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ABSTRACT 

In this paper we present a numerical solution of the sediment 

transport equations in one horizontal dimension, based on a 

discontinuous Galerkin finite-element method. The 

continuous equations are discretized using nodal polynomial 

basis functions of arbitrary order in space on each element of 

an unstructured computational domain. To complete the 

discretization in space, we choose the numerical flux based in 

the local Lax-Friedrichs flux. A third-order explicit Runge-

Kutta scheme is used to advance the solution in time. In spite 

of the local time steps the scheme is locally conservative, 

fully explicit, and arbitrary order accurate in space and time 

for transient calculations. Numerical results are shown for the 

one-dimensional with orders of accuracy two up to six in 

space. 
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1. INTRODUCTION 
During the last decades, new engineering problems, connected 

with gravel extraction, installation of dams and disposal of 

mine waste into rivers, have risen to the extent that sediment 

transport modeling is assuming a key role in realistic river 

hydraulic simulations. Floods, meandering, sediment load 

computation, river bed aggradation or degradation, channel 

design and navigation are some of the problems concerning 

the sediment transport in rivers. 

In literature, different models have been proposed in order to 

quantify the interaction between sediment transport and water 

flow. To progress on quantifying such interactions, it becomes 

necessary to develop numerical methods that accurately 

simulate the fluid flow over a movable bed. Generally, the 

mathematical modeling of morphodynamic relies on a system 

of three equations: two equations (shallow water equations) 

describing flow continuity and momentum conservation with 

shallow water assumptions, and one equation (Exner 

equation) expressing the sediment continuity. The numerical 

solution of the resulting system of equations is nontrivial and 

two basic approaches have been adopted as a common 

practice, namely, the coupled and decoupled approach [16, 11, 

14]. The conventional method for performing morphodynamic 

simulations at coasts and in rivers is to decouple the 

hydrodynamic and the morphodynamic systems. In the 

decoupled approach [16] the hydrodynamic and 

morphodynamic equations are discretized separately assuming 

that the water motion is steady with respect to changes in the 

bed level. For the coupled approach, no assumptions are made 

and the water flow and bed are calculated simultaneously. 

With this approach, the water motions can either be steady or 

unsteady and the changes in the bed update are considered to 

be significant. Here the wave speed of the sediment continuity 

equation can be of a similar magnitude to the wave speeds of 

the water flow. For this approach, the system is discretised 

simultaneously. 

Several numerical methods have been successfully applied to 

solve the sediment transport equations. In [12], the authors 

modified the well-established Roe’s scheme [20]. An 

interesting approach based on Euler-WENO techniques have 

also been applied to one-dimensional sediment transport 

equations in [18]. On the other hand, authors in [19] extended 

the ENO and WENO schemes to one-dimensional sediment 

transport equations, whereas the CWENO method has been 

applied to sediment transport problems in [3]. In the 

framework of kinetic schemes,  a method based on relaxation 

approach have also been applied to sediment transport 

equations in [6]. The emphasis of the present work is on the 

application of the so-called nodal Discontinuous Galerkin 

(DG) methods to the sediment transport problems. The nodal 

DG method first introduced by Hesthaven and Warburton [10] 

for electro-dynamic simulations utilizes a nodal Lagrange 

interpolation basis as the approximating basis functions, 

which provides a simple and generic means to treat a 

(nonlinear) flux term appearing in the hyperbolic conservation 

laws. The main features of the proposed DG method are: (i) 

the capability to preserve the advantages of the classical finite 

element method to handle complicated geometries, (ii) the 

incorporation of mesh adaptivity without requiring the 

continuity assumptions typical of conforming finite element 

methods, (iii) the ability to increase the overall accuracy by 

increasing the degree of the approximating polynomials 

locally, thus allowing an efficient p adaptivity for each 

element independently of its neighbors (iv) the efficient 

parallel implementation, since each element solution 

communicates with its immediate neighbors only, regardless 

of the order of accuracy, and (v) the ability to handle 

calculations of slowly varying flows as well as rapidly 

varying flows over continuous and discontinuous bottom 

beds. Some of these features are demonstrated using several 

test problems for sediment transport flows. Results presented 

in this paper show high resolution of the proposed DG method 

and confirm its capability to provide robust and accurate 
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simulations for sediment transport problems including 

complex topography. 

The structure of the paper is organized as follows. Section 2 

reviews the governing sediment transport equations to be 

solved. Section 3 describes the numerical scheme and 

discusses in detail the spatial discretization of the solution as 

well as the temporal discretization used to advance the 

solution in time with descriptions of the limiting techniques 

that is necessary to stabilize the nonlinear calculations. 

Section 4 we demonstrate the accuracy, efficiency, and 

robustness of the complete scheme for the solution of 

sediment transport equations the results is compared to 

SRNHS finite volume method [8, 7].  

2. MATHEMATICAL MODEL 
In one space dimension, the sediment transport is usually 

modelled by the shallow water equations. These equations 

consist of the conservation of mass and momentum balance: 

,0)(  huh xt

2 21
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(1) 

where h is the water height above the bottom, u is the water 

velocity, g is the acceleration due to gravity, and Z is the bed 

evaluation. When the sediment transport phenomenon occurs, 

the bed level becomes a function of the time variable too and 

the equation that describes the bed-load sediment transport 

must be added 

0,t xZ q     (2) 
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and   being the porosity of the riverbed, and it depends on 

the type of the sediment. In equation (2), q is the total 

volumetric sediment transport rate in the x-direction, i.e., the 

sediment transport flux. One possible mathematical model for 

the sediment transport flux is the simple law [1]. 
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Where A is a given experimental constant and 1 ≤ m ≤ 4                       

is a chosen parameter. We should mention that the DG 

method described in this paper can be applied to other forms 

of sediment transport fluxes (see for instance [21, 22]) without 

major conceptual modifications. If A=0 then we have a solid 

bed (no sediment transport) and we recover the standard 

shallow water equations. When A is near zero there is a small 

interaction between the fluid and the bed, while if A is near 

one the interaction is larger. Under these assumptions, the 

sediment transport problem can be rewritten in a conservative 

form as 
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Where W, F(W) and Q are the vector-valued functions in IR3 
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In what follows we discuss the formulation of the DG method 

for solving the morphodynamic system depending on the 

values taken by A.  

2.1 Coupled approach 
In the test case where A=1s

2
/m, the changes in the bed update 

are considered to be significant. Here the wave speed of the 

sediment continuity equation can be of a similar magnitude to 

the wave speeds of the water flow i.e. high intensity bed load 

rates are considered and the time scales of bed evolution and 

hydrodynamics are comparable. Therefore the fully coupled 

problem must be solved. For this purpose, the sediment 

transport equations can also be reformulated in a non-

conservative system as 

  ,0111  UGU xt  (4) 

Where 

 

Note that the above system is obtained from a modification of 

the equations in the original sediment transport equations (1) 

and (2) in order to avoid the singularity in the Jacobian matrix 

of the flux function F. It is clear that  

 

Where d= A    m|u|
m-1

 ,   Furthermore, since the system (4) is 

hyperbolic, we can rewrite 

 

With R is the matrix of right eigenvectors of          and      is a 

diagonal matrix with eigenvalues of            as its elements. 

The eigenvalues of          ,                             are the zeros of 

the characteristic polynomial 
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(5) 
 

 

Where                                         with 

  ,

00

0

 11



















d

gug

hu

UG

, 1

1

 RRG 

1G 
1G

1G  3,2,1kk

   2

1 1 1

1
,              ,  

2

hu
h

U u G U u g h Z

B
q

 
   
          

  
 

,
3

2

3

1
cos21 uQ 








 

  ,
3

2
4

3

1
cos23 uQ 








 

,cos
3 
















Q

R
ar





International Journal of Computer Applications (0975 – 8887) 

Volume 41– No.15, March 2012 

21 

 

     2 21
3 ,   9 2 2 .

9 54

u
Q u g h d R g h d u       

The corresponding eigenvectors are 

 

3,2,1       ,

1

2






























 k

gh

ghu
h

u
e

k

k
k



  

It should be stressed that the analytical expressions of 

eigenvalues       can be explicitly calculated and for details we 

refer the reader to [12, 11]. 

2.2 Decoupled approach 
In this case, we set A equal to 0.001s

2
/m. The moderate bed 

load sediment transport allows us to consider the bed as fixed 

with respect to the hydrodynamics within a time step.  These 

assumptions allow the water flow to be discretised separately 

from the bed. Moreover, the approach takes advantage of the 

slow evolution of the bed by iterating the water flow,  
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to an equilibrium state each time the bed is updated. Since the 

ratio between bed load sediment transport in the previous 

approach and in the present approach is 1000, bed elevation is 

updated one time each 1000 computational steps. This is 

completely equivalent to choose a different time scaling for 

the third equation of system (1) –(2) with respect to the other 

set of equations. In these computations, we have chosen 

 

This option reduces the numerical diffusion generated by the 

staggering procedure. Such numerical diffusion may affect 

bed elevation when a slow bed evolution occurs and a long 

computational time must be considered. For this approach, the 

Jacobian matrix of (6) is 
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Remarque 2.1 It is important to notice here that when 

considering the sediment transport equation (1) – (2) the 

inhomogeneous right hand side terms in (1) are not standard 

source terms but nonconservative products, since they include 
a derivative of one of the variables. This fact can cause 

difficulties in the numerical approximations.  However, both 

formulations (4) and (6) adopted here avoids this problem by 

incorporating the source term in the flux function. 

3. A DISCONTINUOUS GALERKIN 

METHOD  
The different approaches (4) – (6) discussed in the previous 

section can be written in the general form as 
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where U can be either  U1 or U2 and G being G1 or G2. In 

this section, we first discuss a discontinuous Galerkin finite 

element method for the spatial discretization. Then a third-

order Runge-Kutta time integration scheme is formulated for 

the semi-discrete system. 

3.1 The Spacial Discretisation 
For simplicity in the presentation we discretize the compu-

tational domain Ω into M non-overlapping elements, Ωk = [xk-

1/2, xk+1/2], k = 1,…,M, with mesh size  

such that                          We also denote                             We 

assume that the global solution U of (8) on the computational 

domain can be represented as a direct sum of local piecewise 

polynomial solutions as 

 

where the solution is locally approximated on the element  Ωk 

by a finite sum as 

 

where we have (N+1) degrees of freedom inside each element 

in terms of the unknown modal   coefficients or nodal 

coefficients   for n=0,1,...,N. ln(x) are the Lagrange 

polynomials defined on the set of nodes used in combination 

with the chosen orthogonal basis. The basis functions    , with 

n=0,1,...,N, are chosen such that          where the 

approximation space  is defined as 

 

where IPN (Ωk) denotes the set of polynomials of degree up to 

N defined on the element Ωk. As orthogonal basis, we 

consider the classical Legendre polynomials Pn(x) such that 

 

 

As shown in [10] to represent the polynomial basis functions 

in a Lagrangian (nodal) basis, we use the Legendre-Gauss-

Lobatto nodes. By uniqueness of the interpolation 

polynomials, the following (constant) transformation matrix 

can be defined for transforming the variables between the 

modal and nodal spaces 
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element without using high-order Gaussian quadrature rules 

for the element integrals. 

Applied to the system (8), we obtain the following polynomial 

representations of the local solution     and the local flux 

function  
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It should be pointed out that we assume that the local residual 

to be orthogonal to all test functions                Thus, after 

integrating by parts, we get the local semi-discrete weak 

formulation 
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and the corresponding strong form 
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                                                                                             (12)  

where n̂ denotes the unit normal vector on        and       is a 

monotone numerical flux associated with G. In the present 

work, we consider the local monotone Lax-Friedrichs flux 

defined by [17] 

 

where        and         are respectively, the left and right limits 

of U at the interface where U is discontinuous, and 
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With   are the approximated eigenvalues in (5) or (7) 

according to the considered approach.  

The local monotone Lax-Friedrichs numerical flux is a 

particularly convenient choice of numerical flux because it 

can be easily applied to any non-linear hyperbolic system, it is 

simple to compute, and yields good results, although there are 

many other numerical fluxes which could also be used [15]. 

From the strong formulation (12) we can generate a local 

linear system of the form 
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where                                                                                    and 

G* is the vector of the associated numerical fluxes in (13). The 

mass matrix        and the stiffness matrix      on       are 
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To compute the mass matrix, we introduce an affine 

transformation defined as 
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where the coefficient       comes from the Jacobian in (16) and 
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where the latter follows from the orthogonality of ˆ ( )nP r . Thus, 
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Similarly, the stiffness matrix      is given as 
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To calculate the derivative in (17), we define the 
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which can be rewritten in a matrix form as 
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It should be stressed that boundary conditions have to be 

incorporated in the semi-discrete system (19). In the DG 

framework it is usual to impose boundary conditions in a 

weak form in both, inflow and outflow, boundaries. It is 

recognized for most works published in the literature, that the 

weak imposition of Dirichlet-type conditions is superior to the 

strong imposition on outflow boundaries, see for instance [2]. 

This is due to the appearance of spurious oscillations in 

boundary layers when Dirichlet boundary conditions are 

imposed strongly. However, the weak enforcement of inflow 
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Dirichlet boundary conditions offers no advantages over the 

strong imposition, compare for example [13] and further 

discussions are therein. 

3.2 The time integration 
The solution procedure for equations (8) is complete when a 

time integration of semi-discrete equations (19) is selected. 

This stage can be handled by any implicit ordinary differential 

equations (ODE) solver, since they are computationally with-

out risk by virtue of their accuracy and linear unconditionally 

stability. This allows for larger time steps in the integration 

process. However, due to the large set of linear system of 

algebraic equations at each time step, these methods may be 

computationally inefficient. As an alternative, we use an 

explicit Runge-Kutta method studied in [23]. By assembling 

together all the elemental contributions, the system (19) can 

be written as 

 
1/2

1/2

12 2
( ) .

k

k

k
x

k k kh r
h h

x
k k

dU D
G M l x G G

dt x x





     
  

 (20) 

Let us rewrite the equations (20) in a compact ODE form as 

 

0
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(0) ,

dU
L U t T

dt

U U

 



 
(21) 

where L represents the right-hand side in (20) and U0 is a 

given initial data. The procedure to advance the solution from 

the time tn to the next time tn+1 can be carried out as 
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

 

(22) 

This class of explicit time integration schemes has become 

popular in computational fluid dynamics, see for example [9]. 

The main feature of this method lies on the fact that (22) is a 

convex combination of first-order Euler steps which exhibits 

strong stability properties. Therefore, the scheme (22) is TVD, 

third-order accurate in time, and stable under the usual 

Courant-Friedrichs-Lewy (CFL) condition 

,1




x

t
  (23) 

where  is defined in (14). In order to prevent non-physical 

oscillations and to obtain high-order stability for the space 

discretization 1k  , a slope limiter is applied on every 

solution in the Runge-Kutta stages (22). in the current study, 

to modify the local mean of the solution to guarantee the TVD 

property in the mean, we first consider the following minmod 

function 

 
1

1 2

1

min ,    if   1,

1
minmod( , ,..., )   .

0,               otherwise,
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Then, we define the interface fluxes as 

 
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We assume that the solution is represented by a piecewise 

linear function as 

 0( ) ( ) ,k k k k

h h h
x

U x U x x U    

Where                denotes the derivative of        with respect to 

x and       represents the center point in the element     . Hence, 

the slope limited solution using the MUSCL function [17] is 

given by 

 
1 1
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

 
(27) 

It well-known that this procedure may reduce the order of the 

approximation in the vicinity of the sharp front if an 

oscillation is detected. A simple way to avoid this drawback is 

to apply the limiters only in those elements where oscillations 

are detected, see for example [4]. This procedure can be 

implemented in the following steps: 

1. Compute the limited edge values        and       using 

the equations (25). 

2. If ( ) k k k

l h lW U x and ( )k k k

r h rW U x , there 

is no need for limiting and the local solution is not 

altered. 

3. If a limiting process is needed, compute the limited 

version of    as        , where is the linear 

approximation to  given by (26). 

Note that other slope limiter functions can also be applied in 

(27). 

4. NUMERICAL RESULTS 

In this section we present numerical results obtained for 

several test examples on sediment transport equations in one 

space dimension. All the test examples use the sediment 

transport flux (3) with m=3, the space domain is discretized in 

400 gridpoints and a fixed courant number Cr=0.75 is used 

while the time step is varied according to the stability 

condition 

 
,

max k
k

x
t Cr




   

For comparison reasons, we have included a solution 

computed by the first-order SRNH scheme and the second-

order SRNHS scheme using 400 grid points as such we 

compare the results produced by the proposed DG-scheme 

with those obtained by SRNHS finite volume method [8, 7]. 

For all the problems that we will present here we consider the 

channel length to be 1000m, treating the boundary points 

using free flow boundary conditions. Using variations of 

physical parameters such as A,  and Q we can obtain 

different problems. Initial water level and initial velocity are 

given as 

     (0, ) 10 (0, )h x Z x   and (0, ) ,
(0, )

Q
u x

h x
  

where Q is a constant discharge taken the value 10m2/s. 

Two values A=0.001 and A=1 are used in the the sediment 

transport flux (3). 

4.1 Test 1 
We consider test example studied in [7]. The porosity coeffi- 

cient is                  and the initial bed is defined as 

2 ( 300)
sin ,    if   300 500,

Z(0, ) 200

0,               otherwise.
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Fig 1: Water height (left) and bed-load (right) with A=1 using coupled approach. 

 

Fig 2: Water height (left) and bed-load (right) with A=0.001 using decoupled approach. 

 

We first present in Figure 1 the obtained results using A=1. 

Next we display in Figure 2 results obtained with A=0.001 

using Q=10m2/s.  It is clear that the first-order SRNHS 

scheme produces diffusive Mobil-bed and water level 

resulting in smearing the shocks. However, this numerical 

diffusion has remarkably be reduced in the results computed 

using the second-order SRNHS scheme and more better using 

the DG scheme. The downstream propagation of the wave is 

well-reproduced by the DG method using a piecewise cubic 

polynomials. The total absence of spurious oscillations and 

the numerical comparison [6, 8] support this statement. 

4.2 Test 2 
This test problem considers the evolution of an initially 

discontinuous bed in a channel proposed in [8, 6].  Due to this 

discontinuity in the initial bed profile, this test example is 

more challenging than the previous example. The initial bed is 

defined as 

1,         if   300 500,
Z(0, )

0,        otherwise.

x
x

 
 


 

 

The evolution of the bed profile and the water height with 

A=0.001 at time t=230000s  is depicted in Figure 4. The 

results with A=1 at time t=624s are included in Figure 3. The 

proposed discontinuous Galerkin method performs very 

satisfactorily for this nonlinear coupled problem since it does 

not diffuse the moving bed fronts and no spurious oscillations 

have been detected near steep gradients of the flow field in the 

computational domain. In this test example, the degree of the 

polynomial approximation is fixed to N = 6. 
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Fig 3: Water height (left) and bed-load (right) with A=1 using coupled approach. 

 

Fig 4: Water height (left) and bed-load (right) with A=0.001 using decoupled approach. 

4.3 Test 3 
This test was presented in [19] as to present the case of a sedi- 

ment bore that interacts quickly with the water flow over a 

step. To obtain this situation A=1 and                 The initial 

riverbed is given by 

 
1

Z(0, ) .
1 exp ( 400) / 5

x
x 


 

 

In Figure 5, we present the numerical results obtained using 

different orders of polynomial approximation. It is clear that 

for N = 2 and N = 4, the numerical diffusion is very 

pronounced in the numerical solutions. This excessive 

numerical dissipation has been successfully removed in the 

bed-load and water height by increasing the values of N. The 

bores propagate downstream, increasing their steepness 

during their evolution in space and time. For this problem 

again the DG scheme produced similar smooth results 

behaving very well near the bore and compare well with the 

results presented in [19]. Needless to mention that increasing 

the degree N results in an increase of the computational cost 

in the DG method. For then considered degree of the 

polynomial approximation N = 2, N = 4 and N = 6 the 

required CPU time in the DG method is 8.844, 32.372 and 

80.833 minutes, respectively. 

 
Fig 5: Water height (left) and bed-load (right) with A=1 using coupled approach. 

0.2. 
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4.4 Test 4 
Our final test example [8] is the problem of a sediment 

transport with backward/forward step. Here the initial bed is 

defined as 

1,                    if   0 96,

181
       if   96 181

85

Z(0, ) 0,                    if   181 638

638
         if   638 723

85

1,                    if   723 1000,

x

x
x

x x

x
x

x
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
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  



  
 
  

  

 

 

A similar test example was studied in [5] for sedimentary 

flows. We display in Figure 6 the bed-load and the water 

height with A = 1 at t = 482s. Figure 7 reports the obtained 

results with A = 0.001 at time t = 250000s. In both case, we 

run the code with N=4.  As in the previous test examples, the 

DG formulation has calculated correctly the bed-load and the 

water height. 

 

Fig 6: Water height (left) and bed-load (right) with A=1 using coupled approach. 

 

Fig 7: Water height (left) and bed-load (right) with A=0.001 using decoupled approach. 

5. CONCLUSION 
In this work we have presented a discontinuous Galerkin 

finite-element method to the bed-level sediment transport, in 

one space dimension.  The mathematical models presented are 

relatively simple but not trivial to solve and present a 

relatively ideal but conceptually important situation in 

morphodynamic modeling.  The DG method has been tested 

for a class of sediment transport problems with different bed 

interaction and flow regimes. The performance of DG scheme 

is very attractive since the computed solution remains, stable, 

monotone and reasonably accurate even on coarse grids. The 

obtained results indicate good shock resolution with high 

accuracy in smooth regions and without any nonphysical 

oscillations near the shock areas. The numerical comparison 

reported in [6, 8, 7] for the same sediment transport problems 

support this statement. An extension of the scheme for two-

dimensional morphodynamic problems is under consideration. 
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