
International Journal of Computer Applications (0975 – 8887)

 Volume 41– No.10, March 2012

42

Implementation of Persistence as an Aspect

Vishal Verma
Kurukshetra University Kurukshetra

Department of Computer Science & Application
Kurukshetra University P.G Regional Centre

Jind,

Ashok Kumar
Kurukshetra University Kurukshetra

Department of Computer Science & Application
Kurukshetra University, Kurukshetra, India

ABSTRACT
Data base and its implantation through various means, always

demand the security of data which is stored in it. From view point

of security from earlier days the DBA stores the data at different

levels and level is available to the concerned person only. The data

with the highest level of security is also termed as persistence data.

Some authors also consider the term persistence as proper means of

storage and retrieval of data from the storage devices. During this

storage and retrieval the overlapping of code for verification of

user make it implementable as cross cutting concerns. In this paper

we provide the inside scene for implementing persistence as an

aspect so that it can be embedded with phases of software

development and can be reused when needed.

Keywords
Aspect Oriented Programming, Aspect Reuse, Persistence,

Relational Data Base.

1. INTRODUCTION
The term aspect in Aspect Oriented Programming (AOP) [22]

provides the basic means for designing modules for a software

problem. Concerns like synchronization [18, 5] and tracing [19, 7]

are used to describe the aspectisation. On the similar pattern

persistence is also considered as an example [11, 10] of concerns.

This supports that persistence can be modularized in AOP

technique and hence can be reused. Further applications (without

taking persistence into consideration) can be developed to the fact

that the synchronization tracing and persistence aspect may be

composed at later stages. Though we are able to claim all of the

above facts but still we can’t express this all by considering

examples, some of the important unexplained points are:

a) Modularization of aspects can be done by using AOP.

b) Aspects used to represent persistence can be reused.

c) It is possible to develop applications without filtering data as

persistence or non-persistence.

Some of the existing projects [1, 2] in AOP have taken

into consideration the persistence and related concerns for

designing an approach and prototypes etc to store the aspects into

data base. AOP uses the persistence representation for aspects to

keep this representation independent of any particular approach.

Main concentration is on providing aspect persistence along with

the persistence of application data. Similar kind of techniques is

also discussed in [3] but separation of persistence is not taken into

consideration. In [9] an approach for AOP is discussed which is

based on separation of concurrency control and failure handling

code in relational (distributed system). The case study in this paper

is mainly concentrating on aspectisation of transaction (in banking

system) which is implementing the persistence in real. We are

discussing only model (schema) of transactions without any

consideration of actual code for the same. All transactions under

consideration here are treated as an object and support to operate in

object oriented environment. This is used most commonly in Data

Base application currently used in corporate sectors. In [20] there

is a description of implementing persistence and distribution aspect

with AspectJ. The aim is to refractor the existing application,

instead of exploring any approach for application development

which is independent of persistence requirements or developing

any new reusable persistence aspect.

This paper shares the experiences in representing the

persistence as an Aspect with the aim that is it possible to make

aspect in a real world application against persistence. More

importantly we try to find whether aspect presentation like this can

be reused with the application and aspect which is developed

independent of each other. For the purpose of case study we

assume the basic transaction processing system of a bank and its

model implementation in SQL to properly consider the underlying

persistence mechanism. We try to provide the general insight into

applicability of other AOP techniques in this context and discuss

how this model can be adapted to apply on other data base

technology i.e. Object Oriented Database etc. Assumed data base

structure for bank:

Figure 1 Bank’s Data Base Structure (UML Notations)

Figure2 (Contd.) Bank’s Data Base Structure (UML Notatons)

Data model for the application is designed by assuming

the basic transaction processing among various elements for the

purpose. It is one of the simplest in nature as we don’t want to

consider the actual relationship among the tables. It is also better

idea to consider them as view instead of tables for the purpose.

Data model is represented by UML notations and is shown in

Figure 1. Aspects are used to implement the associations and

aggregations when appeared in the model.

Bank

Branch Branch Branch

Customer

Acc_holder Acc_holder

Bank

Code

Name

Location

Branch

Branch code

Bank code

Name

Location

Customer

Id

Name

Ssn

Address

Acc_holder

Acc_no

Trans_limit

Type_of_acc

Validity

Branch code

Transaction

Id

Type

Date

Honour_exe

Acc_no

International Journal of Computer Applications (0975 – 8887)

 Volume 41– No.10, March 2012

43

2. MODULARIZING PERSISTENCE
From the beginning of this section we specify the rationale behind

the design and approach used for accessing data base. During

development phase of software we are not paying attention to the

need of performing operations like store and update in the data

base. However every operation component is accountable for both

the data storage and nature of retrieval. Hence we pay less

concentration to modularize the retrieval process. Accordingly

deletion is assumed to be performed individually by separate

module.

2.1 Data Base Access

Three important considerations at the time of aspectising the data

base access required for an application which don’t consider the

persistence are:

a) The way it is identified to separate the persistent data from

application (operational) data.

b) The reusability factor at the time of data base aspectisation is

important.

c) To fully support the P2 there must be some plug-in points

by using which the requirements of new application in which

aspects is to be reused can be embedded easily.

To separate the persistence data from application

(operational) data we use the persistence root-class from Object

Oriented Database [15]. These type of system also demands the

existence of a common base class for all classes whose instance are

required to be stored in the data base. All of the base class’s

functionality which bears some persistence related data is

augmented to persistence class by a pre or post compilation

processor. The root class of a persistence class is shown in Figure.

2. We include the functionality of delete operation within this class

simply to avoid any kind of dangling reference and it is obvious

not to ignore the deletion like other operations on data base. Hence

this all is simplified by embedding the functionality within the

persistence root class along with data base access mechanism.

Public class RootClassforPersistence

{

Protected Boolean deleted: False;

Public void del ()

{

This. deleted = true;

}

Public Boolean deleted()

{

Return this. deleted;

}

}

FIGURE 2 Root Class for Persistence

Public aspect APDB Access

{

Declare root: (Bank || Branch || Customer || Acc_Holder)

Extends RootClassforPersistence;

//other statements;

}

Figure 3 Super Class (An Aspect Declaration of

RootClassforPersistence) with persistent instance

Here the RootclassforPersistence plays very important role to

aspectising data base application access in a reusable fashion. In

Figure 4 we show the Aspects for Data Base Access with high

degree of reusability which is implemented by defining the join

points with reference to an application independent point i.e.

RootClassforPersistence. By using this RootClass as a base class in

any other application and declaring its subclasses or by declaring

aspect with respect to this base class we can implant the

reusability.

Public abstract aspect DBAccess

{

Private static Conn dbconnection;

Private static str dbURL;

Abstract prointcut estbconn();

Abstract pointcut clsconn();

Public abstract str getDBURL();

Public abstract str getDRVName();

Pointcut trapInst(); call (RootClassforPersistence);

Pointcut trapVpd (RootClassforPersistence Ob);

flow (call (public static vector SQLTranslation getobj

(Result.Str))) && (this(obj)) && execution (public

void RootClassforPersistence.set()));

pointcut trapRet ();

call (vector PersistentData.get(…));

public static PersistentData getPersistentdata {}

pointcut trapDel (RootClassforPersistence obj) :

this(obj) && execution (public void

RootClassforPersistence.del());

pointcut Finddelobj (RootforPersistence obj) : this(obj)

&&

(execution(public * RootforPersistence *.get*.(..))||

execution(public * RootforPersitence * .get*())||

execution(public *.RootforPersistence*. tostr()));

persistent static Integer upd(string sqlstate)

throws SQLExcp {….}

protected static vector retrieves (string sqlstaic.string

classname)

throws SQLExcp {…}

protected static object transactionwrapper (string

methodname object parm){…}

public static aspect metaDataAccess {…}

//other code

}

Figure 4 Features of DBAccess object

2.1.1 Conn
The connecting and disconnecting from a data base must be the

basic feature of persistent application. However, we have already

discussed that this type of feature is generic and is implementable

only with availability of some special customizable point cuts with

the class. These point cuts must be in correspondence to:

a) The geographical location of database.

b) The database management system and data base engine used

for data access.

c) The available points in the whole data base generally

considered as entry and exit points from where new connection

with existing DB can be established and disconnected.

In the DBAccess aspect we implement/define the above

requirements by two abstract point cuts and methods. Abstract

methods are supposed to be called by a before advice which

operate on abstract point cut estbconn to get information required

to establish connection with data base (static type variables are

used to hold information about connection) . There is also a need to

supply the data base URL and driver detail form the application

who is supposed to call the DBAccess aspect and two related

methods. This type of aspects also concerned two point cuts for

specification of join points in the statement blocks at which

DBConnection are supposed to be established (i.e. entry point) and

I

II

III

IV

V

VI

International Journal of Computer Applications (0975 – 8887)

 Volume 41– No.10, March 2012

44

closed (i.e. exit point). For the implementation of the same we opt

to use the APDB Access () from Figure 3. Any kind of connection

pooling is not implemented herewith; however, the same can be

called into the DBAccess aspect with localized impact. The

availability of driver and connection managers is quite common

through the ODBC or JDBC drivers, there are some limitations on

JDBC API that they do not provide the full support for application

which may demand the access the to the meta data. The application

which support the flexibility in choosing the data base on which it

operate must provides way of selecting the different data base

drivers/connection managers as well.

2.1.2 Storage and Updation
For the purpose of storage and updation we use two different point

cuts which identify the locations where an object is to be stored

and corresponding persistent representation/data is updated. Call to

trapInst by any application shows that the corresponding object is

instantiated and it should be updated in the data base immediately.

At the time of implementation of aspects for storage and updation

two imported factors must be given the proper concentration.

a) Proper concentration must be given to the persistence by

reachable [16] which stress on the fact that the entire object which

are reachable from the object to be stored must be made persistent.

It is needed to ensure the fact that all references can be

reestablished on retrieval. Since the data base under consideration

is relational data base hence the implementation of this fact is left

to the SQL translations i.e. insert statement.

b) For storing an object it is an oblivious condition that its

respective constructor got executed first, this implies that only after

advice executed. But care must be taken in case of rollback

transaction, in this case the object’s instantiations will not got

aborted itself (automatically) and should be managed by

application. Hence on the execution of transaction wrapper that

signals the rollback, its corresponding after advice statement must

ensure that appropriate action be taken for this rollback or the

respective record from the data base must get deleted to avoid the

dangling references in memory. It is also submitted here that

advices must be treated as first class entities for proper matching of

signatures of the behavior specified within an aspect.

The execution of update method relies on call of all

appearance of setter methods on persistent objects. The appearance

of such call within the statements of getobj method of SQL

translation aspect is not considered for execution. This type of

methods is used to build the objects to be used in relational

representations. Hence call to setter method in the set of

statements, is used to fill up the empty copy corresponding to the

object and, hence, do not have persistent perspective. In this case a

before advice, may be employed to make confirm that data base

state get updated before updation of transient object. This

implementation helps to ensure the error/problem free execution of

roll back operation on data base. In our implementation we also

avoid any public access of any of the method all are supposed to be

accessed via get and set methods etc. This practice helps to ensure

the one fix interface for class (not modified frequently) against

changed interface of member variables. However, to make the

application more prominent only trapupd point cut definite should

be modified to trap direct updates.

The trapInst and trapupd point cuts do not demand any

specific preparation in the code of application that instantiate the

classes in Figure.1. It makes the developer free from the fact that

all advices which are in need to refer these point cuts will store and

update objects in data base and their respective persistent

representation.

2.1.3 Retrieval
The retrieval operation is most important operation among all other

operations performed on data base since the requirement of the end

user get satisfied only on proper execution of retrieve operation

and hence it is important to pay proper concentration to the

successful execution of this operation. The term retrieval can be

specified as “to get and bring back: especially: to recover from

storage”[19]. Form this definition it is obvious that data is retrieved

from one source and is used at other source. It is further modified

that the operation retrieval of data is of declarative in nature since

it may include the predicates and selection conditions

(simple/complex). For all type of data base query languages are

used to access the data dominantly than other methods. In case of

object oriented data bases the data can be retrieved only by

traversal i.e. by using Object Query Language which is a part of

ODMG standards [15] or by implementation of a proprietary query

language as commercially discussed in [21, 23, 13, 14].

Though all above facts are true, the aspects can play an important

role for designing/developing code for retrieval operation. We

implement it by a special interface termed as PersistentData which

offer methods to be implemented by classes. All the retrieval of

data based on any kind of conditions. All of these method return

the object in form of vector. getPersistentData () method of the

DBAccess aspect always provides a reference to the instances of

classes which implements this interface. Application is suppose to

obtain this reference execute all of the retrieval related code.

Any class which invokes and implements the PersistentData

interface provides the points to be used by trapRet point cut for

identification of points at which application is suppose to make

entry for data retrievals. It clearly reflect that this is not application

dependent and hence is reusable around advice for trapRet point

cut is used to obtain the conditions which are passed as arguments

to hook methods. By using SQL Translation it is supposed to

search and return the data. Because of application independence

above discussed methods provides the high degree of reusability.

Since all the data base based applications necessarily use the

retrieval method hence it automatically become important for all

applications. Design of user interface component may depend on

the amount of data to be retrieved from the data base. Numbers of

other design issues are also considered for designing the interface.

It provides means for relating a Acc_Holder to Branch and a

customer to a Bank etc. This type of interface is necessary to

provide since a bank may have thousands of customers and

Acc_Holders who may demand various type of operations to be

performed (retrieval data) and must be managed properly. Even on

selecting a branch the population of Acc numbers is very high.

Hence it seems very meaningful to provide the means ot the user

by using which the name of branch or customer or Acc_Holder be

selected by using graphical interface and the retrieved data is of

total interest. This all is considered as data optimization and the

results provided by this are manageable in an easy way.

2.1.4 Delete
The delete operation is also implemented for all data base

applications and as discussed above it is not possible to fully

aspectise it among the applications. The aspectisation of delete

operation is not possible since it is required to be executed on

request from the specific users only and hence there are

implementation dependent factors which play important role for it.

Some of the languages provide the automatic handling of garbage

collection and dangling reference hence their programmer need not

to pay special concentration for implementation of this operation.

Hence it is not needed to provide any reference point DBAccess

aspect to remove a persistent object from data base file. In

languages like C++ the call to delete operator or aspect may be

implemented to remove object from data bases. But mere call to

such operator provides no means to ensure whether the object is to

be deleted from the memory or from the data base itself. This all

support the implementation in which it is better to call the delete as

an explicit method (reference point) at which any other aspect can

International Journal of Computer Applications (0975 – 8887)

 Volume 41– No.10, March 2012

45

operate when required. In the base class discussed in Figure. 2 we

provide such type of reference point of delete method in the

RootClassforPersistence. Any of the application which want to

execute this method can call it by declaring a new sub class for this

super calss and invoking the method within the boundary as shown

in Figure. 3 the trapdel() point cut discussed in Figure.4 is

supposed to capture any invocations along with before advice and

remove the persistent representation of object as is done in case of

update operation. It is designed to do all necessary implementation

for removing all the early collection of objects to avoid any kind of

dangling reference or to properly implement the garbage

collection. Measures are also taken to properly through and catch

the exceptions (if any occur). This declaration of delete () method

in the RootclassforPersistece (as a reference point) make it

implementable of this code as a reusable code when needed. But

for it to be reusable, the programmer of the application has to pay

proper attentation toward the existence of base class which should

contain the same declarations for it as in RootclassforPersistence,

and then define the subclass which implement this method as per

the request of the application and data base. The existence of base

and subclass combination is necessary to avoid any kind of

ambiguity in the application and by doing so the programmer can

also make himself/herself free from the functionality of DBAccess

aspect and any other SQL Translation aspects.

2.1.5 Transaction
The term transaction in itself means a lot for data base application

since it includes the methods like addition, updation , deletion,

retrieval and transactionwrapper etc. it is better to include the

transaction functionality within such space if possible. The single

spaced wrapped up method’s availability is also supported by

easiness like JDBC in which operations/transactions are started

implicitly (always). The transactions like update and retrieve are

corresponding to read-write and read any operations in the data

base respectively. It is clearly reflecting that update, addition and

deletion transactions always cause some changes in the present

state of data base and are implemented through respective SQL’s

queries by the user. The respective SQL queries are used as an

argument to the point cuts where we want to implement the above

transactions. Name of class is used as an argument to all methods

in classforPersistenceData interface and it is used to establish

relationship/mapping between structure (object) and relational

structure i.e. data base.

Protected static object transactionwrap (string methname, object[]

parameter) {

Try {

Boolean Iscommit = true;

Object obj = Null; }

Try {

Class this class = class for name (“DBAccess”) ;

Method [] methods = thisclass.getdelemeth();

Method themethod = Null;

For (int I = 0; i<methods.len; i++) {

If (methods[i].getname()==methodname)

theMethod = Methods[i]; }

Obj = theMethod.call(Null,Parameter);

}

Catch(Exception e) {

System.out.println (e.tostring());

Dbconn.rollback();

Iscommit = false; {

Finally {

If (iscommit)

Dbconn.commit();

Return(obj); } }

Catch (SQLException e) {

System.out.println (“Error in commiting for rolling back”

converttostring());

Return Null; } } }

Figure 5 Method showing Wrapping of Transaction

Update and retrieve methods may not accessed directly by all

devices, rather it is implemented as name of a number methods

which are passes as an array to transaction wrapper method. This

all helps in easy modularization of nested try catch blocks,

otherwise they are required to be implemented as individual

modules. Outer try catch block take care of and handle the SQL

exceptions when commit and rollback methods were called. Inner

block of try catch invokes the required methods. This all is similar

to the method discussed in [9] where it was used with a Boolean

variable to decide whether to commit or roll back. Abort of

transaction alternate is opted if transaction is reflective transaction

or data base operation. This safer option is chosen as any reflective

operation plays fundamental role at the time of translation to/from

SQL. Chances of relating an exception with data base (directly or

indirectly) are higher. Almost all the functions related to access of

data base are aspectised. Hence there is no need to raise exception

at the time of abort operation since same signaled and well

managed by aspectisation infrastructure. At any stage the returns of

value NULL implies the unsuccessful transaction, and give signal

for execution of transient rollback. The method used in [9] for

transaction wrapping is not used in this paper rather we call the

transaction wrapper (explicitly) from the advice code that were

designed for storage, update, retrieval of simple and persistent

objects. It make the strict boundaries for calling and execution of

transaction wrapper method against data base operation only and

not for other transient operation. Hence the aspect design is

supported by the fact that it is not operating n pure Object Oriented

environment. Reflection operation of data base demands some

overhead for its proper implementation. A good combination of

read – write and read only locks is provided for update and retrieve

methods optimization.

2.1.6 Meta Data Access
This aspect is static in nature and it encapsulates the helper

functionality to access the meta data i.e. schema related data like

table name, column name etc from data base. This type of data is

actually required by SQL transaction aspects. It is developed to

fulfill the two purposes as

a) To avoid any kind of duplication of data.

b) If any Meta data method is not get support for related data

base drivers then the same can be built easily on top of more

primitive features. Hence all update operation can be carried out

without affective the SQL translations function when new version

of drivers are available.

It is quite clear that meta data access functionality can be

treated as a subset of all functionality of data base access. The

module corresponding to this function as inner aspect of DBAccess

aspect provides more natural creation of concern.

3. SQL TRANSACTION
Transaction of SQL statements considered as separate concerns at

the time of aspectising of persistence in relational data base; this is

because all data base access is treated as a concern for all

applications involving access to persistent data. However, any

translation of underlying data model is not necessary. Whenever

relational data base persistent is accessed by OO application the

object structure of relational data base is flattered for easy access

since it may not be able to provide the full support for complex

data types. In Figure. 6 we are showing a part of our relational data

base.

International Journal of Computer Applications (0975 – 8887)

 Volume 41– No.10, March 2012

46

Figure 6 Mapping of Object Oriented Data Model to Relational

Data Model

Here the object Bank and its branch are taken as two separate

tables and are co-related by Bank code so that all branches can be

identified separately and remain related to the Bank all the time.

The tables as shown has one to one relationship among Bank,

Brach and Acc_Holder. Further one to many relationship can be

maintained easily among the tables Acc_Holder and Transaction

and are implemented by using Branch Code and Acc_No in both

tables together. The important part of implementation demands the

existence of a mechanism to create the related tables from the

object data base. Some time the use of only JDBC drivers is

augmented and is stressed for use but it may raise the complex

situations when two way movements for the search of data is not

supported by this kind of drivers and there use has rather limitation

of providing results as a Result Set and all updates demands the

use of unnecessary disk spaces. The SQL Data Interface in JDBC

is able to supports mapping to/from only for user defined object

relational data model and not for pure relational data bases.

For any SQL translation to be reusable the minimum condition to

be satisfied is that it must not be dependent in any application. As

discussed before any kind of mapping required for application

must be specified at the time of aspectisation of persistence for

application. For the purpose of mapping we describe a singleton

lookup table. Mapping is maintained only for many to many maps.

The one to one mapping is simple to maintain as one can be done

by using the identical names on both side. But it is compulsory to

maintain the different name scheme that we have to follow the

lookup table for one to one as well as many to many cases. To

implement the mapping in the look up table we use Create map

aspect which setup the mapping before establishing the connection

with the DB .

Public aspect createmap dominates DBAccess {

Point cut setmap();

Application DBAccess.establishconn ();

Before (); setmap () {

Lookup table maptable = LookupTable.getLookupTable();

Mapping table.create classto Table Map (“Bank”, “Bank”);

Mapping table.create classto Table Map (“Branch”, “Branch”);

} }

Figure 7 Object-to- Relational Mapping (By Aspect)

As Bank object is mapped to Bank Table, Branch is mapped to

Branch Table and so on. It is important to note here that create map

aspect must denote the DBAccess aspect just to ensure the

establishment of mapping before any kind of connection with DB.

Main features of SQL Translation are shown in Figure. 8. We

create a sqlExe point cut to handle the fact that an object of data

base may map to many tables and hence result in translation to

more than one SQL statements. An around advice to test whether a

single SQL statement is executed if so then normal execution of

DBAccess aspect is supposed to proceed. For execution of more

than one statement it’s better to use execution in batch processing.

For execution of all statements of SQL it is better to treat them as

concern. The sqlExe point cut captures Stetement.exeupd(String)

calls for a single method in the DBAccess it becomes possible her

to separate out the SQL translation functionality and add it up with

the SQL Transql aspect. Almost all the get/SQL and get/Object

methods finds the mapping information from the lookup table for

mapping of objects and respective update, retrievals from the data

base and if needed also handle their recreation. Because of total

encapsulation proper care must be taken to include all the declared

methods and members. If there is provision for propagation of

updates for all table linked with each other then this feature is

exploited otherwise tables are updated individually. This all must

be implemented within single boundary. Use of reflection for

object to relation table mapping may cause some additional

overheads during data base interactions, but as per [6] such issues

are considered only when designing highly flexible components.

Public aspect SQLTrans {

Pointcut sqlExe (statement stm, string sqlstm): target (stm)

&& invoke (public int statement.exeupd(string)&&

args(sqlstm));

Public static string getInsertSQL(for RootClassforPersitence

obj);

Public static string getupdSQL (RootClassforPersistence obj,

string methodname , object arg);

Public static string getDelSQL (RootClassforPersistence obj);

Public static string getQuerySQL (string classname, string

selectcondition);

Public static vector getobj (Resultset rs, string classname);

// other methods

}

Figure 8 Feature for SQLTranslation Aspect.

4. EMERGING PERSISTENCE

FRAMEWORK
Discussion completed in sec 2.1 and 2.2 shows that the merging

persistence framework based on aspects. Using the UML notations

frame work is being shown in Figure. 9. Here we are omitting the

related members for the sake of simplicity. The framework shown

in Figure 9 gives a challenge to some of non understandable

challenges of AOP, that a module is a piece of large number of

coding statements, but as per Figure. 9 this is not true for the

simplest cases. It shows that for aspectisation there is need of

coherent set of modules (of classes and aspect) together along with

crosscutting concerns. It leads to the conclusion that aspectisation

is a natural phenomena and can be achieved by separation of

concern e.g. Separation of DBAccess and SQLTranslation aspects.

Furthermore it’s also becomes possible to draw upon established

best procedure and guidelines.

Figure 9 Persistent Framework Emerging From the

application

Acc_holder

Acc_no
Branch code

Trans_limit

Type_of_acc
Validity

Transaction

Acc_no
Branch code

Id

Type
Date

Honour_exe

<aspect>

SQL

Translation

Lookup

Table

<aspect>

Establish

Mapping

<aspect>

Meta Data

Access

Data Base

Access

<aspect>

Application

Data Base

Access

<interface>

Persistent

Data

<aspect>

Persistent Data

Implementation

Bank

Code
Name

Location

Branch

Bank code
Branch code

Name

Location

International Journal of Computer Applications (0975 – 8887)

 Volume 41– No.10, March 2012

47

Other Persistence Mechanism frame work discussed in Figure 9 are

developed by using the assumed application of data which is in use

from long time span. The basic structure with little modification

can be reused in many other applications. Mainly the SQL

Translation mechanism is required to be modified as per the need

of target application. But in context of object oriented data bases

almost everything is required to be re-implemented for new

application. However, it is possible to exploit the persistence

model. Almost all of the point-cuts available in the framework are

used since they provide the actual entry point for the application

regardless of persistence nature of target application. Similarly

wrapper for wrapping transaction will be designed along with

RootClassforPersistence. During this while implementation of

reusability the elements like SQLTranlation. Establishmapping and

lookup table are not re-implemented as we don’t want to

handle/create any mismatch among object oriented and relational

data base. The Meta data is also not considered as there is no need

for same in SQLTranslation. The RootClassforPersistence is not

required to be modified as some of the propriety restrictions are

applied on it to keep it as a very base class on which inheritance is

based for the application. This approach works well and some was

used in [25, 26] in past too.

5. RELATED WORKS
Generic persistence object has been discussed and implemented in

[17], it is basically a framework for dynamic AOP. As per [20] the

basic structure used for this aspectisation uses the existence of

some additional layers between persistence storage and JAC. In [8]

there is a description about simple data base application in which

aspects are used for authentication, catching, for exception

handling for pooling etc. all the storage and retrieval related

statements are not aspectised but hard coded.

The discussion in [4] also bears some resemblance with the work

discussed in our paper. Out discussion has persistence related

domain in it which were not discussed in [12].

6. CONCLUSIONS
We presented in this paper the aspectisation of persistence in

context of banking management system. Main aim of this work is

to explore the support by AOP’s aspects for persistence

modularization and the whole discussion reply “yes” on our

approach. However, in some part of this aspectisation the

implementation of software engineering trade off may not be

possible. The work in this paper is also aimed to implement the

reusability for persistence aspects. The framework for persistence

emerging from discussed work demonstrates that is indeed the

case. There is no existence of any layer which is used for masking

the relational data features. This framework is quite simple for

adaption and reusability specifying the EstbMap aspect and use the

persistent Data interface for a number of purposes. For this it must

be complemented with some specification. This type of

specification should define clearly the interface of an aspect’s

behavior.

7. REFERENCES
[1] A.Rashid, 2000 “On to Aspect Persistence”, GCSE Symp.,.

Springer Verlag, LNCS 2177, pp 26-36.

[2] A.Rashid, 2002 “Weaving Aspects in a Persistent

Environment”, ACM SIGPLAN Notices, (Feb. 2002).

[3] A.Rashid and N. Loughran, 2002 “Relational Database

Support forAspect-Oriented Programming”, Proceedings of

NetObjectDays,.

[4] C.Constantinides, A.Bader, T. Elrad, M. Fayad, and P.

Netinant, 2000 “Designing an Aspect-Oriented Framework in

an Object-Oriented Environment’, ACM Computing Surveys,

32(1),.

[5] D. Holmes, J. Nobel and J. Potter, 1998 “Towards Reusable

Synchronization for Object-Oriented Languages“. ECOOP

Workshop on Aspect Oriented Programming..

[6] D.Parson, A.Rashid, A.Speck and A.Telea, 1999, “A

Framework for Object Oriented Frameworks Design”,

TOOLS Europe, IEEE CS Press, pp 141-151.

[7] G.Kiczales, E. Hilsdale, J. Hugunin, M. A. Kersten, J. Plam

and W.G. Griswold, 2001 “An Overview of AspectJ”,

ECOOP, , Springer Verlag, LNCA 2072, pp. 327-353.

[8] I.Kiselev, 2002Aspect-Oriented Programming with AspectJ:

SAMS,.

[9] J.Kienzle and R. Gurerraoui, 2002 “AOP: Does It Make

Sense? The Case of Concurrency and Failures”, ECOOP, ,

Springer-Verlag, LNCA 2374, p 34-61.

[10] J.Suzuki and Y. Yamamoto, 1999 “Extending UML for

Modelling Reflective Software Components”, International

Conference on the Unified Modeling Language (UML),.

[11] K.Mens, C. Lopes, B. Tekinerdogan and G. Kiezales, 1997

“Aspcet Oriented Programming Workshop Report”, ECOOP

Workshop Reader, , Springer-Verlag, LNCS 1357.

[12] Merriam-Webster, 2002 “Merriam-Webster Online

Dictionary”, http://www.m-w.com/,.

[13] Object Store C++ Release 4.02 Documentation: Object

Design Inc. 1996.

[14] POET 5.0 Documentation Set: POET Software, 1997.

[15] R.G.G Cattell, D. Barry, M.Berler, J. Eastman, D. Jordan, C.

Russel, O. Schadow, T. Stenienda and F. Velez, 2002 The

Object Data Standard: ODMG 3.0 ; Morgan Kaufmann,.

[16] R. Elmasri and S. B. Navathe, 2000. Fundamentals of

Database System (3rd ed); Addison-Wesley,

[17] R. Pawlak, L.Seinturier, L. Duchien , and G. Florin, 2001

“JAC: A Flexible Solution for Aspect-Oriented in Java”,

Reflection Conf., , Springer – Verlag, LNCA 2192,pp 1-24.

[18] S.Clarke, 2000 “Designing Reusable Patterns of Cross-

Cutting Behaviour with Composition Patterns”. OOPSLA

Workshop on Advanced Separation of Concerns,.

[19] S. Clarke and R.J. Walker 2001 “Composition Patterns: An

Approach to Designing Reusable Aspects”, ICSE,.

[20] S. Soares, E.Laureano, and P.Borba,, 2002 “Implementing

distribution and persistence aspects with AspectJ”, OOPSLA,

, ACM Press, pp174-190.

[21] The Jasmine Documentation, 1996-1998 ed: Computer

Associates International, Inc & Fujitsu Limited, 1996.

[22] T. Elrad, R. Filman and A. Bader (eds), 2001 “Theme Section

on Aspect –Oriented Programming”.CACM, 44(10),.

[23] The O2 System - Release 4.02 Documentation: Ardent

Software, 1998.

