimensions: memory usage and 

speed [6]. Here an attempt is made to improve the speed of 

algorithms by suggesting a novel data structure; 2-D matrix. 

Adaptive data compression model of arithmetic coding is a 

single pass model. It needs an ability to adjust the data model 

“on the fly” to the spatially varying statistical nature of data 

contents [10].  It uses estimation of probabilities of source 

symbols [17] and adapts statistical cumulative frequency data 

model dynamically as the symbol is read from file and 

encoded. During decoding, decoder creates the same model as 

the encoder. Initially both encoder and decoder assume 

uniform distribution of all possible symbols in an alphabet.  

It has been proven [11] that the compression efficiency of 

arithmetic coding with an adaptive model is never 

significantly inferior to arithmetic coding with the exact data 

model. As compared to static model, an additional cost in 

adaptive arithmetic data compression is a task of maintaining 

cumulative frequencies dynamically while encoding and 

decoding symbol read from file. Other tasks like computing 

subintervals while encoding-decoding and searching for 

interval segment when decoding remains same.  

Speed of adaptive arithmetic coding is strongly affected by 

how quickly the cumulative counts can be calculated, so it is 

important to use a data structure that makes it easy to compute 

cumulative count for a symbol and easy to search the 

cumulative counts for a target [10]. 

2. RELATED DATA STRUCTURES 
It is found that various data structures are used to organize 

cumulative frequencies for efficient storage and retrieval. 

Alexey [7] says that in the practical implementations seen so 

far, the cumulative symbol frequency table is represented by 

an array of integer numbers containing the sum of frequencies 

of all the symbols having indices less than given symbol. The 

array is organized in sorted order by value of symbols or by 

(non-cumulative) frequencies of symbols. With adaptive 

arithmetic coding, encoding a regular symbol needs 

corresponding frequency interval to be determined; decoding 

needs determining a frequency interval containing a given 

point. Both actions are followed by updating the adaptive 

model, what's commonly done by updating frequency or 

cumulative frequency of symbols. 

Various data structures used to organize cumulative frequency 

information are discussed here. 

2.1 Linear 1-D array 
The simplest data structure is an array of cumulative 

frequencies arranged in the order of symbols in an alphabet. 

Computing cumulative frequency interval is very fast, O(1). 

Determining a frequency interval containing a given point can 

be done fast enough by binary search in the array. But 

updating adaptive model requires a considerable number of 

increments to perform. For symbol s, it needs to increment 

cumulative frequency of all symbols from s onwards. Thus it 

is having linear time complexity of O(|A|) per symbol 

processing. Here |A| represents the size of an alphabet. In 

order-0 model, |A| is 256. 

http://www.codeguru.com/member.php/Alexey+V.+Shanin/
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2.2 MTF array, Moffat’s HEAP, Splay tree 
Witten, Neal and Cleary [1] have suggested move-to-front 

(MTF) method. List, stored in 1-D array, is reorganized by 

moving an element to the head of the list every time a symbol 

is processed. List may not remain in sorted order of symbols, 

so it requires storing index of symbols in an array in addition 

to an array used to store frequency. It needs to use 2|A| words 

to store index of symbols and frequency of symbols. It also 

has linear space and time complexity of O(|A|). Sorting the 

array by frequencies gives effect only for small arrays and 

extremely non-uniform distribution of symbols [7]. 

Moffat [2] described a heap-like binary tree structure. It 

requires reorganizing tree to satisfy HEAP properties. Here it 

maintains index of symbols in the nodes of the tree. Each leaf 

node contains frequency of individual symbol and 

intermediate nodes contain weight (total frequency of nodes in 

its subtree). Here time complexity is O(log2|A|) and space 

requirement is 2A words. 

Jones [3] uses splay trees for handling cumulative 

frequencies. A splay tree is a self-balancing binary search tree 

with the additional property that recently accessed elements 

are quick to access again. Accessing a node requires a special 

rotating step called splaying that moves recently accessed 

node to the root and make the tree “more balanced”. It 

performs basic operations such as insertion, look-up and 

removal in O(log2|A|) amortized time. Like MTF, splay-tree 

data structure is more useful when the symbols are repeating 

in sequence. 

In all these MTF, HEAP and Splay-tree techniques, the 

attempt is made to keep most frequent symbols in quickly-

referenced positions. It requires extensive data reorganization 

in the data structure to move most frequent symbol in head 

position. These methods work well for highly skewed 

distribution of symbols but are less efficient for more uniform 

distributions. 

2.3 Heap as described by Solomon 
Solomon [9] describes a heap-like binary tree structure. 

Solomon’s HEAP data structure uses nodes with three 

elements (symbol, frequency, total frequency in left subtree). 

Heap property is to be fulfilled using frequency element. 

Obviously HEAP is housed in 1-D array of these nodes. When 

a symbol is read, it needs to reorganize Heap to keep the array 

in sorted order of frequency of symbol. It also requires 

computing total frequency of symbols in left subtree for each 

symbol being processed. Worst case number of iterations is 

O(log2|A|) but each iteration is too heavy in computation. 

2.4 Binary Indexed Tree (BIT) 
Fenwick [4] presented a binary-indexed-tree (BIT) data 

structure housed in 1-D array that stores partial cumulative 

frequencies of symbols. BIT is an elegant data structure for 

less skewed distribution. Here each node contains the 

cumulative sum of specific range of counts. BIT preserves 

symbol ordering; i.e. information for symbol s is stored at 

index s+1. It does not need to reorganize tree.  

Elements of an array in BIT are stored as follows: 

Considering symbols starting with value 0 and index from1, it 

stores actual frequencies of symbols at odd index positions 

(2i-1). At even index, it stores partial sum of frequencies of 

some specific number of previous symbols. At index j = 4i-2 

(i.e. at 2,6,10,…), it stores sum of the frequency of two 

immediately preceding symbols; at j = 8i-4 (i.e. at 

4,12,20,…), the value stored is the sum of the frequency of 

immediately preceding four symbols; at j = 16i–8 (i.e. at 

8,24,40,…), the value stored is the sum of the frequency of 

immediately preceding eight symbols; and so on [4, 16]. 

Table 1(a) gives a sample data considering 16 symbols in an 

alphabet for easy understanding of tree organization. SumN 

denotes sum of frequency of N preceding symbols. Tree is an 

array having partial cumulative frequency of symbols. HghCF 

is upper bound (high count) of cumulative frequency interval 

of symbol. Note that only tree array is a data structure used in 

algorithm. Other rows are given for better understanding only. 

Table 1(a) 

Frequency, Cumulative frequency (CF), partial 

cumulative frequency (Tree) information 

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

freq 1 3 5 2 8 3 2 5 7 0 0 2 3 0 0 2 

Sum1 1  5  8  2  7  0  3  0  

Sum2  4    11    7    3   

Sum4    11        9     

Sum8        29         

Sum16                43 

Tree 1 4 5 11 8 11 2 29 7 7 0 9 3 3 0 43 

HghCF 1 4 9 11 19 22 24 29 36 36 36 38 41 41 41 43 

 

Table 1(b) 

Symbols involved in partial CF at even index 

index  2  4  6  8  10 12  14  16 

symbols 

involved 

 1..2  1..4  5..6  1..8  9..10  9..12  13..14  1..16 

 

Using BIT, cumulative frequency counts can be updated in 

logarithmic time by using the following algorithm. Suppose 

that s is some symbol number in the range 1 ≤ s ≤ n. For 

example, updating frequency at position 3 needs to update 

frequencies at index 4, 8, 16 and so on. Similarly computing 

cumulative frequency of symbol needs to add some partial 

cumulative frequencies. For example, to compute cumulative 

frequency of symbol at position 13, it needs to add elements at 

index 13, 12 and 8. For these operations, to get next index to 

operate upon, Fenwick has defined backward(s) and 

forward(s) to be used while computing cumulative 

frequencies and updating array elements respectively. 

Function backward(s) computes next index in backward 

direction, it  is an integer obtained from s by subtracting the 

binary number corresponding to the rightmost one-bit in s; i.e. 

by converting right-most occurrence of bit 1 to 0. For 

example, the binary representation of 13 is 1101, so 

backward(13) = 12 (1100 in binary);  backward(12) = 8 (1000 

in binary); and backward(8) = 0. Similarly, forward(s) 

computes next index in forward direction, it is an integer to be 

at s + 2i where i is again the position of the rightmost one-bit 

in s. For example, forward(13) = 14, forward(14) = 16, and 

forward(16) = 32. Both backward and forward can be readily 

implemented using bitwise operations if integers are 

represented in two’s-complement form: backward(i) as either 

“i - (i AND - i)” or “i AND (i-1)”; and forward(i) as “i + (i 

AND - i)”, where AND is a bitwise logical “and” operator. If 

one does not want to depend on 2’s complement arithmetic, 

one can compute next index based on explanation given in 

previous paragraph. It is also available at codeguru [7]. 

The advantage of using BIT over above methods is that it is 

not required to reorganize the data structure and it provides 

http://dictionary.sensagent.com/Self-balancing_binary_search_tree/en-en/
http://dictionary.sensagent.com/Amortized_analysis/en-en/
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logarithmic access with time complexity O(log2|A|) per 

symbol. It uses only |A| = 256 words to store cumulative 

frequencies.  It is shown by Fenwick [4] that BIT is more 

efficient than MTF, HEAP and Splay tree. 

3. PROPOSED DATA STRUCTURE 
In this paper, a new data structure is proposed for efficient 

management of cumulative frequency information. It is 

Cumulative Frequency Matrix (CFM) that stores partial 

cumulative frequency of 256 symbols of an order-0 alphabet. 

In order-0 model, a single byte symbol takes values from 0 to 

255. Left nibble and right nibble, each of 4 bits, are used as 

two dimensions for row and column respectively. Both 

nibbles take values from 0 to 15. Thus CFM data structure 

uses 16 rows and 16 columns in a matrix.  

CFM stores partial cumulative frequencies, i.e. cumulative 

frequency of symbols within a specific row only. Matrix 

element (L, R) represents the partial cumulative frequency of 

symbol within all symbols in row L; here L is the left nibble 

and R is the right nibble of a symbol. Obviously last element 

in each row is the total number of symbols occurred in that 

row; i.e. total symbols with left nibble L in row L. All 

elements in a row are in sorted order as they represent 

cumulative frequencies within row. This property helps to 

make search faster using bisection method. 

4. CONCEPT USING 16 SYMBOLS 
To understand the concept, consider 16 symbols in an 

alphabet. Each symbol is of 4 bits. Let most significant two 

bits be represented as L and least significant two bits as R. For 

example, in binary number (1011)2, L is (10)2 and R is (11)2. 

Here algorithms are considered for various operations on 

cumulative frequencies as needed in adaptive arithmetic data 

compression. These operations include: (1) initialize data 

structure (2) update statistical data model, i.e. adapting 

cumulative frequencies (3) compute cumulative frequency 

interval for a given symbol; to be used when encoding (4) find 

cumulative frequency interval for a given target; to be used 

when decoding. 

4.1 Initializing CFM Data Structure: 
Initially all symbols are assumed to have uniform distribution 

with frequency 1. Initial CFM is as shown in table 2(b) with 

all rows {1,2,3,4}. Note that frequency matrix in table 2(a) is 

given just for better understanding only. It is not required by 

any algorithm. Algorithm for initializing CFM is given in 

section 5.1. 

 

Table 2(a) Initial Frequency 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 1 1 1 1 

(01)2 1 1 1 1 

(10)2 1 1 1 1 

(11)2 1 1 1 1 
 

Table 2(b)Initial Cumu.Freq. 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 1 2 3 4 

(01)2 1 2 3 4 

(10)2 1 2 3 4 

(11)2 1 2 3 4 
 

 

4.2 Adapting Statistical Model 
When a symbol is read, CFM needs to be updated. As CFM 

stores cumulative frequency of symbols within row, it simply 

requires to increment elements from column R = rightNibble 

onwards in row L = leftNibble. Note that it has no effect on 

elements in other rows. For example, consider occurrences of 

sequence of binary symbols 0010, 0101, 0000, 1111. See an 

effect on cumulative frequency matrix in Table 3 to 6. 

Algorithm for updating CFM is given in section 5.2. 

 Table 3(a) Frequency  

after reading 00102 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 1 1 2 1 
(01)2 1 1 1 1 
(10)2 1 1 1 1 
(11)2 1 1 1 1 

 

Table 3(b) Cumu. Freq.  

after reading 00102 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 1 2 4 5 

(01)2 1 2 3 4 

(10)2 1 2 3 4 

(11)2 1 2 3 4 
 

 
 

Table 4(a) Frequency 

 after reading 01012 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 1 

 

1 2 1 

(01)2 1 2 1 1 

(10)2 1 1 1 1 

(11)2 1 1 1 1 
 

 
 

Table 4(b) Cumu. Freq. 

after reading 01012 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 1 

 

2 4 5 

(01)2 1 3 4 5 

(10)2 1 2 3 4 

(11)2 1 2 3 4 
 

 
 

Table 5(a) Frequency  

after reading 00002 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 2 1 2 1 

(01)2 1 2 1 1 

(10)2 1 1 1 1 

(11)2 1 1 1 1 
 

 
 

Table 5(b) Cumu. Freq. 

after reading 00002 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 2 3 5 6 

(01)2 1 3 4 5 

(10)2 1 2 3 4 

(11)2 1 2 3 4 
 

 
 

Table 6(a) Frequency  

after reading 11112 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 2 1 2 1 

(01)2 1 2 1 1 

(10)2 1 1 1 1 

(11)2 1 1 1 2 
 

 
 

Table 6(b) Cumu. Freq.  

after reading 11112 

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 2 3 5 6 

(01)2 1 3 4 5 

(10)2 1 2 3 4 

(11)2 1 2 3 5 
 

 

4.3 Computing lower and upper bound of 

cumulative frequency interval  
When encoding a symbol, arithmetic coding algorithm needs 

to compute cumulative frequency interval corresponding to 

the symbol. To understand how it can be computed, consider 

CFM representing the symbols read at some point of time as 

shown in table 7(b). Table 8 represents symbols, its frequency 

and cumulative frequency according to data in CFM. Note 

that table 7(a) and table 8 are given only for better 

understanding and they are not required by any algorithm. 

For computing interval, consider an example with symbol 9. 

To have lower bound, i.e. lowCount, use previous symbol 8; 

compute its nibbles L and R. For symbol 8, L=10 and R=00. 

Remember that the last column in each row contains 

cumulative frequency of symbols in the corresponding row. 

So adding elements in last column of previous rows will give 

cumulative frequency of all symbols whose left nibble is less 

than L. Here adding elements from last column in previous 

rows, i.e. row 00 and row 01, results in 20+25=45. Refer table 

7(b).  Now add cumulative frequency of symbol in current 

row, i.e. add element at (L,R) to get lowCount for symbol s. 

Here 45+4=49 is the lowCount for symbol 9. To get 

highCount of symbol, if R=last column then add element at 

(L+1, 0); otherwise add element at (L, R+1). Here it is 

45+10=55. Thus a cumulative frequency interval (lowCount, 

HighCount] can be computed for a symbol. Refer an 

algorithm given in section 5.3. 
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Table 7(a)  

Frequencies  

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 7 3 6 4 

(01)2 5 4 7 9 

(10)2 4 6 2 3 

(11)2 3 4 8 5 
 

Table 7(b) 

Cumulative Frequencies  

L\R (00)2 (01)2 (10)2 (11)2 

(00)2 7 10 16 20 

(01)2 5 9 16 25 

(10)2 4 10 12 15 

(11)2 3 7 15 20 
 

 

Table 8 

Symbols (S), Frequencies (F), Cumu. Frequencies (CF) 

S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

F 7 3 6 4 5 4 7 9 4 6 2 3 3 4 8 5 

CF 7 10 16 20 25 29 36 45 49 55 57 60 63 67 75 80 

 

4.4 Finding cumulative interval in which a 

given target value falls 
During decoding, arithmetic coding algorithm needs to find a 

cumulative frequency interval within which a given target 

code value lies. For example, consider target value 50. For 

target 50, symbol to be decoded should be 9 and interval 

should be (49 , 55]; i.e. lowCount 49 and highCount 55. 

To find cumulative frequency interval for given target, keep 

on adding values in last column from first row onwards till 

sum exceeds target. Here 20+25 = 45 < target 50, but 

20+25+15 = 60 > target 50. It means that target interval is 

somewhere in 3rd row. Now search in this row for element 

greater than remaining target (here 50-45=5). In given 

example, it is in second column. Thus interval is between 

(45+4, 45+10] and corresponding symbol to be decoded is 9. 

An algorithm for this operation is given in section 5.4. 

5. ALGORITHMS  
Here algorithms are considered for performing four operations 

as discussed in section 4, but here total symbols to be 

considered are 256; size of an alphabet of order-0 model. 

Each symbol is of single byte taking values from 0 to 255. 

Two nibbles of the symbol are of 4 bits each. Values of nibble 

range from 0 to 15. Thus required CFM data structure is a 2-D 

array of 16x16=256 words that stores partial cumulative 

frequencies of various symbols. 

5.1 Initializing Data Structure 
Assuming uniform distribution of symbols initially, each row 

in cumulative frequency matrix is initialized with elements 

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}.  In table 9, first 

column and first row represents row (LeftNibble) and column 

(RightNibble) index respectively in 2-D array of CFM.  

Table 9 

Initial Cumulative Frequencies 

L\R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

… … … … … … … … … … … … … … … … … 

14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 
Algorithm: Initialize CFM data structure 

dimSize = 16 

row = 0 

While (row < dimSize) 

Begin 

cf = 1 

col = 0 

While (col < dimSize) 

Begin 

   CFM(row,col) = cf 

   col = col + 1  

   cf = cf + 1 

End 

row = row + 1 

        End 

5.2 Adapting Statistical model 
In adaptive arithmetic coding, after encoding symbol, 

cumulative frequencies are updated. Here CFM needs to be 

updated for encoded symbol, say s. It requires incrementing 

cumulative frequency elements in single row only 

corresponding to left nibble of symbol s. Note that use of 

pointer arithmetic can improve speed while accessing 

contiguous elements. 

Algorithm: adapt model, i.e. update CFM 

dimSize = 16 

row = s/dimSize            // left nibble 

col = s mod dimSize     // right nibble, remainder 

While (col < dimSize) 

Begin 

   CFM(row,col) = CFM (row,col) + 1 

End 

5.3 Computing lower and upper bound of 

cumulative frequency interval  
While encoding a symbol, arithmetic coding method needs 

computation of lowCount (lower bound) and highCount 

(upper bound) of cumulative frequency interval for a symbol.  

 

Algorithm: compute cumulative frequency interval for a 

given symbol 

dimSize = 16 

LowCount = 0, lastCol = dimSize - 1 

If symbol=0 then  

Begin 

     highCount=CFM(0,0) 

     Stop 

End 

s = symbol-1 

row = s/dimSize           // left nibble 

col = s mod dimSize    // right nibble 

// sum of last column from 0 to row-1 

sum=0, i=0 

While ( i < row)    Begin 

sum = sum + CFM(i,lastCol) 

         End 

// add element in current row  

LowCount = sum + CFM(row,col)    

If (col = lastCol) then 

     HighCount = sum + CFM(row+1,0) 

Else HighCount = sum + CFM(row, col+1) 

5.4 Finding cumulative interval in which a 

given target value falls 
While decoding in arithmetic coding method, a coded value is 

read and it needs to find a cumulative frequency interval 

where this target value lies. A symbol corresponding to this 

interval is then considered to be a symbol to be decoded.  
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    Algorithm: Find cumulative frequency interval in which 

target value lies 

dimSize = 16 

If target > CFM(0,0) then 

Begin  

    lowCount=0, highCount=CFM(0,0) 

    Stop 

End 

         //add last column of rows if sum < target 

lastCol = dimSize -1, row=0, sum = CFM(0,lastCol) 

While (target > sum) 

Begin 

      row = row + 1 

      sum = sum + CFM(row,lastCol) 

End 

sum = sum – CFM(row,lastCol)    

// search within row for first element > remaining target 

// note: can use bisection search 

col=0, target = target - sum 

While (target > CFM(row,col)) 

Begin 

     col = col + 1 

End 

highCount = sum + CFM(row,col) 

If col = 0 then 

   lowCount = sum 

Else 

   lowCount = sum + CFM(row, col-1) 

Here, using last value of row and col, a symbol to be decoded 

can be computed as row*16 + col. 

Note that in the second while loop, bisection search can be 

used to search within a row because row elements are in 

increasing order. Also note that search in first loop can be 

enhanced using an additional 1-D array of 16 elements to 

contain cumulative frequency of symbols with left nibble as 

index. But doing so will increase an overhead of updating this 

array also with CFM while adapting the model at the time of 

encoding/decoding symbols. Thus overall time of all 

operations combined together may not be affected. 

 

6. PERFORMANCE ANALYSIS 
Algorithms using various data structures are analyzed for time 

and space complexity as shown in tables 10 and 11.  In an 

analysis, |A| is used for size of alphabet and n is used for the 

number of bytes in source file. 

Fenwick [4] has shown that, as compared to MTF, splay and 

Moffat’s HEAP data structure, BIT is using less space and is 

very efficient for all probability distributions, whether skewed 

or not. So these three structures are not considered while 

analyzing. 

Data structures considered here for comparison are:  

(1) Linear 1-D array (inefficient, but a basic data structure) 

(2) HEAP as given by Solomon [9]  

(3) Fenwick’s [4] Binary Indexed Tree (BIT)  

(4) Proposed Cumulative Frequency Matrix (CFM) 

As seen in table 10, linear 1-D array is very inefficient having 

linear space and time complexity.  

HEAP as suggested by Solomon [9] performs its operations in 

logarithmic time O(n*log2|A|), but still it may not be as 

efficient as BIT because of its too heavy iterations in terms of 

computation. 

CFM performs in O(n*√|A|) time whereas BIT performs in 

O(n*log2|A|). For order-0 model, CFM requires 16 iterations 

in the worst case; whereas BIT requires 9. For example, in 

BIT, for first symbol, adapting cumulative frequencies require 

to update the values at index 1, 2, 4, 8, 16, 32, 64, 128 and 

256. Worst case in CFM is a symbol with right nibble 0 and it 

requires 16 consecutive values to be updated in single row. 

But with BIT, computing next index in iterations is very 

complex and time consuming if they are not implemented 

using 1’s or 2’s compliment and bitwise operation. Thus 

practically CFM may perform with better or equal efficiency. 

Space complexity analysis is given in table 11. CFM and BIT 

data structure have same space complexity O(|A|). It can be 

observed that HEAP data structure requires almost three times 

the space as compared to CFM and BIT.  

7. EXPERIMENTAL RESULTS 
C Program is developed to compare performance of 

algorithms for various operations considering order-0 model. 

Algorithms are implemented using four data structures: linear 

1-D array, Solomon’s HEAP, Fenwick’s BIT and proposed 

CFM. Results of practical implementation using 1-D linear 

array are obviously very inefficient, so not shown here. 

 

Table 10.Time Complexity Analysis 

Operation Linear 1-D HEAP [Solomon] BIT 

[Fenwick] 

CFM [Proposed] 

Initialize data structure  O(|A|)  O(|A|) for symbol, O(|A|) for 

frequency, O(|A|) for total 

frequency in left subtree 

O(|A|)  O(|A|) 

Adapting model when a 

symbol is read 

O(n*|A|)  Searching farthest node: 

O(n*log2|A|), Updating  total 

frequency in left subtree: 

O(n*log2|A|) 

O(n*log2|A|) O(n*√|A|) 

Compute cumulative 

frequency interval for a 

given symbol 

O(n) O(n*log2|A|) O(n*log2|A|) O(n*√|A|) 

Find cumulative frequency 

interval in which target 

value falls 

O(n*log2|A|) using 

bisection search 

O(n*log2|A|)  O(n*log2|A|)  within last column: O(n*√|A|), 

within row O(n*log2 √|A|) using 

bisection search 
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Table 11.Space Complexity Analysis 

Linear 

1-D 

HEAP [Solomon] BIT 

[Fenwick] 

CFM 

[Proposed] 

O(|A|) 

 

O(|A|) for symbol, 

O(|A|) for frequency, 

O(|A|) for total freq. in 

left subtree 

O(|A|)  O(|A|)  

256 

words 

256 bytes for symbols, 

total 512 words for 

freq. and cumu. freq. in 

left subtree 

256 words 256 words  

 
Practical implementation using Fenwick’s BIT data structure 

is done using two methods of computing next index in 

iteration. We have named these two implementations as BIT1 

and BIT2.  

In BIT1, index for next iteration is computed using backward 

and forward functions as described in section 2.4. It is 

dependent on whether machine is using 1’s complement or 2’s 

complement integer arithmetic. 

In BIT2, index to be used in next iterations is computed using 

starting value and step value for loop variables as given by 

Alexey [7]. Note that this implementation does not require the 

knowledge of machine architecture implementing 1’s or 2’s 

complement as it is not using forward or backward functions. 

Thus Experimental results are shown in table 12 for practical 

implementation of algorithms HEAP (using Heap data 

structure), BIT1 (using BIT data structure and forward-

backward functions), BIT2 (using BIT data structure but not 

using forward-backward functions) and CFM (using CFM 

data structure). 

In implementations, total execution time of three operations as 

required during arithmetic encoding is considered here. These 

operations are: initializing data structure, adapting data model, 

computing cumulative frequency interval of a given symbol. 

Anyways, initialization is independent of the size of source. 

Several files are taken into consideration for testing. Some of 

the test files are selected from Calgary and Canterbury corpus, 

a widely used benchmark and also from web site 

compression.ca/act/act_files.html. 

8. ANALYSIS OF EXPERIMENTAL 

RESULTS 
It is seen that HEAP is not that efficient even when its time 

complexity is O(n*log2|A|) which is same as that of BIT. It is 

all due to the cost of maintaining HEAP property (array sorted 

by frequency of symbols) that requires searching farthest node 

in array according to frequency of symbols, computing weight 

of left subtree and rearranging nodes as per frequency of 

symbols. It has the worst performance among these four 

algorithms. 

Runtime of BIT2 is comparatively higher than BIT1. 

Remember that it is independent of 1’s or 2’s complement. 

Now comparing BIT1 and CFM, it is seen that there is no 

significant difference in their performance. This can also be 

observed from figure 1 where the lines of both CFM and BIT1 

are overlapping. To highlight the non-significant difference 

between these two, figure 2 is included with bars showing 

performance of only CFM and BIT1.  

 

Table 12.Execution Time (seconds) 

No. File name  Size Bytes  HEAP    BIT1    BIT2    CFM 

1 act2may2.xls 1348036 0.6044 0.2747 0.3846 0.2747 

2 calbook2.txt 610856 0.4396 0.1648 0.2198 0.1099 

3 cal-obj2 246814 0.1648 0.0549 0.1099 0.0549 

4 cal-pic 513216 0.2198 0.1648 0.1099 0.1099 

5 cycle.doc 1483264 1.1538 0.3297 0.4396 0.3297 

6 every.wav 6994092 4.0110 1.4835 2.1429 1.5385 

7 family1.jpg 198372 0.2198 0.0549 0.1099 0.0549 

8 frymire.tif 3706306 2.6374 0.7143 1.0989 0.7692 

9 kennedy.xls 1029744 0.4945 0.2198 0.2747 0.2198 

10 lena3.tif 786568 0.8791 0.1648 0.2747 0.1648 

11 linux.pdf 8091180 4.5604 1.6484 2.4725 1.7033 

12 linuxfil.ppt 246272 0.2198 0.0549 0.0549 0.0549 

13 monarch.tif 1179784 1.2637 0.2747 0.3846 0.2198 

14 pine.bin 1566200 1.2637 0.3297 0.4396 0.3297 

15 sadvchar.pps 1797632 1.4286 0.3846 0.5495 0.3846 

16 shriji.jpg 4493896 3.0220 0.9341 1.4286 0.9341 

17 world95.txt 3005020 2.0330 0.6044 0.9341 0.6593 

 

 
Figure 1. Execution Time (sec) 

 
Figure 2.Execution Time (sec) of BIT1 and CFM 

9. COMPARISON OF BIT AND CFM 
As seen in section 8, there is no significant difference in the 

runtime of CFM and BIT implemented using BIT1. So they 

are compared here with respect to other factors like simplicity, 

ease of implementation, dependence on 1’s or 2’s complement 

arithmetic, ability to exploit pointer arithmetic and possibility 

of overflow in cumulative frequency values.  

Following are the advantages of using CFM over BIT1. 

As compared to BIT, CFM data structure is much simpler to 

understand and easier to implement. 
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In BIT, operations are not performed on consecutive 

elements; whereas in CFM, operations are performed on 

consecutive elements of an array.  Thus in BIT, computing the 

index of next element to operate upon is very complex. In 

CFM, computing next index is simply to increment it. 

Algorithm BIT1 requires negation operation while computing 

next index using backward and forward functions. Negation 

operation is dependent on implementation of 1’s or 2’s 

complement arithmetic on machines. CFM is totally 

independent of such implementations on machines. 

Another advantage of using CFM over BIT is an ability to use 

pointer arithmetic to access next consecutive element in an 

array and achieve better performance. 

One more advantage of CFM over BIT is the reduced chances 

of overflow in cumulative frequency values. As a result, it 

hardly requires re-adjusting frequencies. In CFM, partial 

cumulative frequencies are sum of at the most 16 symbols 

within a row; whereas in BIT, it contains sum of 2, 4, 8, 16, 

32, 64, 128 and 256 symbols. Thus sum in BIT may exceed 

the word capacity earlier as compared to sum of maximum 16 

elements in CFM. 

10. CONCLUSION 
Main advantages of using CFM data structure is its simplicity, 

ease of practical implementation, independence of machine 

architecture, possibility of exploiting pointer arithmetic to 

increase execution speed and reduced chances of word 

overflow in cumulative frequency.  

CFM is extremely easy to understand and very convenient in 

implementation without compromising in performance. 
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