
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 8

A Metadata-based Framework for Object-Oriented
Component Testing

M Nawaz Brohi Fakhra Jabeen
Department of Information Technology Department of Information Technology

Preston University, Ajman Preston University, Ajman
United Arab Emirates United Arab Emirates

ABSTRACT
Component-based systems are becoming prevalent at a rapid

pace. With the growing demand for components, there arises a

need for adequate component testing procedures. The

component testing process at user end suffers with the

unavailability of source code, which precludes extrapolating

standard testing approaches. Effective Object Oriented (OO)

component testing techniques require structural and

behavioral information of component as a necessary test

support element. We propose an OO component-testing

framework that relies on utilization of metadata captured in

discrete descriptors. A component developer generates a

Component-Descriptor (CD) concomitantly with the

component that provides behavioral analyses. The user

chooses a component by browsing CDs and preparing

Component Requirements Descriptor (CRD). Using analyses

of component behavior in CD and of minimal requirements in

CRD, third-party tester (TPT) conducts user directed

component testing and reports bugs to the provider in the form

of Component-Test-Specification-Descriptor (CTSD). The

provider eliminates those bugs and returns the modified

component and CD to TPT. This continues until TPT is

satisfied with the reliability of component services. TPT then

packages CTSD with the component for the user. The

component provider, user, and TPT, each has the

responsibility for descriptors unique to their perspective. The

proposed framework attempts to eliminate the dilemma of

unavailable information and supports objectivity in

component testing process.

Keywords

Metadata, Component Testing, Descriptor, Software Testing,

Software Components, Component metadata

1.INTRODUCTION
Software applications have become a necessary element of

almost every aspect of business and industry. From laboratory

tests through delicate neuro-surgical procedures, the processes

are becoming increasingly software dependent. Software

development processes must keep up with the increasingly

sophisticated needs for dependable software production in a

dynamic world. The production of software components is

one of the advancements that respond to the demand of rapid

software production. Components are envisioned as reusable

building blocks allowing production of large software systems

in much less time and reduced cost. Software component is a

unit of composition with contractually specified interfaces and

explicit context dependencies only [1]. A software component

can be deployed independently and is subject to composition

by third parties. Object Oriented software components with

special features (e.g., inheritance), which ease the software

development process, also require novel approaches for

testing to achieve a high degree of fault detection. The scope

of OO software components may vary from a class to a cluster

of classes. Typically a class can be treated as an independent

component [2]. The benefits of using components in general

and OO components in particular can only be practically

affirmed if these are bug free and present reliable services in

the system.

Software component lifecycle differs from conventional

software presenting various challenges as Component Based

Software Development (CBSD) is generally scattered over

multiple organizations. This is primarily true for Commercial

off the Shelf (COTS) components where component is

developed once and can be used by multiple users. That is the

software component is implementation transparent, the source

code of component is transparent to the developer only and

the user can access the component services without knowing

the implementation details. It is a distinguishing characteristic

of software component as it facilitates reuse, and the

component developer also conceals the proprietary

information. At the same time, implementation transparency

affects the component user, due to the lack of information for

performing component integration testing. IEEE defines

integration testing as “testing in which software components

are combined and tested to evaluate the interaction between

them” [3]. Indeed, unit testing cannot confirm the reliable

behavior of components in a new system; hence another

testing campaign—by the component user—is essential to

attain an acceptable reliability level. Council W.T termed

testing by the component user during its implementation in

the real environment as second party testing [4].

Component developers and users may not communicate

implementation details [5], [6] thus requiring to take

additional considerations in component integration testing

process as reported [7]-[12]. Several component integration

testing techniques discussed by Bhor [5] and Gao.J [13]

provide a starting point of test strategy definition for

components, but most of these techniques overlook variations

in the software component life cycle. Only the interface-

names and their textual descriptions appended with the

component are inadequate for detection of errors while being

deployed in the actual usage environment. One of the

solutions for these problems is to attach summary information

with the component based on preliminary examination of

problems that can arise in component testing [8]. Developers

can also provide additional information with the component in

the form of metadata [14]. Writing additional code in the

component to define component behavior generates metadata

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 9

[15]. This generation of metadata still requires an extra code

embedded to access component behavior. Extra code in

component implementation aggravates component

complexity. The existing mechanisms such as summary

information, and metadata, as discussed, do not provide a

generalized form of information representation with the

component. Another approach addresses the need for

additional information by attaching Unified Modeling

Language (UML) Models with component [16]. The UML

Models reflect component behavior and assist component user

in the integration testing process. However, UML Models

such as sequence diagrams and collaboration diagrams allow

generation of source code thus affecting the implementation

transparency of component [6]. In short, the main problems,

which arise existing processes of adding information with

software components are that these processes:

 Lack formalism for information representation,

 Interpretation of information is not clear due to its

non-uniformity. Hence requires to understand the

representation prior to interpreting the meaning, and

 Expose component implementation, allowing

reverse engineering.

On account of these issues, we propose a framework,

which attempts to resolve these problems. These issues are not

completely resolved, however it can be said that the proposed

framework minimizes the effect of problems discussed above.

Our proposed framework enhances component testability by

defining a uniform information flow in component life cycle

so that component can be reused effectively. This research can

be considered as an extension of the Metadata proposal given

by Orso [14]. Next section is the related work followed by a

discussion of proposed framework.

2.RELATED WORK

Software components with the utilization of minimum

resources allow rapid software development. The widespread

use of component-based software has triggered research

efforts for effective component integration testing. Harrold,

M.J. defined two perspectives component user, and

component developer [8]. These are significant while

conducting testing of commercial off the shelf components.

The commercial off the shelf component can be tested directly

by the users or TPT can be requested to conduct component

testing. Third party testing ensures objective testing process as

reported by Ma, Y.S. [17], Councill W.T. [4] and Vaos, J.M.

[18]. Ma, Y.S. proposed a framework for component third

party testing [15]. A three-step process is defined using

metadata. First, TPT provides guidelines and supporting tool

to the producer. Second, producer generates test-package

using these guidelines. Test-package consists of information

to deploy and test the component and to audit the test suit of

the component in the form of metadata. Third, TPT checks the

conformance of test-package with guidelines provided to

producer, executes the test package, and generates a test

report. An evaluation of the framework demonstrates that TPT

met some problems while executing the test-suite. It was

mainly because the developers providing the test suite lacked

testing skills. In general third party testing provides

objectivity in component testing.

In 1999, Harrold, M.J. also initiated the idea of component

metadata for software engineering tasks [8]. The issue of

missing component information complicates analyses and

testing activities. A test model defined for OO component

testing [5]. The test model is based on the identification of test

elements for conducting component integration testing. Test

elements require developers to attach additional information

with the component that includes interface, event, context

dependence and content dependence. Information added to the

component to enhance analysis and testing of interfaces is

generally termed “component metadata” [14]. The added

information becomes a gauge for the component testability.

Gao J defined testability metrics, which are also assessed from

the metadata [19]. Several integration testing techniques

existing in literature use some form of metadata in the testing

process.

Bertolino and Polini proposed component deployment

framework for component users [20]. The team used the basic

classification of testing (i.e., unit, integration, and system

testing), and termed the unit testing phases as component

testing, integration-testing phase as deployment testing. In

framework user performs an analysis of component

requirements before actually deploying the component [8].

The user defines a virtual component through analysis, which

partially simulates anticipated component requirements,

however does not require complete component development.

The deployment-testing framework allows the user to select a

set of available software components, and to evaluate the

functionality of each real component through testing in the

system environment. It permits to test multiple available

components, by matching the component behavior and

outputs. However, it requires the component under test to

have the runtime access mechanisms enabled by the

component developer. Thus it limits the framework for testing

only the components that have runtime access enabled.

Built In Testing (BIT) is another approach to

increase component testability. BIT requires component

developers to embed tests in software component

implementation to support self-testing. Wang Y used BIT for

constructing maintainable software [21]. The tests were

developed in component source code as extra member

functions; component in this approach operates in two modes,

which include normal mode and maintenance mode. In

normal mode component performs required functionality, and

in maintenance mode the interfaces for built in tests can be

activated as other component interfaces. Some of the

techniques to add metadata with the software component for

improving component testability also use BIT approach with

slight variations. These include self-testable software

component by Martins [22] and Self TEsting COTS (STECC)

Strategy by Beydeda and Gruhn [23]. BIT approaches demand

extra programming effort and increased complexity in the

development of a component as tests are built in the

component implementation. Only those aspects of component

can be tested that are enabled by the component developer. In

brief, BIT improves component testability, but it is limited to

a fix level as defined by the developer.

The mechanisms for component integration testing that are

discussed above in general, demand additional information

packaged with the component, and/or additional structure for

reliable use of component applications. Each approach as

discussed above suffers some drawbacks but all approaches

attempt to resolve the problem of missing information, which

is necessary for effectively utilizing the “reuse” benefit of

components. Component integration testing still requires

further works particularly for OO components. Next section

further elaborates the motivation of our proposed framework.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 10

3. MOTIVATION

The momentum of proposed framework is to assist the

reliable integration of software component. Our framework

aims to enhance component testability by attaching some

additional information with the component, and thus proposed

framework makes following contributions to the OO

component testing:

 It provides mechanisms to schematically document

essential OO component behavioral information in

the form of three comprehensive descriptors. The

information in these descriptors boosts up the test

support capability of software component, and is

structured in such a manner that specification and

implementation are kept separate, and independent.

 The idea of adding descriptor is not new. It was

adopted from the deployment descriptor used in

distributed component, e.g., EJB component [24].

Since existing techniques that provide the

specification with the component tend to embed the

same into the very implementation of the

component [25], which imposes the serious threats

to the OO component testing. This allows the user

to access only a specific set of information and also

affects the component implementation transparency.

The proposed framework defines descriptors, which

contain structural and behavioral details of the

component according to the requirements of each

role in OO component testing framework.

 The proposed framework incorporates TPT. The

idea of TPT is already proposed and supported by

Ma, Y.S. [17], and Councill W.T. [4] and Vaos,

J.M. [18]. As the developer may not be a testing

expert, and may have a bias in revealing bugs in the

component. Our framework allows the TPT to treat

a component as a black box for testing requirements

defined by the user in a descriptor. The TPT also

verifies component behavior provided with the

component in another descriptor by the developer.

o This enables impartial component testing.

o Test results appended by TPT increase

component user confidence in software

component.

o Conducting component testing based on user

requirements; TPT simulates virtual integration

testing before real integration testing. Thus

reducing the critical pitfalls at the component

user end.

o In addition, TPT having knowledge and

software testing skills enhances the

component’s testing support capabilities.

 TPT further supplements each component with test

specifications including test oracles and test results

in a schematic notation.

o The user can decide whether to use the

component or to look for another solution

based on the test results by TPT. This again

reduces the integration cost and hazards for

inappropriate component, which cannot be

avoided in conventional practices.

o Test results also present important information

for comprehensive integration testing by the

user, and can additionally be used for test

optimization at user end.

o The test specifications by the TPT provide a

measure of the reliability of the component,

which can in turn influence its reusability.

These specifications also add to the test history

of software component and can be used to

perform configuration management during

maintenance phase of software component.

The proposed framework also fosters component reusability.

Moreover, multiple users can access and analyze component

functionality, and test components in a particular usage

context, adding to component test history. This separates

analysis and implementation of software component while

defining an effective testing process for OO software

components. Once tested by TPT, the test-specifications are

kept with the component, so that if same component is again

tested then existing test history of component can be reused.

In this way, the addition of information with the component in

our framework attempts to reduce the risk of failures in

software systems.

4.METADATA BASED COMPONENT

 TESTING

4.1. The proposed frame work
The key players in proposed framework are component

provider, user, and third party tester. The proposed

framework attempts to resolve weaknesses in prevailing

component integration testing process, by establishing a

uniform information flow among key players. Component-

provider (developer/assembler) usually refers to the single

team that produces the component. Component user acquires

the component to integrate in software system. TPT again

may be a team or an organization that tests a component on

behalf of the end user to ensure minimum operability for

integration testing. Our approach mainly focuses on providing

a communication mechanism between key players, and

providing each with sufficient component test-specifications

he/she requires for a successful component testing process.

The information flow is based on metadata contained in

descriptors that is a practical application of metadata approach

proposed by Orso [14]. The existing metadata based

techniques for component testing, fail to provide the formal or

standard means of information transfer between the concerned

parties. In addition they are also unsuccessful in providing the

complete and specialized testing information for integration

testing. For these reasons, we propose descriptors in a

standard format, whose contents are tailored to assist specific

tasks in component integration testing. The representation of

every descriptor is accomplished using standard notation for

uniformity in information flow. Instead of defining a new

proprietary standard for descriptors’ representation, we have

chosen standard Extensible Markup Language (XML)

notation [26].

The proposed framework is supported by three descriptors, in

XML representation, that provide source of communication

among the key players. These are Component Descriptor,

Component Requirement Descriptor, and Component Test

Specification Descriptor. The main objective of our

descriptors is to eliminate the dilemma of missing test

information, in component life cycle, while not affecting the

implementation transparency of software components. The

TPT and the user access and utilize the metadata in the

descriptor to conduct component unit and integration testing.

Each descriptor is illustrated as well-formed XML document,

and is validated against its defined Document Type Definition

(DTD).

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 11

4.1.1. Roles in the proposed framework

The proposed framework realizes the separation of

concern principle by defining distinct set of responsibilities

for each role. This separation of tasks allows executing the

component test lifecycle activities separately by every role in

an isolated domain. Moreover a formal means of

communication is defined providing all roles the required set

of information for conducting testing in the framework. Each

of the roles has well-defined and specialized responsibility.

This section presents the responsibilities of key roles in our

framework, including provider, TPT and user (see Table 1).

Component Provider: can be a developer or an assembler. The

developer produces software components according to the

market requirements that are generally used per se by the user

or application developer. The assembler tests and assembles

similar or linked classes into single component if required by

the user. This assembly helps in simplifying integration

testing of component, as the assembler tests integration of the

constituents with full access to component source code. The

component provider finally provides a formalized

specification of the component, tuned to assist in testing, with

the component, in the form of Component Descriptor, as in

steps 1, 2, and 5 of Figure 1.

Component User: can browse through CD placed in public

access directory (see step 3 in Figure 1). Typically users do

not define the expected requirements of a component in any

standard form/notation. Our framework allows the user to

access component CD and to specify the anticipated

requirements as metadata packaged in component CRD (see

step 3, 6 in Figure 1). On choosing the component, the user

avails the services of TPT to acquire confidence of component

services. The user receives the component packaged with

CTSD and CD. The test information in CTSD reduces the

user effort, thus simplifying the integration testing (see step

11 in Figure 1).

Table 1. Roles and Responsibilities in OO Component Test

Framework

Component Provider

Compone

nt-User

Third-

Party

Tester

(TPT)
Developer

Assemble

r

R
e

s
p

o
n

s
ib

il
it

ie
s
 Develops

component

s, based on

market

requiremen

ts

Assemble

s related

compone

nts on

demand

Selects

component

by

browsing

through

CD’s of

available

component

s

Tests

component

for

component

user using

informatio

n from the

provider

and the

user

Prepares

Componen

t

Descriptor

(CD) of

component

Reduces

integratio

n testing

pitfalls of

related

compone

nt for the

same user

Prepares

Componen

t

Requireme

nt

Descriptor

(CRD) of

selected

component

Prepares

Componen

t Test

Specificati

on

Descriptor

(CTSD) of

component

under test

CD is packaged with

each component going

to the TPT by provider

CRD of

component

is supplied

to TPT

TPT tests

component

and sends

failed test

results to

provider

(in CTSD),

after

modificatio

ns finally

prepares

CTSD

going to

the user

with the

CD and

component

D
e
sc

r
ip

to
r
s

CD adds additional

information with OO

component for

analyzing component

behavior for testing

CRD

encloses

minimal,

specific

operational

requireme

nts for

TPT

CTSD

holds test

specificatio

ns of the

component

, to help

the user

either to

select the

component

or look for

another

solution

T
e

s
ti

n
g

 L
e

v
e

ls

Unit tests

each

componen

t

Integrates

and tests

assembled

componen

t

Performs

integration

testing

after

accepting

tested

component

, CD and

CTSD

Impartially

performs

unit testing

and virtual

integration

testing for

the user

Third-Party Tester: performs objective component testing

using specifications as given by the provider (in CD) and the

user (in CRD), see Figure 1 step 7 through step 10. These

specifications help TPT to conducted user-directed component

testing. TPT augments component with Component Test

Specification Descriptor.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 12

4.1.2. Information flow cycle in metadata based

component testing framework
Complete information flow among key players is presented

using descriptors, which capture metadata in the component-

test-framework. The information flow cycle is established by

attaching specific descriptors with component by every role in

the framework. Thus the sequence of these events/occurrences

of adding the descriptors (see Figure 1) progresses in the

following manner:

1. Component providers registered in the

framework develop components according to

the market requirements. A CD is generated

and associated with each component by the

developer.

2. Component provider makes CDs of developed

components available in a public directory (this

can be an online facility to provide public

access) for all component users.

3. The component user browses through available

CDs of components. The uniformity in CD

format allows component user to select a

software component according to the user

requirements.

4. If a component user requires two or more

components and the selected components are

related, then component assembler integrates

components to form a composite unit. The

assembler is considered as part of component

provider organization rather than a separate

organization.

5. Selected component is sent to TPT with its CD

for complete test execution.

6. Once a component is selected, the user

prepares a CRD descriptor, for TPT, by

browsing through CD of selected component.

The user specifies in the CRD, the criticality of

specific features of the component to be tested

in the user environment.

7. TPT uses CD and CRD for testing component

behavior in an impartial manner and virtually

simulates the integration testing of software

component.

8. The scenarios or conditions of failed tests are

sent to provider in CTSD, for correction by

developer as indicated by TPT.

9. The developer sends the modified component,

and CD to the TPT for repeating test process.

10. The steps 8 and 9 continue to repeat in a cyclic

manner until TPT verifies component’s

compliance with CRD and CD. It results in

completion of comprehensive CTSD for each

tested component.

11. The component is finally sent to the user

packaged with CD and CTSD.

Software

Component

CTSD

Software

Component

CD

Software

Component

 CD CD CD CD CD

Repository of CDs in a

public Directory
Browses Component

User

CD

Third Party

Tester

Component

Provider

CTSD

CD

CRD

Software

Component

CRD

CD

CD

Assembler

Developer

3

6

11

8

2

1

4

9

5

7

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 13

Figure 1: Metadata Based Object Oriented Component

Testing Framework

4.1.3 Descriptors in the proposed framework
The proposed framework attempts to resolve component-

testing problems by imparting comprehensive descriptors

among various roles in the component life cycle. A subset of

fundamental engineering processes are simulated in

component lifecycle, i.e., the developer provides components

having a set of requirements, the user provides requirements,

TPT attempts to verify that component does indeed meet the

requirements (iterating with the developer if necessary). TPT

conducts component testing with a perspective of user

requirements. It is termed as virtual integration testing as the

real user environment is not simulated by TPT rather only the

specifications in CRD are tested by the TPT. For this we say

that virtually integration testing is simulated at the TPT end.

In the proposed framework, the augmentation of component

test specification, results in enhanced component reuse.

Mainly three descriptors (i.e., CD, CRD and CTSD) establish

communication among key players. The CD, CRD, and CTSD

follow a defined schema, and are under individual ownership

by each of the key players who are responsible for supplying

content for their descriptors that complies with schema

requisites.This section provides an overview of structural

elements contained in each descriptor. An example is also

presented to explain how the TPT and the user can practically

use the information kept in the framework descriptors while

conducting component testing. The example is an Account

class developed as a unit component using Java language,

which contains the XML files of AccountCD, AccountCRD,

and AccountCTSD.

4.1.3.1 Component descriptor

CD reflects complete component structure and behavior with

the goal to facilitate component testing process without source

code. Developers can prepare CD by using component source

code and design artifacts such as state diagram, as developers

typically have full access to all component artifacts. Using

both design and implementation to prepare CD also helps to

identify any discrepancy between the two. CD elaborates

entire set of component services, thus assists the user in

analyzing desired component functionality. In addition, it also

increases component reusability.

CD Schema Structure

The CD is built to store constraints on data and behavior of

each object in the component. The elements and sub-elements

in CD are also fully elaborated with their tags in AccountC.D.

Elements that form the CD structure include following:

 Component Configuration: Component

configuration holds the developer identification and

date of creation etc., so that when TPT reports bugs,

the developer who created the component can

modify to remove the errors.

 Non-Functional Specification: Non-functional

specifications contain the descriptions of specific

hardware and software requirements for correct

execution of component. Component user while

choosing component can also check, by browsing

through CD, whether these specifications match

component user’s environment.

 Component-structure (or functional specifications):

The component structure element is of paramount

importance in the CD, which contains a separate

<class> tag for each class in the component. The

extraction of the sub-elements of component

structure from source code and state diagram is

illustrated by an example of Account class. The

elements of CD Schema are explained with an

Account class developed in Java having simple

functionality for brevity and understanding.

Account class interface is shown as follows, and the

state diagram of the Account class is given in Figure

2.

public class Account{

 public Account(){

<method-body>

 }

 public void withdraw(double

amount){

<method-body>

 }

 public void deposit (double

amount){

<method-body>

 }

 public double getBalance(){

<method-body>

 }

 public void close(){

<method-body>

 }

private double balance;

}

All method statements of Account are accessible

only to component developer. The conditions on values of

instance variables can be determined by analyzing method

operations in code or state-diagram. From Account state

Legend

Descriptor

Information Flow

Role

Sequence

Repository

Software-Component

Packaged-Component

Browse

1,2,3,11

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 14

diagram (Fig. 2) it can be observed that withdraw, deposit,

and getBalance methods are invoked only in Open and

Overdrawn state. A close message cannot be triggered in over

drawn state of object. This information is useful in

determining the possible sequences of messages to be

triggered for testing. Therefore, such information is kept in

CD in component structure element for each class of

component. CD elaborates behavior without exposing actual

business logic. The sub-elements in component structure

element of CD include following:

 Inheritance hierarchy

 Attributes

 Invariants {class invariant, state invariant}

 Methods.

The inheritance is a powerful feature of OO

programs. For testing this feature, an inheritance hierarchy is

kept in CD by providing the names of super class (es) of each

class in CD. For example, consider a class C that inherits from

B which itself inherits from A. The CD of class C must

contain B and A as super-class names. Multiple inheritances

generally introduce complexity in OO software thus it is not

supported by the proposed framework. An object is

represented by a set of attributes or instance variables. The

state of an object is determined by values of its instance

variables specified in the state. The balance attribute of

Account class is provided in CD with a unique attributeID,

name, data-type and an abstract specification of attribute by

component provider. It is useful for TPT to access these

values of attribute to test data type and possible range of the

variable input values in the class or component.

An invariant is a Boolean expression that specifies

the required range of values or states of variables [27]. The

developer determines class and state invariants. Tester uses

invariant expressions at various points during testing to check

correctness of component behavior. By using class and state

invariant expressions, tester can produce test-data and test

cases for each class.

Figure 2: Account Component State-Diagram

A class invariant specifies properties that must be

true for object in any state of class [27]. It must be true after

instantiation, upon entry and exit from every method, and just

before destruction. An object may change states on method

calls but all these states are a subset of class invariant. The

developer attaches a class invariant expression in CD, i.e.,

derived by disjunction of instance variable states. For Account

the state of object in class is defined by value of balance

variable as shown in Figure 2. Thus the Account class

invariant can be defined as: balance can have double value

less than, greater than, or equal to zero. TPT can verify that

any possible state of object during program execution cannot

violate the class invariant expression. State Invariant

expression is used for naming state and defining conditions on

instance-variables for being in the particular state. Class

modality is determined by the kind of constraints on message

sequence or instance-variable value [27]. For a non-modal

class the data boundaries for input and output need meticulous

testing. Although a non-modal class does not impose

constraints on sequence of messages accepted; however the

messages are also tested for correct data modification and

execution. As above-mentioned states in Account class are

determined by value of balance variable, and the developer

defines possible state invariants in AccountCD based on value

of instance variable in the state-diagram (Figure 2).

Binder defines class behavior as an abstraction of the

content of an object or the prior sequence of messages

accepted, or both. The invariant expressions are defined in CD

for testing valid sequence of messages. For every method in

component, developer must specify following elements in CD

by using both the design and the component source code:

 Pre- and post-conditions

 The type and valid range of method parameters

and return values

A set of pre and post conditions is defined for each

method in class by forming a Boolean expression comprising

of state-invariants, and any other condition to be imposed on

instance variables for method execution. For each method, the

parameter values and return values are also specified with

type and the valid or acceptable range of values for the

method.

getBalance

deposit [balance<0]

withdrawn

Overdrawn

Withdraw (balance>=0)

deposit

getBalance

Withdraw [balance>=0]

withdraw [balance<0]

deposit [balance>=0]

[balance ==0] close

Open

deposit

Withdraw [balance>=0]

Closed

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 15

CD for component user

Component developer prepares CD for each developed

component. The CD is placed in a public access directory so

that various users can access and browse through the CDs of

available components. The user can analyze component

functionality via the brief descriptions attached with the

component interfaces. If the user finds the component useful

for the system, i.e., the component functionality is partially or

fully equivalent to the user requirements then the user

prepares a CRD using component CD. For TPT, user can

prepare the CRD by browsing through the component CD,

thus resulting in effective testing process by TPT.

Consequently CD not only gives an overview of component

functionality but also permits the user to specify the criticality

of use or the usage level of required component interfaces.

CD for TPT

While preparing the CD, developer can append this

information, which cannot allow the generation of same state

diagram at the user end, rather the information in the state

invariant can generate a super set of all possible state

transitions. These state invariant expressions are utilized in

defining the pre and post-conditions of each method in the

descriptor. Instead of providing the conditions on variables in

the method pre and post conditions the state-invariant

expression name can be useful in building an understanding of

the component behavior. State invariant expressions are thus

used in the CD to facilitate TPT in component testing.

One method call in a class executes only if its

preconditions are true and its execution is said to be complete

if all post conditions are satisfied. In the proposed framework

only the provider can access component source code. For this,

developer must determine and define method specifications

by analyzing component source code and state diagram

(Figure 2) as mentioned earlier. Thus tester can easily derive

the test oracles for testing correct sequence of messages by

extracting the pre- and post- conditions for each method as

provided in the CD. The correct message sequences assist in

determining object behaviors especially when software

components from different providers are integrated in the

system.

4.1.3.2 Component requirement descriptor
The component user is allowed to provide specific

requirements of the component services, in CRD, as expected

by the user. The purpose of CRD is to allow the user to

specify anticipated component requirements prior to the

simulation of integration testing at the user end. These

requirements are not comparable to particular software

requirements specification. The user specifies the criticality of

component services in the user environment. It mainly gives a

general idea to the TPT about the component services

required in particular by the user, while TPT conducts

component testing. These requirements help TPT to simulate

the virtual integration testing process by generating the test

data according to the user requirements. Any inconsistency of

requirement is communicated to user before actual

deployment of component in the system.

CRD schema structure

CRD schema structure is defined to accomplish the goal of

providing TPT with the test specifications. For this reason in

the proposed framework, user produces a CRD holding

conditions on data values being manipulated and interface

signatures that are of critical nature in the component user

application. The Account component example is used for the

explanation of CRD schema structure (AccountCRD), as

mentioned earlier for CD elaboration (AccountCD). The

component user makes use of selected component’s CD, to

specify CRD schema elements according to user’s system

requirements. The CRD schema structure mainly consists of

following software component elements:

 Non-functional specifications

 Interface specifications

The non-functional specifications by the user include system

requirements such as operating system, memory, etc.

Component user also supplies any assumptions pertaining to

component execution environment. This element is

incorporated in CRD for verifying component-conformity

with particular user environment. The interface specifications

in CRD are meant for providing information such as range

and format checks on component data-values being

manipulated, and conditions on component services being

initiated in the system. It is the part of CRD used by TPT in

validation of component functional requirements. In CRD

interface-specification element further consists of sub-

elements, which include:

 Single tag for data members, and

 List of interface elements in the CRD.

In data members tag user specifies type and range

checks for each component data member for its integration

test coverage in CRD. The user specifies a list of component

interfaces, which are required by the user and are expected to

be invoked in the user environment. These interface names

acquired from CD, get higher priority during testing at TPT

end. Component services or interface names are basically the

public methods of the class or from the multiple classes in the

component. With each name, i.e., interface name component

user can also define conditions on each interface parameter

and return as specifically required in the user’s system. In

addition, user can specify the usage level of each interface.

This level implies the testing level to be applied by the TPT,

and ranges from 1 to 3, with 1 being the minimum usage level

and 3 the maximum.

CRD for TPT

The objective of CRD is to collect essentially required testing

specifications from component user in an understandable

form. TPT can understand and then validate component

functional specifications in CRD. TPT can also communicate

with the developer for required modifications in component

behavior.

The user specifies the usage level of each required interface.

Instead of wasting time on interfaces with minimum or no

application in the user environment, TPT can spend more

testing effort on the interfaces with high usage level. Thus,

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 16

CRD assists TPT in partially simulating the integration testing

and saving the additional testing effort.

TPT conducts component testing with a perspective of user

requirements. It is termed as virtual integration testing as the

real user environment is not simulated at TPT end rather only

the specifications in CRD are tested by the TPT. Thus,

virtually integration testing is simulated at the TPT end.

Following arguments also support virtual integration testing

by TPT:

TPT verifies requirements as mentioned in the CRD,

 TPT generates input test data using domain

analysis [27], a technique for test data

generation to test classes. The input test data is

generated based on the requirements stated by

the user in CRD. It defines the boundary values

for input data during domain analysis, and also

manages for the volume testing of component

by defining input data.

 TPT tests the possible component

configurations being specified by the user in

the component CRD. It is essentially achieved

by generating a sequence of interface calls as

anticipated by the user. Component real

environment can also be simulated at TPT end

but it is not a requirement for our framework.

TPT handles any mismatches with CRD or CD, and

component, and the inconsistencies or bugs in component can

be communicated to the developer before actual deployment

of the component in the system.

 4.1.3.3 Component test specification descriptor
The CTSD provides a mechanism whereby the TPT can

communicate understandable test oracles and results to the

component user, and also to the provider. The TPT prepares

CTSD using CRD, and CD. CTSD assists developer to

remove bugs by sending a report of bugs detected by TPT in

the component. CTSD provides an assessment of component

services to the user and also assists in integration testing of

component as it holds the test oracles and their results for

each component.

Test Data By Third Party Tester: The test data for executing

component testing is generated based on the conditions

imposed by the user in CRD. The simulation of virtual

integration testing is achieved by generating the test data with

conditions as imposed by the user. In this way the behavior of

program is tested with the data values as expected in usage

environment. Different techniques can be applied for test data

generation, e.g., equivalence class and boundary value

analysis [28].

For OO components, both primitive (e.g. integer, float etc)

data types as well as the complex (objects) data types require

test data generation. Hence, for the proposed framework,

Domain Analysis defined by the Binder [27] is preferred for

test data generation. In addition, Domain analysis also

supports automation.

CTSD schema structure
CTSD schema structure at the basic level consists of a class

tag in the component, and for each class TPT provides a tag

<test-path> as an elemental tag in the CTSD, for every

possible message sequence. TPT generates multiple test-paths

for each class in the component. A test-path contains a

message sequence, expected results after execution of

message sequence, and total number of instantiations and the

passed, failed, and inconclusive instantiations along with a

description is given in CTSD.

The interfaces specified in CRD with high usage-level require

elevated test coverage level. For each class in the component,

the possible sequences of method invocations are generated

and associated with a separate test-path in the CTSD. To

achieve component user defined coverage, sequences of

method invocations in the OO component are generated, by

providing maximum coverage to those levels having high

usage-level in the CRD. The generation of sequences is

accomplished by browsing through the CD of software

component, pre and post conditions of each method help to

determine a super set of chain of sequences, which can get

triggered from the component in an operational environment.

The invariant expressions defined in the CD help the tester to

determine the possible sequence of method invocations.

Test-oracles are the golden implementations or the correct

expected outcomes of a test case for a test path [27]. The test

cases are generated for testing the message sequences of class

with the data generation mechanisms as defined earlier. This

can simulate many instantiations of test data. The expected

outcome of the test cases generated for the message sequence

is derived or defined in terms of the test-oracle for each test-

path of a class in the component. The test-oracle is derived in

the form of an expression as shown in the AccountCTSD.

TPT verifies the actual test results obtained executing

software component with the test-oracle to evaluate the test

results against each instantiation as explained in next sub-

section. TPT generates various instantiation of the test data,

in order to test the sequences of method calls in a class with

the data specified by the user in CRD. The oracle defined in

the test-oracle is verified for each instantiation of data to

check for pass/fail. Total number of instantiations, along with

number of passed and number of failed are given in the

instantiation tag of test path, so that an evaluation or test result

can be established for each test-path.

CTSD for component provider
The first objective of CTSD is to notify the developer about

the reported bugs in component. The CTSD assists the

developer to remove the bugs in the component by sending a

report of the bugs detected by the TPT, which contains a total

number of bugs detected with the test oracles.

A change may be required due to a mismatch of CD with

actual component execution or a conflict in CRD with the

component. TPT notifies this failure to the component

developer. Component provider decides whether the change

indicated by the TPT can be incorporated in the same

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 17

component configuration or a new component configuration

has to be defined for the required change.

In the proposed framework, the augmentation of

component test specification, results in enhanced component

reuse. Once a component is developed, and tested to achieve a

certain level of reliability before delivering to the user.

Another user may again request the same component resulting

in the reuse of component’s existing test-history. TPT reviews

the test history and the specifications in CRD prior to

conducting component testing according to CRD. A situation

may occur that the elements of component specified in CRD

are already tested with their results stored in component test

history. In this way, the test history of component can also be

reused, saving the testing effort. For modified components the

test-history also needs to be modified, so that regression

testing of component can be conducted to reveal errors.

CTSD for component user

TPT then prepares a CTSD packaged with component to the

component user. The CTSD descriptor assists component user

in integration testing of software component by providing test

oracles and their results. CTSD also provides an assessment of

component to the user prior to its incorporation in the system.

It also assist the user in performing integration testing as the

user mentions the usage level of each interface in the CRD,

hence testing is conducted according to the requirements

resulting in a simulation of virtual integration testing.

The metadata-based framework in this way utilizes three

descriptors attached by each key player to facilitate the

component testing. Allowing the TPT to generate test

specifications with a consideration of component user

requirements simulates the partial integration test. The

component user finally receives the software component with

the added descriptors thus reducing the hazards in integration

testing process at the user end.

5.CONCLUSION AND FUTURE WORK

The primary motivations of the proposed framework are to

minimize the affect of lack of information with the component

and to define impartial component testing process. It is

intended to be generally applicable in all OO software

environments. By facilitating the TPT to understand object

oriented component requirements, and its integrations; the

idea of user-directed testing is incorporated. Three discrete

descriptors prepared by the component provider

(developer/assembler), user, and TPT are used in the proposed

framework, to provide an effective mechanism for

communicating test information to component user and TPT.

The CD, CRD, and CTSD follow a defined schema, and are

under individual ownership by each of the key players who

are responsible for supplying content for their descriptors that

complies with schema requisites. A formal notation for added

information can enable unambiguous communication of

component behavior to multiple users. Accordingly, a uniform

schema is defined for component descriptors, in a form that is

understandable by all concerned parties. Component provider

and user supply the CD and CRD, respectively, to the tester,

and in this way assist automated, and objective testing

process. The TPT generates test oracle, test data and test cases

to execute component testing, and stores test specifications in

the CTSD. This framework in its current form supports

automation due to the hierarchical structure of XML, and

provides component unit testing as well as virtual integration

testing. The proposed framework can also be extended to

support maintenance tasks in component testing lifecycle.

Complete automation of this framework can be presented in

the future works. This automation will help in performing an

evaluation of the proposed framework so that a proof of

concept can be established.

REFERENCES
[1] Szyperski, C., 1998. Component Software—Beyond

Object Oriented Programming, The Component Software

Series. Addison-Wesley.

[2] McGregor, J.D., Sykes, D.A., 2001. A Practical Guide to

Testing Object Oriented Software, Addison-Wesley, 1st

edition, Series Editors.

[3] “IEEE Standard Glossary of Software Engineering

Terminology,” ANSI/IEEE Standard 610-12-1990, IEEE

Press, New York, 1990.

[4] Councill W.T. 1999. Third-party Testing and the Quality

of Software Components, IEEE Computer, 55-57.

[5] Bhor A. 2001. Software Component Testing Strategies,

Technical Report UCI-ICS-02-06, Department of

Information and Computer Science, University of

California. Irvine United States.

[6] Wu, Y., Pan, D., Chen, M. 2001. Techniques for Testing

Component-based Software, In 7th IEEE International

Conference on Engineering of Complex Computer

Systems (ICECCS) Sweden, 2001, pp. 222-232.

[7] Rosenblum, D.S. 1997. Adequate Testing of Component

Based Software, Technical Report TR97-34. University

of California at Irvine.

[8] Harrold, M.J., Liang, D., Sinha, S. 1999. An Approach to

Analyzing and Testing Component-Based Software, In

First International ICSE Workshop on Testing

Distributed Component-Based Systems, Los Angeles.

[9] Harrold, M.J. 2000. Testing: A Roadmap, 22nd

International Conference on Software Engineering ACM

Press.63-72.

[10] Dogru, A.H., Tanik, M.M. 2003. A Process Model for

Component-Oriented Software Engineering, IEEE

Software, 34-40.

[11] Gao, J.Z, Tsao, H.-S.J. and Wu. Y.2003. Testing and

Quality Assurance for Component Based Software,

 Artech House, Computing Library.

[12] Weyuker, E.J. 1998. Testing Component-Based

Software: A Cautionary Tale, presented at IEEE

Software, 54-59.

[13] Gao.J., Lan.Y and Jin. M. 2008. A Model of Third-Party

Integration Testing Process for Foundation Software

Platform, Young Computer Scientists 2008 ICYCS 2008

The 9th International Conference for (2008), 1199-1204.

 [14] Orso, A., Harrold, M. J., and Rosenblum, D. S. 2000.

Component metadata for software engineering tasks, In

Proceedings of the 2nd International Workshop on

Engineering Distributed Objects (EDO 2000), 126-140.

[15] Harrold, M.J., and Orso, A., Rosenblum. D., Rothermel.

Soffa. G.M.L. 2001. Using Component Metadata to

Support the Regression Testing of Component-Based

Software.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.15, March 2012

 18

[16] Wu, Y., Chen, M. and Offutt, J. 2003. UML-based

Integration Testing for Component-based Software, Proc.

Of International Conference on COTS-Based Software

Systems (ICCBSS), Ottawa. Canada, 251-260.

[17] Ma, Y.S., Oh, S.U., Bae, D.H., and Kwon, Y.R.2001.

Framework for Third Party Testing of Component

Software, Proceedings of the Eighth AsiaPacific on

Software Engineering Conference (8th APSEC).

 [18] Vaos, J.M. 1998. Certifying Off-the Shelf-Components,

IEEE Computer, Los Alamitos, CA, United States, 53-

59.

 [19] Gao. J. 2000. Challenges and Problems in Testing

Software Components, In Proceedings of ICSE 2000's

3rd International Workshop on Component-based

Software Engineering: Reflects and Practice, Limerick,

Ireland.

 [20] Bertolino, A., Polini, A. 2003. A Framework for

Component Deployment Testing, 25th International

Conference on Software Engineering, Portland, Oregon,

221-231.

 [21] Wang Y., King G., Wckburg H. 1999. A Method for

Built-in Tests in component-based Software

Maintenance, IEEE International Conference on

Software Maintenance and Reengineering, 186-189.

 [22] Martins, E., Toyota, C.M., Yanagawa, R.L. 2001.

Constructing Self-Testable Software Components, In

Proceedings of the International Conference on

Dependable Systems and Networks, 151-160.

 [23] Beydeda S., and Bruhn, V.2003. Merging components

and testing tools: The Self-Testing COTS Components

(STECC) Strategy, In Proceedings of the 29th

EUROMICRO Conference “New Waves in System

Architecture”, Germany, IEEE, 107-114.

 [24] DeMichiel, L. G. 2003. Enterprise Java Beans TM

Specification, version 2.1, Technical report, Sun

Microsystems.

 [25] Morris, J., Lee, G., Parker, K., Bundell, G.A., and Lam,

C.E.2001. Software Component Certification, IEEE

Computer, 30-36.

 [26] “World Wide Web Consortium:

XML,”http://www.w3.org/TR/2000/RECxml-20001006.

Centre for Intelligent Information Processing Systems.

2001.

 [27] Binder, R.V. 1999. Testing Object-Oriented Systems

Models, Patterns, and Tools, Object Technology Series,

Addison Wesley, and 1st Edition.

 [28] Myers, G.J. 1979. The Art of Software Testing, 1st

edition, New York: John Wiley and Sons.

