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ABSTRACT 
The unsteady free convection flow with thermal radiation past a 

vertical plate with Newtonian heating has been studied. The 

governing equations have been solved numerically by the 

implicit finite difference method of Crank- Nicolson's type. The 

variations of the fluid velocity and temperature are presented 

graphically. It is found that the fluid velocity decreases near the 

plate and it increases away from the plate with an increase in 

either Prandtl number or radiation parameter. It is also found 

that the fluid velocity increases with an increase in either 

Grashof number or time. An increase in either Prandtl number 

or radiation parameter leads to fall in the fluid temperature. 

Further, it is seen that the shear stress at the plate decreases 

with an increase in either radiation parameter or Prandtl 

number. The rate of heat transfer decreases with an increase in 

Prandtl number for fixed values of radiation parameter and time 

while it increases with an increase in either radiation parameter 

or time. 

Keywords 
Free convection, Radiative heat transfer, Prandtl number, 

Grashof number and Newtonian heating.  

 

1. INTRODUCTION 
 

In the context of space technology and in processes involving 

high temperatures the effects of radiation are of vital 

importance. Recent developments in hypersonic flights, missile 

reentry, rocket combustion chambers, power plants for inter 

planetary flight and gas cooled nuclear reactors, have focused 

attention on thermal radiation as a mode of energy transfer and 

emphasize the need for improved understanding of radiative 

transfer in these process. The radiative heat transfer is basically 

very important in many aspects of practical engineering. 

Examples are the solar radiation in buildings, foundry 

engineering and solidification processes, chemical engineering, 

composite structures applied in industry. The radiative heat 

transfer problems are also encountered in industrial textiles, 

textiles designed for use under hermetic protective barrier, 

multilayer clothing materials and needle heating in heavy 

industrial sewing as explained by Korycki [1]. These are 

conjugate heat transfer processes, where Newtonian heating 

finds its engineering applications. Manifestly, high temperature 

phenomena cannot be ignored. Therefore, it is more realistic to 

study the problem of unsteady free convection flow with 

radiative heat transfer past a vertical plate with Newtonian 

heating. Newtonian heating, where the rate of heat transfer 

from the bounding surface with a finite heat capacity is 

proportional to the local surface temperature and is usually 

termed conjugate convective flow. This configuration occurs in 

many important engineering devices, for example, in heat 

exchangers where the conduction in solid tube wall is greatly 

influenced by the convection in the fluid flowing over it. 

Literature concerning this subject can be found in books by 

Hottel and Sarofim [2] and Brewster [3]. Cess [4] has made a 

complementary study of the interaction of thermal radiation 

with free convection heat transfer. The natural convection 

boundary-layer flow on a vertical surface with Newtonian 

heating has been studied by Merkin [5]. Hossain and Takhar [6] 

have studied the radiation effect on mixed convection along a 

vertical plate with uniform surface temperature. The free 

convection boundary layer flow along a vertical surface in a 

porous medium with Newtonian heating have been investigated 

by Lesnic et al. [7]. Muthucumaraswamy and Ganesan [8] have 

studied the radiation effects on the flow past an impulsively 

started infinite vertical plate with variable temperature. An 

exact solution of the unsteady free-convection boundary-layer 

flow past an impulsively started vertical surface with 

Newtonian heating have been explained by Chaudhary and Jain 

[9, 10]. Mebine and Adigio [11] have investigated the unsteady 

free convection flow with thermal radiation past a vertical 

porous plate with Newtonian heating. The radiation effects on 

free convection near a moving vertical plate with Newtonian 

heating have been analyzed by Narahari and Ishak [12]. 

 

    In this present paper, we have studied the unsteady free 

convection flow with radiative heat transfer over an infinitely 

long vertical plate when at time 0t  , both the fluid and plate 

are at rest with constant temperature 
T . At time > 0t , the 

plate is given an impulsive motion in the vertically upward 

direction against gravitational field with a uniform velocity 

0U
. It is found that the fluid velocity u  decreases near the 

plate and it increases away from the plate with an increase in 

either Prandtl number Pr  or radiation parameter Ra . The 

fluid velocity increases with an increase in either Grashof 

number Gr  or time  . An increase in either Prandtl number 

Pr  or radiation parameter Ra  leads to fall in the fluid 

temperature  . Further, it is found that the shear stress x  at 

the plate 
( = 0)

 decreases with an increase in either radiation 

parameter Ra  or Prandtl number Pr . The rate of heat transfer 

=0

d

d






 
 
 

 decreases with an increase in either Prandtl 
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number or Ra  Pr  for fixed value time   while it increases 

with an increase in   for for fixed values of Prandtl number 

Pr  and radiation parameter Ra . 
 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS   
 

Consider an unsteady free convection flow with radiative heat 

transfer of a viscous incompressible fluid past an impulsively 

started infinitely long vertical plate with Newtonian heating. 

The x -axis is taken along the vertical plate in an upward 

direction and y -axis is taken normal to the plate (see Fig.1). At 

time 0t  , both the fluid and plate are at rest with constant 

temperature T . At time > 0t , the plate is given an impulsive 

motion in the vertically upward direction against gravitational 

field with a characteristic velocity 0U . It is assumed that the 

rate of heat transfer from the surface is proportional to the local 

surface temperature T . Since the plate is infinitely long along 

x -direction, all the physical variables are the functions of y  

and t  only. The flow is considered optically thin gray gas with 

natural convection and radiation. The radiative heat flux in the 

x - direction is considered negligible in comparison to y -

direction. The Rosseland approximation is used to describe the 

radiative heat flux in the energy equation. 

  

                                
           

          Fig.1: Geometry of the problem.  

 

     Under usual Boussinesq approximation, the momentum and 

energy equations are  

  

2

2
( ),

u u
g T T

t y
  

  
  

 
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                                    (2) 

where 
'u is the velocity in the x -direction, T  the temperature 

of the fluid, g  the acceleration due to gravity,   the 

coefficient of thermal expansion,   the kinematic coefficient 

of viscosity,   the fluid density, k  the thermal conductivity, 

pc  the specific heat at constant pressure and rq  the radiative 

heat flux. The heating due to viscous dissipation is neglected 

for small velocities in the energy equation (2). 

  

  The initial and boundary conditions are  

0, for 0 and 0,u T T y t      

0, at 0 for > 0,
T q

u U T y t
y k


    


         (3) 

0, as for > 0.u T T y t    

    It has been shown by Cogley et al.[13] that in the optically 

thin limit for a non-gray gas near equilibrium, the following 

relation holds  

0
00

= 4( ) ,
pr

eq
T T K d

y T


 





 
  

  
                    (4) 

where K  is the absorption coefficient,   is the wave length, 

pe  is the Plank's function and subscript '0  indicates that all 

quantities have been evaluated at the temperature T  which is 

the temperature of the plate at time 0t  . Thus, our study is 

limited to small difference of plate temperature to the fluid 

temperature. 

    On the use of the equation (4), equation (2) becomes  

  
2
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= 4 ,p

T T
c k T T I
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 
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     Introducing non-dimensional variables  

 

2
0 0

0

( )
, = , , = ,

y U t U u T T
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equations (1) and (5) become  

  

2

2
,

u u
Gr

 

 
 

 
                                            (8) 

 

2

2

1
= ,Ra

Pr

 


 
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where
4 I T

Ra
k

  is the radiation parameter, 
pc

Pr
k


 , 

the Prandtl number, 
3
0

g T
Gr

U

  , the Grashof number and 

the characteristic velocity 0U  is defined by 
q

k


. 

     The corresponding boundary conditions for u  and   are  

        0, 0 for 0 and 0,u              

        1, (1 ) at 0 for > 0,
d

u
d


  


                  (10) 

        0, 0 as for > 0.u       

 

3.  NUMERICAL SOLUTION 
One of the most commonly used numerical methods is the 

finite difference technique, which has better stability 

characteristics, and is relatively simple, accurate and efficient. 

Another essential feature of this technique is that it is based on 

an iterative procedure and a tridiagonal matrix manipulation. 

This method provides satisfactory results but it may fail when 

applied to problems in which the differential equations are very 

sensitive to the choice of initial conditions. In all numerical 

solutions the continuous partial differential equation is replaced 

with a discrete approximation. In this context the word  discrete 

means that the numerical solution is known only at a finite 

number of points in the physical domain. The number of those 

points can be selected by the user of the numerical method. In 



International Journal of Computer Applications (0975 – 8887) 

Volume 41– No.13, March 2012 

38 

general, increasing the number of points not only increases the 

resolution but also the accuracy of the numerical solution. The 

discrete approximation results in a set of algebraic equations 

that are evaluated (or solved) for the values of the discrete 

unknowns. The mesh is the set of locations where the discrete 

solution is computed. These points are called nodes and if one 

were to draw lines between adjacent nodes in the domain the 

resulting image would resemble a net or mesh. 

        

     When time-accurate solutions are important, the Crank-

Nicolson scheme has significant advantages. The Crank-

Nicolson scheme is not significantly more difficult to 

implement and it has a temporal truncation error that is 
2( )O   as explained by Recktenwald [14]. The Crank-

Nicolson scheme is implicit, it is also unconditional stable [15, 

16, 17]. In order to solve the equations (8) and (9) under the 

initial and boundary conditions (10), an implicit finite 

difference scheme of Crank-Nicolson's type has been 

employed. The right hand side of the equations (8) and (9) is 

approximated with the average of the central difference scheme 

evaluated at the current and the previous time step. The finite 

difference equation corresponding to equations (8) and (9) are  
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The boundary conditions (10) become  

,0 ,00, 0 for all 0,i iu i    

1, 0,
0, 0,1, (1 ),

j j
j ju

 





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
                  (13) 

, ,= 0, = 0,N j N ju   

 where N  corresponds to  . Here the suffix i  corresponds to 

  and j  corresponds to  . Also 1= j j     and 

1= i i    .  Knowing the values of   and u  at a time   

we can calculate the values at a time     as follows. We 

put 1,2, ..., 1i N  , in equation (12) which constitutes a tri-

diagonal system of equations, the system can be solved by 

Thomas algorithm as discussed in Carnahan et al.[18]. Thus,   

is known for all values of   at time  . Then knowing the 

values of   and applying the same procedure with the 

boundary conditions, we compute u  from the equation (11). 

This procedure is continued to obtain the solution till desired 

time  . The Crank-Nicolson scheme has a truncation error of 

   2 2O O    , i.e. the temporal truncation error is 

significantly smaller. 

 

                
    

Fig.2: Finite difference grids   

 

    The implicit method gives stable solutions and requires 

matrix inversions which we did at step forward in time because 

this problem is an initial -boundary value problem with a finite 

number of spatial grid points. Though, the corresponding 

difference equations do not automatically guarantee the 

convergence of the mesh 0  . To achieve maximum 

numerical efficiency, we used the tridiagonal procedure to 

solve the two point conditions governing the main coupled 

governing equations of momentum and energy. The 

convergence of the process is quite satisfactory and the 

numerical stability of the method is guaranteed by the implicit 

nature of the numerical scheme. Hence, the scheme is 

consistent. Stability and consistency ensure convergence. 

4. RESULTS AND DISCUSSION 
We have presented the non-dimensional fluid velocity u  and 

temperature   for several values of the radiation parameter 

Ra , Prandtl number Pr , Grashof number Gr  and time   in 

Figs.3-9. It is seen from Figs.3 and 4 that the fluid velocity u  

decreases near the plate and increases away from the plate with 

an increase in either Prandtl number Pr  or radiation parameter 

Ra . This is due to the fact that the fluids with high Prandtl 

number have greater viscosity, which makes the fluid thick and 

hence move slowly. It is also seen that the fluid velocity u  is 

maximum near the plate and decreases away from the plate and 

finally becomes zero for all values of radiation parameter Ra  

and Prandtl number Pr . Fig.5 shows that an increase in 

Grashof number Gr  leads to rise the velocity u . This implies 

that the bouyancy force accelerates the velocity field. It is 

revealed from Fig.6 that the fluid velocity u  increases with an 

increase in time  . Figs.7 and 8 illustrate that the fluid 

temperature   decreases with an increase in either Prandtl 

number Pr  or radiation parameter Ra . The fluid temperature 

is maximum near the plate and decreases away from the plate 

and finally takes zero value for all values of radiation parameter 

Ra  and Prandtl number Pr . It is observed from Fig.9 that the 

fluid temperature increases with an increase in time  . 
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Figure 3: Velocity profiles for Pr  when = 5Gr , = 5Ra  

and = 0.2  

   
Figure 4: Velocity profiles for Ra  when = 7Pr , = 5Gr  

and = 0.2  

 
Figure5: Velocity profiles for Gr  when = 1Ra , 

= 0.71Pr  and = 0.2  

    
Figure 6: Velocity profiles for time   when = 7Pr , 

= 5Gr  and = 1Ra  

      
Figure 7: Temperature profiles for Pr  when = 5Ra  

and = 0.2  

      
Figure 8: Temperature profiles for Ra  when = 7Pr  

and = 0.2  
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Figure 9: Temperature profiles for time   when 

= 0.71Pr  and = 5Ra  

 

The non-dimensional form of the shear stress x  and the rate 

of heat transfer 

=0

d

d






 
 
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 at the plate = 0  are given 

respectively by  

=0

= ,x

du
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                                              (14) 
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1 (0, ).
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
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     Numerical values of the non-dimensional shear stress x  

and the rate of heat transfer 

0

d

d







 
 
 

 at the plate 0   due 

to the flow are presented in Tables 1 and 2 for several values of 

Prandtl number Pr , radiation parameter Ra  and  time   with 

= 5Gr . It is seen from Table 1 that the shear stress x  at the 

plate = 0  decreases with an increase in either Prandtl numbe 

Pr  or radiation parameter Ra  while it increases with an 

increase in time  . Further, it is seen from Table 2 that the rate 

of heat transfer 

=0

d

d






 
 
 

decreases with an increase in either 

Prandtl numbe Pr  or Ra  while it increases with an increase 

in time  . 

   

Table 1. Shear stress 3
10 x

  at the plate = 0  for = 5Gr  

 

  Pr  Ra  

     0.71      2       3        7       4      6     8     10  

 0.02  

0.04  

0.06  

0.08  

 0.45755  

 0.49795  

 0.51500  

 0.52291  

0.42889  

0.46823  

0.48499  

0.49289  

 0.40826  

 0.44847  

 0.46577  

 0.47401  

 0.38912  

 0.42784  

 0.44484  

 0.45305  

 0.43377  

 0.49006  

 0.51834  

 0.53423  

 0.40953  

 0.47660  

 0.50979  

 0.52864  

 0.38692  

 0.46189  

 0.49982  

 0.51998  

 0.36554 

 0.44951 

 0.49299 

0.51880 

  

Table 2. Rate of heat transfer 

=0

d

d






 
 
 

 at the plate = 0  

 Pr   with = 2Ra  Ra    with  = 0.71Pr  

     0.71   2  3  7  2  4  6  8  

0.02  

0.04  

0.06  

0.08  

 1.24905  

 2.19761  

 2.76211  

 3.19385  

1.23915 

1.54160 

1.68497 

1.77643 

1.21281 

1.40786 

1.50553 

1.56487 

1.12955 

1.23688 

1.28675 

1.31502 

1.24905 

2.19761 

2.76211 

3.19385 

1.69905 

2.04700 

2.22176 

2.31999 

1.65221 

1.83529 

1.89948 

1.92399 

1.58861 

1.69019 

1.71445 

1.72069 

  

  

4. CONCLUSION  
The unsteady free convection flow with radiative heat transfer 

of a viscous incompressible fluid past an impulsively started 

infinite vertical plate with Newtonian heating has been 

investigated. It is found that the fluid velocity u  decreases near 

the plate and it increases away from the plate with an increase 

in either Prandtl number Pr  or radiation parameter Ra . The 

fluid velocity increases with an increase in either Grashof 

number Gr  or time  . It is also found that the fluid 

temperature   decreases with an increase in either Prandtl 

number Pr  or radiation parameter Ra . Further, it is found 

that the shear stress x  at the plate ( = 0)  due to the flow 

decreases with an increase in either radiation parameter Ra   or 

Prandtl number Pr . The rate of heat transfer 

0

d

d







 
 
 

 

decreases with an increase in either Prandtl number Pr  or Ra  

radiation parameter Ra  while it increases with an increase in 

time  . 
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