
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

1

Implementation and Analysis of the Bee Colony
Optimization algorithm for Fault based Regression Test

Suite Prioritization

Arvinder Kaur
University School of Information Technology
Guru Gobind Singh Indraprastha University

Sec 16-c, Dwarka, Delhi

Shivangi Goyal
University School of Information Technology
Guru Gobind Singh Indraprastha University

Sec 16-c, Dwarka, Delhi

ABSTRACT

Regression Testing is an important maintenance phase

testing activity. The importance of this activity lies in the fact

that it imparts confidence and accuracy in the modified code,

as well as keeps a check on the unmodified parts, if they are

affected or not. But there is a severe requirement to reorder

the development testing test suite because of the constrained

software development budget, time and effort. So techniques

have to be developed to prioritize test cases to reduce budget,

time and effort constraints effectively. In this paper

implementation and analysis of an existing fault based

regression test suite has been done. The prioritization

algorithm is based on the nature inspired algorithm called Bee

Colony Optimization (BCO) algorithm. The algorithm is a

two step procedure which maps the food foraging behavior of

scout bee and forager bee one after the other to reach to the

solution. The analysis of the examples using the code

developed indicates that the two step BCO algorithm is able to

produce results which are comparable to optimal results.

General Terms

Regression Testing, Implementation, Analysis.

Keywords

Fault based Test Suite Prioritization, Bee Colony

Optimization (BCO).

1. INTRODUCTION
In SDLC, the maintenance phase is a phase that extends

from 10 to 15 years. In these maintenance years the software

undergoes a number of editions/omissions/up-gradations.

These changes are like mini-softwares in which the SDLC are

executed but in budget, time and effort constraints. So, while

testing software‟s reformed version we cannot use the same

old development testing process, since for development

testing there is ample amount of budget, time and effort

sanctioned. So there is a requirement to reorder or prioritize

the test suite so that the relevant ones are executed first within

permissible budget and time constraints. There are many ways

to prioritize the regression test suites. Some of them being

Fault based prioritization [1], code coverage based

prioritization [2], statement coverage based prioritization [4],

branch coverage based prioritization [4], and failure rates

based prioritization [3].

In fault based regression test suite prioritization in [1] the

fault seeding method has been used to insert faults into the

existing code. Then the test cases are ordered according to the

number of faults detected by a test case. Hence test cases with

more fault detection capabilities become the first ones to fall

into the ordering.

In the year 2011 kaur et al proposed a BCO algorithm for

fault based regression test suite prioritization. The algorithm

proposed in this paper was implemented but the

implementation was not analyzed. The [1] paper has been

used as s basis for this paper. In this paper the algorithm has

been analyzed.

2. BEE COLONY OPTIMIZATION
Bee Colony Optimization is a nature inspired optimization

technique in which the food foraging behavior of honey bees

is mapped to find solution to the problem in hand. Bee colony

system can also be thought of as a Particle Swarm

Optimization in which the agents are bees. Bee colony has

been considered as an excellent example of team work, labor

distribution, coordinated message passing, synchronization

etc. In Bee Colony the worker bee‟s food foraging behavior is

studied and mapped to find solution to the problem in hand.

The proposed algorithm is a two step algorithm in which

the scout‟s and forager‟s food foraging behaviors have been

mapped step by step to formalize the solution to the fault

based prioritization.

3. BCO ALGORITHM
In the proposed BCO technique in [1] the test cases are

prioritized in such a manner so as to achieve maximum fault

coverage within minimum execution time. To ensure that all

the faults are covered by the test cases selected in the

prioritized ordering we use mutation testing. In this we

deliberately alter a program‟s code, then re-run a suite of valid

test cases against the mutated program. A good test will

detect the change (fault) in the program and fail accordingly.

Thus, the proposed algorithm‟s effectiveness is measured

using mutation testing. The block diagram of the BCO

algorithm is presented in figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

2

Fig 1: Block Diagram of BCO_RTSP tool.

4. IMPLENEMTATION DETAILS
The algorithm has been coded as “BCO_RTSP” which is a

C++ code compiled using TURBO C++ compiler,

implemented on an Intel core 2 duo Processor T8100 at 2.10

Ghz (2 Gb RAM).

The BCO tool is made up of 10 modules having 3 global

functions, 2 global structures, 12 global temporary variables.

Following is the explanation of a few modules which were

implemented:

1. BCO_Init()
It is an initialization module for the „bee‟ structure. It is called

before the start of the BCO algorithm.

2. TS_Input()
This module inputs the regression test suite details from the

user which would be prioritized by the BCO algorithm.

3. BCO()
This module is the heart of the BCO_RTSP tool. It is called

from the main() module and it gives the prioritized test suite

as output. This module is executed with the initial bee values

initialized by the BCO_Init() module. In this module path

exploration, path exploitation, final prioritized path display

processes are executed.

Screenshots for the processing and output of the BCO_RTSP

tool have been shown in fig 2 and 3. In order to compute the

efficiency of the BCO_RTSP tool, it was executed on 5

examples taken from [1]. The BCO_RTSP tool was run 10

times on each example and the outcome of each execution

was recorded. All the details of execution and the outcomes of

each execution are presented in detail in the following

Analysis section.

Fig 2: Screenshot 1 of BCO_RTSP tool.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

3

Fig 3: Screenshot 2 of BCO_RTSP tool.

5. ANALYSIS
In the proposed BCO technique the test cases were

prioritized so as to achieve maximum or total fault coverage.

Mutation testing was used to ensure that all the faults have

been covered by the test cases selected in the prioritized

ordering.

5.1. Example 1

The problem taken is “college program for admission in

courses”. The problem specification is available at website

http://www.planet-source-code.com. In example 1 a test suite

with 9 test cases covering a total of 5 faults.

The input test suite contains 9 test cases with default ordering

{T1, T2, T3, T4, T5, T6, T7, T8, T9}, the faults covered (FC)

by each test case, the execution time (ET) required by each

test case in finding faults and food source quality (FSQ) are as

shown in Table 1.

Table 1. Test cases with the faults covered, execution time

and food source quality

Test Case F1 F2 F3 F4 F5 FC ET FSQi

T1 X X X X 4 11.5 .34

T2 X X 2 11.5 .17

T3 X X X 3 12.33 .24

T4 X X X 3 10.66 .28

T5 X 1 15 .06

T6 X X X 3 8.33 .36

T7 X 1 15 .06

T8 X X X 3 10 .30

T9 X 1 11 .09

5.1.1. Execution
Bee's path

bee:1 path 1 7 3 4

bee:2 path 2 5 6 3

bee:3 path 3 4 8

bee:4 path 4 8 5 2

bee:5 path 5 8 3

bee:6 path 6 1 4

bee:7 path 7 8 5 3

bee:8 path 8 6

bee:9 path 9 3 4 2

1 4 ex. time: 22.16

6 2 ex. time: 32.989998

8 4 3 ex. time: 20.66

8 4 ex. time: 20.66

8 3 ex. time: 22.33

6 1 4 ex. time: 30.49

8 3 ex. time: 22.33

6 8 ex. time: 18.33

4 3 2 ex. time: 34.489998

FINAL PATH : 6 8

exc. time : 18.33

5.1.2. Analysis
Example 1, presented in section 5.1. was executed 10 times

for the given test suite. There were a bunch of varying results

for the same which had the optimal result also. The optimal

test suite prioritization order for example 1 is T6 T8 with

execution time of 18.33 units, which was found out to be

appearing 6 times. The code produced other outputs also

which have been shown below and have also been

summarized in Table 2.

Table 2. Summary of outcomes of 10 runs of example 1.

S.

No

BCO

ORDER

EXECUTIO

N TIME

IS ORDER

OPTIMAL?

Y/N

NO. OF

TIMES OF

THIS

OUTCOME

1 T6, T8 18.33 Y 5

2 T1, T8 21.50 N 1

3 T1, T4 22.16 N 2

4 T8, T3 22.33 N 1

5 T6, T4 18.99 N 1

5.2. Example 2
Another problem specification for “Hotel Reservation” which

reserves the rooms in hotel and maintains the record. The

complete problem specification is available at the website

“http://www.planet-source-code.com”.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

4

The input test suite contains 5 test cases with default ordering

{T1, T2, T3, T4, T5}, the faults covered (FC) by each test

case, the execution time (ET) required by each test case in

finding faults and food source quality (FSQ) are as shown in

Table 3.

Table 3. Test cases with the faults covered, execution time

and food source quality.

Test

Case

F1 F2 F3 F4 F5 FC ET FSQi

T1 x x x 3 12.2 .2459

T2 x 1 10 .10

T3 x x x 3 10.67 .28

T4 x 1 7 .14

T5 x x x x 4 9.97 .40

5.2.1. Execution
Bee's path

bee:1 path 1 2

bee:2 path 2 4

bee:3 path 3 4

bee:4 path 4 1

bee:5 path 5 3

3 1 ex. times: 23.07

4 2 ex. time: 17

3 ex. time: 10.67

1 4 ex. time: 19.4

5 3 ex. time: 20.639999

FINAL PATH: 5 3

exc. time: 20.639999

5.2.2. Analysis
Example 2 was executed 10 times for the given test suite.

There were a bunch of varying results for the same which had

the optimal result also. The optimal test suite prioritization

order for example 2 is T5 T3 with execution time of 20.63

units, which was found out to be appearing 7 times. The code

produced other outputs also which have been shown below

and have also been summarized in Table 4.

Table 4. Summary of outcomes of 10 runs of example 2.

S.

No

BCO

ORDER

EXECUTION

TIME

IS ORDER

OPTIMAL?

Y/N

NO.

OF

TIMES

OF THIS

OUTCOM

E

1 T5, T3 20.63 Y 7

2 T5,T1 22.17 N 3

5.3. Example 3
The problem in taken example 3 is “the triangle problem”.

The problem specification is available in [81]. In this example

a test suite has been developed which consisted of 12 test

cases. The input test suite contains 12 test cases with default

ordering {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,

T12}, the faults covered (FC) by each test case and the

execution time (ET) required by each test case in finding

faults are as shown in Table 5.

Table 5. Test cases with the faults covered, execution time

and food source quality.

Test

Case

F1 F2 F3 F4 F5 F6 FC ET

T1 X X X 3 5

T2 X X X X 4 2

T3 X X X X 4 3

T4 X X X X 4 4

T5 X X X X X 5 5

T6 X X X X 4 6

T7 X X X 3 4

T8 X X X X 4 5

T9 X X X X X 5 8

T10 X X X X 4 4

T11 X X X 3 3

T12 X X X X 4 2

5.3.1. Execution
bee:1 path 1 4 8 2 9

bee:2 path 2 7 5

bee:3 path 3 7 5

bee:4 path 4 8 11 6 7 1

bee:5 path 5 11

bee:6 path 6 4 9

bee:7 path 7 2 5

bee:8 path 8 9

bee:9 path 9 4 2

bee:10 path 10 5

bee:11 path 11 2 4 9

bee:12 path 12 9

 2 4 9 ex. time: 14

 2 5 ex. time: 7

 3 5 ex. time: 8

 4 11 ex. time: 7

 5 11 ex. time: 8

 4 6 9 ex. time: 18

 2 5 ex. time: 7

 8 9 ex. time: 13

2 4 9 ex. time: 14

5 10 ex. time: 9

2 4 9 ex. time: 14

12 9 ex. time: 10

FINAL PATH : 2 5

exc. time: 7

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

5

5.3.2. Analysis
Example 3 was executed 10 times for the given test suite.

There were a bunch of varying results for the same which had

the optimal result also. The optimal test suite prioritization

order for example 3 is T5 T2 with execution time of 7 units,

which was found out to be appearing 7 times. The code

produced other outputs also which have been shown below

and have also been summarized in Table 6.

5.4. Example 4
The problem taken is “the quadratic equation problem”. The

problem specification is available [5]. In this example a test

suite has been developed which consisted of 18 test cases. For

simplified explanation of the working of the algorithm, a test

suite with 9 test cases is considered in it, covering a total of 9

faults.

Table 6. Summary of outcomes of 10 runs of example 3.

S.

No

BCO

ORDER

EXECUTION

TIME

IS ORDER

OPTIMAL?

Y/N

NO. OF

TIMES OF

THIS

OUTCOME

1 T5, T7 9 N 1

2 T2, T5 7 Y 6

3 T2, T9 10 N 1

4 T12, T5 7 Y 1

5 T3, T5 8 N 1

The input test suite contains 9 test cases with default ordering

{T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13,

T14, T15, T16, T17, T18}, the faults covered (FC) by each

test case, the execution time (ET) required by each test case in

finding faults and are as shown in Table 7.

Table 7. Test cases with the faults covered, execution time and food source quality.

Test

Case

F1 F2 F3 F4 F5 F6 F7 F8 F9 FC ET

T1 X X 2 3

T2 X X X 3 5

T3 X X X X 4 2

T4 X X X X 4 6

T5 X X X X 4 3

T6 X X X X 4 4

T7 X X 2 2

T8 X X X X X 5 4

T9 X X X X X 5 7

T10 X X X X X 5 3

T11 X X X X X 5 2

T12 X X X X X 1 7

T13 X 1 3

T14 X X X X 4 5

T15 X X X X X 5 6

T16 X X X X X 5 3

T17 X X X X X 5 4

T18 X 1 1

5.4.1. Execution
bee:1 path 1 5 10 12 11 3 9 6 16

bee:2 path 2 14 6 3 15 12

bee:3 path 3 14 17 7 1 10 15 8 4

bee:4 path 4 17 5 14 11 13 2

bee:5 path 5 12 14 2

bee:6 path 6 3 14 15 11 16 12 4 1

bee:7 path 7 9 10 14 11 3 2

bee:8 path 8 10 12 9 4 5 11 6 17

bee:9 path 9 13 3 12 6 14 1 16 17

bee:10 path 10 8 5 6 3 17 11 16

bee:11 path 11 13 8 9 7 16 15 12 14

bee:12 path 12 6 13 7 9 10 1 3 16

bee:13 path 13 11 8 4 2 5 9 3

bee:14 path 14 16 5 15 4 12 1 17 2

bee:15 path 15 3 5 2 8 11 7

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

6

bee:16 path 16 6 2 4 8 9 13 7 1

bee:17 path 17 2 7 4 9 14

bee:18 path 18 15 9 4 16 6 7 12 5

 11 3 1 ex. time: 7

 3 6 15 2 12 ex. time: 24

 3 10 7 ex. time: 7

 11 14 2 13 ex. time: 15

 5 14 2 12 ex. time: 20

 11 3 1 ex. time: 7

 11 3 7 2 ex. time: 11

 11 12 ex. time: 9

 3 16 1 ex. time: 8

 11 3 ex. time: 4

11 7 15 ex. time: 10

3 10 7 ex. time: 7

11 3 2 13 ex. time: 12

16 15 1 2 ex. time: 17

11 3 7 2 ex. time: 11

16 7 2 ex. time: 10

17 7 14 2 ex. time: 16

16 7 15 ex. time: 11

FINAL PATH : 11 3 7 2

exc. time: 11

5.4.1. Analysis
Example 4 was executed 10 times for the given test suite.

There were a bunch of varying results for the same which had

the optimal result also. The optimal test suite prioritization

order for example 4 is T11 T13 T7 T2 with execution time of

11 units, which was found out to be appearing 3 times. The

code produced other outputs also which have been shown

below and have also been summarized in Table 8.

Table 8. Summary of outcomes of 10 runs of example 4.

S.

No

BCO

ORDER

EXECUTION

TIME

IS ORDER

OPTIMAL?

Y/N

NO. OF

TIMES OF

THIS

OUTCOME

1 T10,

T15, T2,
T13

17 N 1

2 T3, T10,

T2, T7

12 N 1

3 T11, T3,

T7, T2

11 Y 3

4 T3, T16,

T7, T2

12 N 1

5 T11, T7,
T14, T2

14 N 1

6 T8, T18,
T14, T2

15 N 1

7 T3, T17,

T1, T2

14 N 1

8 T11, T3,

T2, T13

12 N 1

5.5. Example 5
The problem taken is “the railway ticketing system”. The

problem specification is available at website

http://www.planet-source-code.com. In this example a test

suite has been developed which consisted of 35 test cases. For

simplified explanation of the working of the algorithm, a test

suite with 9 test cases is considered in it, covering a total of 5

faults.

The input test suite contains 14 test cases with default

ordering {T1, T2, T3, T4, T5, T6, T7, T8, T9, T11, T12, T13,

T14}, the faults covered (FC) by each test case, the execution

time (ET) required by each test case in finding faults are as

shown in Table 9.

Table 9. Test cases with the faults covered, execution time

and food source quality.

Test

Case

F

1

F

2

F

3

F

4

F

5

F

6

F

7

F

8

F

9

F

1

0

F

C

ET

T1 X 1 8

T2 X X X X 4 12

T3 X X X X X X 6 16

T4 X X X X X X X 7 18

T5 X X X 3 16

T6 X X X 3 14

T7 X X X 3 15

T8 X X X 3 12

T9 X X X X 4 13

T10 X X X X 4 15

T11 X X X X 4 13

T12 X X X X 4 14

T13 X X X X 4 13

T14 X X X X X 5 13

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

7

5.5.1. Execution
Bee's path

bee:1 path 1 6 13 10 8 12 4

bee:2 path 2 11 6 9 4 13 8

bee:3 path 3 11 13 10 5 1 4

bee:4 path 4 2 13 12 5 11 8

bee:5 path 5 9 6 10 13 8 12

bee:6 path 6 9 13 8 7 4 2

bee:7 path 7 5 9 12 13 4 11

bee:8 path 8 2 10 5 11 4 12

bee:9 path 9 5 1 12 4 13 6

bee:10 path 10 4 8 1 2 3

bee:11 path 11 13 2 7 9 4 1

bee:12 path 12 7 10 9 6 8 4

bee:13 path 13 2 1 8 10 4 3

bee:14 path 14 9 10 12 6 8 11

 4 13 ex. time: 31

 4 2 9 ex. time: 43

 4 3 11 ex. time: 47

 4 2 11 ex. time: 43

 9 13 ex. time: 26

 4 2 9 ex. time: 43

 4 9 13 ex. time: 44

 4 2 11 ex. time: 43

 4 9 13 ex. time: 44

 4 3 10 ex. time: 49

 4 2 9 ex. time: 43

 4 9 12 ex. time: 45

 4 3 13 ex. time: 47

 14 ex. time: 13

FINAL PATH : 4 3 11

exc. time: 47

5.5.2. Analysis
Example 5 was executed 10 times for the given test suite.

There were a bunch of varying results for the same which had

the optimal result also. The optimal test suite prioritization

order for example 5 is T4 T3 T13 with execution time of 47

units, which was found out to be appearing 10 times. The

code produced other outputs also which have been shown

below and have also been summarized in Table 10

Table 10 Summary of outcomes of 10 runs of example 5.

S.

No

BCO

ORDER

EXECUTION

TIME

IS ORDER

OPTIMAL

?

Y/N

NO.

OF

TIME

S OF

THIS

OUTC

OME

1 T4, T3, T11 47 Y 2

2 T4. T3, T13 47 Y 4

3 T4, T3, T9 47 Y 4

6. SUMMARY TABLE

The proposed BCO algorithm has been analyzed by

running it 10 times a for particular example. We

compute the Efficiency (EF) and %Savings (%S) of the

proposed algorithm using following formulas:

Table 11. Summary of outcomes of 10 runs of 5 examples of fault coverage.

EXAM

PLE

NO. OF TEST

CASES

NO.

OF FAULTS

BCO ORDER

ET

NO. OF

RUNS

NO.OF OPTIMAL

RUNS

EFFICIEN

CY

%

%SAVING

S

1

9

5

T6, T8

18.33

10

5

50

77.77

2

5

5

T5, T3

20.

10

7

70

60

3

12

6

T5, 52

7

10

7

70

83.33

4

18

9

T11, T13,

T7,T2

11

10

3

30

77.77

5

14

10

T4, T3,
T13

47

10

10

100

78.57

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

8

Fig 4: Chart depicting EF of examples of fault coverage

Fig 5: Chart depicting %S in test suite of examples of

fault coverage.

The values of EF and %S for the various examples

discussed in section 5 have been computed and tabulated in

table 11. Fig 4 and 5 gives the plots of the EF and %S for the

same examples.

7. COMPARISION

For the examples mentioned in section 5 we have

computed APFD, Average Percentage of Faults Detected [5]

for the BCO order and the Optimal order, the values for which

are given in table 12.

APFD

=

Where,

T - The test suite under evaluation

m - The number of faults contained in the program under

test P

n - The total number of test cases in and

TFi - The position of the first test in T that exposes ith fault.

The results obtained for the examples explained above have

been plotted in APFD charts in Fig. 6. These show that the

APFD values for the prioritization achieved using the

proposed BCO algorithm are comparable to that obtained with

the optimum ordering. The APFD values obtained for the

BCO orderings for various examples of fault coverage

have been compared with the optimal orderings APFD

values. Plots have also been drawn for the same.

Table 12. APFD values of optimal and BCO

prioritization order.

EXAMPLE NAME OPTIMAL APFD

VALUE

BCO APFD

VALUE

STUDENT 78.9 78.9

HOTEL 66 66

TRIANGLE 84.73 91.67

QUAD 86.2 88.65

RAILWAY 85.02 87.21

Fig 6: APFD chart for optimal and BCO orders

8. CONCLUSION AND FUTURE WORK
The BCO Algorithm for maximum fault coverage have

been implemented and analyzed on 5 examples. It has been

found out that BCO is a very efficient technique for regression

test suite prioritization. The analysis work done on the

examples of fault coverage shows encouraging results. The

percentage savings of test cases is atleast 60% which is a

remarkable reduction in the test suite size. However, the

efficiency of the algorithm ranges between 30-100 %, which

could be improved. Also, The APFD values of BCO order are

comparable to the optimal order values. All these factors

indicate that the BCO technique could be used to prioritize the

regression test suite.

Although the algorithm has been implemented

successfully, it requires manual interface to input test suite

data which makes the utility of the implemented part

restricted to small sized test suite. So to apply it to larger

programs, there is a need to automate its input part to

minimize the human interface requirement. Therefore a

complete automation tool for the complete usage of the

algorithm is being developed. It will also be analyzed on

larger projects with large number of test cases and faults.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.14, March 2012

9

REFERENCES

[1] Kaur, A. and Goyal, S., 2011. A Bee Colony

Optimization Algorithm for Fault Coverage Based

Regression Test Suite Prioritization, IJAST, Vol. 29(3),

pp.:17-29, April 2011.

[2] Kaur, A. and Goyal, S., 2011. A Bee Colony

Optimization Algorithm for Code Coverage Test Suite

Prioritization. IJEST, Vol.3(4), pp.:2786-2795.April

2011.

[3] Rothermel, G. Untch, R. H., Chu, C., and Horrold, M. J.,

1999. Test Case Prioritization: An Empirical Study,

Proceedings of the International Conference on Software

Maintenance, pp.: 179-188, September 1999.

[4] Walcott , K. R.,So, M. L., Kapfhammer, G. M., and

Roos, R. S.,2006. Time aware test suite prioritization,

ISSTA, pp.: 1-11, 2006.

[5] Askarunisa, A., Shanmugapriya, L., and Ramaraj, N.,

2009. Cost and Coverage Metrics for Measuring the

Effectiveness of Test Case Prioritization Techniques,

INFOCOMP Journal of Computer Science, pp. 1-10,

2009.

